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Abstract. In the present paper we use the generalized Euler-Maclaurin summation formula to study
the convergence and to solve weakly singular Fredholm and Volterra integral equations. Since these
equations have different nature, the proposed convergence analysis for each equation has a different
structure. Moreover, as an application of this summation formula, we consider the numerical solution of
the fractional ordinary differential equations (FODEs) by transforming FODEs into the associated weakly
singular Volterra integral equations of the first kind. Some numerical illustrations are designed to depict
the accuracy and versatility of the idea.

1. Introduction

Weakly singular integral equations appear in important applications of some real world mathematical
models. As some applications of such these equations, one can refer to the potential problems, radiative
equilibrium, fracture mechanics and Dirichlet problems [4, 11]. Because of the limitations of several tradi-
tional analytical methods for solving these equations, some new numerical methods have been proposed.
For instance, Du et al [7] proposed the reproducing kernel method for solving Fredholm integro-differential
equations (FIDEs) with weakly singularity. Lifanov et al [12] also suggested some new numerical methods
are for solving singular integral equations. Moreover, the discrete Galerkin method, for solving FIDEs with
weakly singular kernels, was provided by Pedas and Tamme [17]. However, although many other attempts
have been considered for solving weakly singular integral equations, but only a few explore both numerical
discussions and theoretical analysis such as [14, 15, 23].

In this paper we provide, by using the terminology of the generalized Euler-Maclaurin summation
formula, the convergence analysis of the trapezoidal product quadrature rule for solving weakly singular
Fredholm integral equations (FIEs) in the form of

u(t) = f (t) +

∫ b

a
K(t, x)u(x)dx, t ∈ [a, b], (1)

with the assumption that the integral
∫ b

a K(t, x)dx exist. Such a problem has been considered in [5] with
respect to numerics (via the generalized Euler-Maclaurin summation formula) but without any theoretical
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discussion. Therefore we will focus on the convergence analysis of the mentioned quadrature rule for
solving (1) by using the terminology of the generalized Euler-Maclaurin summation formula. Moreover,
we will study the rate of convergence of the weakly singular Volterra integral equations (VIEs) in the form
of

u(t) = f (t) +

∫ t

a
K(t, x)u(x)dx, t ∈ [a, b]. (2)

Also, since any fractional ordinary differential equation (FODE) can be considered as a weakly singular
VIE of the first kind, we will apply the above-mentioned quadrature rule for approximating the solution of
FODEs in the form of

Dα
∗ u(t) = 1(t) + L(u(t)), 0 < α < 1, u(0) = u0, (3)

where Dα
∗ u(t) denotes the left Caputo fractional derivative for u(t) and is defined as [24]

Dα
∗ u(t) =

1
Γ(n − α)

∫ t

0
(t − x)n−α−1u(n)(x)dx =

1
Γ(1 − α)

∫ t

0
(t − x)−αu′(x)dx, (4)

where n = [α] + 1 = 1 and L(u(t)) = θ1u(t) + θ2 is a linear known function in terms of u(t) (i.e., θ1 and θ2 are
known).

This paper is organized as follows. In Section 2 some preliminaries about the generalized Euler-
Maclaurin quadrature rule will be reviewed. In Section 3, some useful lemmas associated with this
quadrature rule together with the convergence analysis for equation (1) are provided. Convergence analysis
associated with equation (2) is given in Section 4. An application of this summation formula for solving
FODEs is considered in Section 5. Some numerical examples, for illustrating the accuracy and versatility of
the presented idea, are given in Section 6. Conclusions are formulated in Section 7.

2. Preliminaries

For clarity of presentation, we will review some preliminaries about Bernoulli functions and the gener-
alized Euler-Maclaurin summation formula in the following lines.

We assume that F0(x) is a given integrable function in the interval [a, b]. Let points a = x0 < x1 < x2 <
. . . < xn = b divide the interval into n subintervals. Throughout the paper, we will assume that the partition
fulfills the following condition

xi − xi−1 ≤
C
n
, (5)

where i = 1, 2, 3, . . . ,n and C ≥ b − a is a constant independent on n.
The first order Bernoulli function F1(k)(x) (see [18], [19]), associated with F0(x) in the interval [xk−1, xk] is

defined as an anti-derivative of F0(x) such that∫ xk

xk−1

F1(k)(x)dx = 0. (6)

To calculate F1(k)(x) we should subtract, from an anti-derivative of F0(x), its mean value in the interval
[xk−1, xk]. Thus we can express F1(k)(x) in the following form

F1(k)(x) =

∫ x

xk−1

F0(t)dt −
1

xk − xk−1

∫ xk

xk−1

(xk − t)F0(t)dt. (7)

At the boundary of [xk−1, xk] we have

F1(k)(xk−1) = −
1

xk − xk−1

∫ xk

xk−1

(xk − t)F0(t)dt, (8)

F1(k)(xk) =
1

xk − xk−1

∫ xk

xk−1

(t − xk−1)F0(t)dt. (9)
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From (8) and (9) or from (7) it follows immediately that

F1(k)(xk) − F1(k)(xk−1) =

∫ xk

xk−1

F0(t)dt. (10)

In a similar way we define, in the interval [xk−1, xk], the second order Bernoulli function F2(k)(x) such that

F′2(k)(x) = F1(k)(x) and
∫ xk

xk−1

F2(k)(x)dx = 0. (11)

Using definition (11) and performing similar calculations we arrive at

F2(k)(x) =

∫ x

xk−1

(x − t)F0(t)dt −
1

2(xk −xk−1)

∫ xk

xk−1

(xk − t)(2x − xk−1 − t)F0(t)dt. (12)

By (12), the function F2(k)(x) takes equal values at the boundary of the interval [xk−1, xk]

F2(k)(xk) = F2(k)(xk−1) =
1

2(xk − xk−1)

∫ xk

xk−1

(xk − t)(t − xk−1)F0(t)dt. (13)

Similarly by induction one can define, in the interval [xk−1, xk], higher order Bernoulli functions. If
Fm−1(k)(x) is given, then we define Fm(k)(x) by

F′m(k)(x) = Fm−1(k)(x) and
∫ xk

xk−1

Fm(k)(x)dx = 0.

The following formula holds [18]

Fm(k)(x) =
(xk − xk−1)m−1

m!

[
Bm

( x − xk−1

xk − xk−1

) ∫ xk

xk−1

F0(t)dt −
∫ xk

xk−1

F0(t)B∗m
( x − t

xk − xk−1

)
dt

]
, (14)

where Bm(x) is the mth Bernoulli polynomial defined in interval [0, 1] and B∗m(x) is the periodic continuation
of Bm(x) i.e., B∗m(x) = Bm(x) for x ∈ [0, 1] and B∗m(x+1) = B∗m(x) if x ∈ R. Formula (14) has been used by Krylov
[10], in the case of the whole interval [a, b], for reducing the value of the approximation error.

From (14) it follows that for m ≥ 2 the mth Bernoulli function takes equal values at endpoints of the
interval [xk−1, xk]

Fm(k)(xk) = Fm(k)(xk−1) =
(xk − xk−1)m−1

m!

∫ xk

xk−1

F0(t)
(
Bm − Bm

( xk − t
xk − xk−1

))
dt, (15)

where Bm = Bm(0) is the mth Bernoulli number.
It is easy to see that, starting from F0(x) = 1, x ∈ [0, 1], up to constant factors, the conventional Bernoulli

polynomials can be defined.
Let us consider integral∫ b

a
F0(x)1(x)dx =

n∑
k=1

∫ xk

xk−1

F0(x)1(x)dx, (16)

where 1(x) is m times continuously differentiable in the interval [a, b]. Integrating in (16), m times by parts
in each interval [xk−1, xk], then summing up over k = 1, 2, . . . ,n and using (15) we obtain the following form
of the generalized Euler-Maclaurin summation formula of the mth order

b∫
a

F0(x)1(x)dx = F1(n)(b)1(b) − F1(1)(a)1(a) +

n−1∑
k=1

(F1(k)(xk) − F1(k+1)(xk))1(xk)

+

m∑
j=2

(−1) j−1
n∑

k=1

F j(k)(xk)(1( j−1)(xk) − 1( j−1)(xk−1)) + (−1)m
n∑

k=1

∫ xk

xk−1

Fm(k)(x)1(m)(x)dx. (17)
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The idea of the generalized Euler-Maclaurin summation formula (17) goes back to Kronecker [9] in 1885,
where the Bernoulli functions are expressed by the Fourier series.

If m = 2 then (17) gives∫ b

a
F0(x)1(x)dx = F1(n)(b)1(b) − F1(1)(a)1(a) +

n−1∑
k=1

(F1(k)(xk) − F1(k+1)(xk))1(xk)

−

n∑
k=1

F2(k)(xk)(1′(xk) − 1′(xk−1)) +

n∑
k=1

∫ xk

xk−1

F2(k)(x)1′′(x)dx. (18)

The expression

Qn(F0, 1) := F1(n)(b)1(b) − F1(1)(a)1(a) +

n−1∑
k=1

(F1(k)(xk) − F1(k+1)(xk))1(xk), (19)

in (18) is a quadrature for integrals
∫

D F0(x)1(x)dx over D = [a, b].
Let us observe that quadrature (19) is in fact the trapezoidal product integration rule. In order to see

this, we will express it in an integral form. For each term of the quadrature, using formulas (8) and (9) we
get

F1(k)(x)1(x)|xk
xk−1

= F1(k)(xk)1(xk) − F1(k)(xk−1)1(xk−1)

=
1(xk)

xk − xk−1

∫ xk

xk−1

(t − xk−1)F0(t)dt +
1(xk−1)

xk − xk−1

∫ xk

xk−1

(xk − t)F0(t)dt

=

∫ xk

xk−1

(t − xk−1)1(xk) + (xk − t)1(xk−1)
xk − xk−1

F0(t)dt. (20)

We see that under the integral sign in (20) the function F0(t) is multiplied by a linear function joining
points (xk−1, 1(xk−1)) and (xk, 1(xk)). This proves the similarity of our quadrature with the trapezoidal product
integration method. Some other applications of the generalized Euler-Maclaurin summation formula, for
different meshes, are given in [20].

In next sections the following lemma will be needed and for convenience of the reader we put it here.

Lemma 2.1. Assume that a function h(x) is continuous in the closed interval [c, d] and has a continuous and positive
second derivative in the open interval (c, d). If moreover∫ d

c
h(x)dx = 0

and h(c) = h(d), then

max
x∈[c,d]

|h(x)| = h(c) = h(d). (21)

Proof. See [19].

3. Weakly singular Fredholm integral equations

In [19] we have proved, that if F0(x) is a continuous and positive function and also 1(x) is twice
continuously differentiable in D then Qn(F0, 1) is convergent to the integral with the error O(1/n2). We will
prove now that the quadrature is convergent in the case when F0(x) is absolutely integrable and 1(x) is
continuous in D.
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Lemma 3.1. If F0(x) is absolutely integrable in [a, b] then for any function u(x) being continuous in [a, b] the
quadrature Qn(F0,u) is convergent to

∫ b

a F0(x)u(x)dx.

Proof. Since u(x) is uniformly continuous in the closed interval [a, b] then for any ε > 0 there exists a δ > 0
such that if |t2 − t1| < δ then |u(t2)− u(t1)| < ε. Suppose the mesh fulfills the condition that (xk − xk−1) < δ for
any k = 1, 2, . . . ,n. Then in any subinterval [xk−1, xk], using (8) and (9), we have:∣∣∣ ∫ xk

xk−1

F0(x)u(x)dx − F1(k)(x)u(x)|xk
xk−1

∣∣∣
=

∣∣∣ ∫ xk

xk−1

F0(x)
[ x − xk−1

xk − xk−1
(u(x) − u(xk)) +

xk − x
xk − xk−1

(u(x) − u(xk−1))
]
dx

∣∣∣
≤

∫ xk

xk−1

|F0(x)|
[ x − xk−1

xk − xk−1
|u(x) − u(xk)| +

xk − x
xk − xk−1

|u(x) − u(xk−1)|
]
dx ≤ ε

∫ xk

xk−1

|F0(x)|dx.

Summing up the above inequalities we get∣∣∣ ∫ b

a
F0(x)u(x)dx −Qn(F0,u)

∣∣∣ ≤ ε∫ b

a
|F0(x)|dx. (22)

Before presenting the next lemma, we denote by F∗1(k)(x) the first Bernoulli function associated with |F0(x)|
in the interval [xk−1, xk], (k = 1, 2, . . . ,n).

Lemma 3.2. Suppose that a function F0(x) is absolutely integrable in the interval [xk−1, xk]. Then we have:

|F1(k)(xk−1)| ≤ −F∗1(k)(xk−1), |F1(k)(xk)| ≤ F∗1(k)(xk). (23)

Proof. The inequalities (23) are the immediate consequence of formulas (8) and (9):

|F1(k)(xk−1)| ≤
1

xk − xk−1

∫ xk

xk−1

(xk − x)|F0(x)|dx = −F∗1(k)(xk−1),

|F1(k)(xk)| ≤
1

xk − xk−1

∫ xk

xk−1

(x − xk−1)|F0(x)|dx = F∗1(k)(xk).

In the next Corollary, we consider the case of two adjacent intervals [xk−1, xk] and [xk, xk+1] and a function
F0(x), absolutely integrable in the interval [xk−1, xk+1].

Corollary 3.3. For the common point xk of the two intervals [xk−1, xk] and [xk, xk+1], the following estimation holds:

|F1(k)(xk) − F1(k+1)(xk)| ≤ F∗1(k)(xk) − F∗1(k+1)(xk). (24)

Proof. From Lemma 3.2 it follows that

|F1(k)(xk)| ≤ F∗1(k)(xk), |F1(k+1)(xk)| ≤ −F∗1(k+1)(xk).

Thus

|F1(k)(xk) − F1(k+1)(xk)| ≤ |F1(k)(xk)| + |F1(k+1)(xk)| ≤ F∗1(k)(xk) − F∗1(k+1)(xk).
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Corollary 3.4. The sum of the weights of quadrature (19) is uniformly bounded with the following estimation

|F1(n)(xn)| + |F1(1)(x0)| +
n−1∑
k=1

|F1(k)(xk) − F1(k+1)(xk)| ≤
∫ b

a
|F0(t)|dt. (25)

Proof. From Lemma 3.2 and Corollary 3.3 we get the following estimation for the weights of the quadrature
(19):

|F1(n)(xn) − F1(1)(x0) +

n−1∑
k=1

(F1(k)(xk) − F1(k+1)(xk))| ≤ |F1(n)(xn)| + |F1(1)(x0)| +
n−1∑
k=1

|F1(k)(xk) − F1(k+1)(xk)|

≤ F∗1(n)(xn) − F∗1(1)(x0) +

n−1∑
k=1

(F∗1(k)(xk) − F∗1(k+1)(xk)) =

n∑
k=1

(F∗1(k)(xk) − F∗1(k)(xk−1))

=

n∑
k=1

∫ xk

xk−1

|F0(t)|dt =

∫ b

a
|F0(t)|dt.

At this stage, we consider again the weakly singular FIE (1) with this assumption that the integral∫ b

a K(t, x)dx does exist, possibly as an improper integral, and is continuous as a function of t ∈ D = [a, b]. It
should be recalled that equation (1) has been considered in [5] just in the numerical aspect and we do not
recall the discretization process and just focus on the convergence analysis concepts.

The integral (Ku)(t) :=
∫ b

a K(t, x)u(x)dx defines the operator K : u → Ku, (K ∈ L(C(D),C(D))). We will

approximate the integral
∫ b

a K(t, x)u(x)dx for a fixed t ∈ [a, b] by quadrature (19) for F0(x) = K(t, x). In this
particular case we denote the quadrature by Qn = Qn(K(t, x),u(x)) and by F1(k)(t, x) the first order Bernoulli
function associated with K(t, x) in the kth subinterval [xk−1, xk]. The quadrature Qn defines also the operator
Kn ∈ L(C(D),C(D)), Kn = (Knu)(t) = Qn(K(t, ·),u(·)).

Corollary 3.4 implies the stability of the quadrature Qn, ||Qn(t)|| ≤
∫ b

a |K(t, x)|dx and shows the uniform
boundedness of the operators Kn(u)(t):

||Kn|| ≤ sup
t∈D

∫ b

a
|K(t, x)|dx,

where || · || denotes the l1 norm.
The following Lemma 3.5 shows the equicontinuity property of the set of operators {Knu : n ∈ N}.

Lemma 3.5. The following estimation holds for t1, t2 ∈ D

|(Knu)(t2) − (Knu)(t1)| ≤ 2
∫ b

a
|K(t2, x) − K(t1, x)|dx · ||u(x)||∞. (26)

Proof. Using formula (9) we obtain for any k = 1, 2, . . . ,n

F1(k)(t2, xk) − F1(k)(t1, xk) =

∫ xk

xk−1

x − xk−1

xk − xk−1
(K(t2, x) − K(t1, x))dx,

which gives the following estimation

|F1(k)(t2, xk) − F1(k)(t1, xk)| ≤
∫ xk

xk−1

|K(t2, x) − K(t1, x)|dx. (27)
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Similar estimation is provided by formula (8):

|F1(k)(t2, xk−1) − F1(k)(t1, xk−1)| ≤
∫ xk

xk−1

|K(t2, x) − K(t1, x)|dx. (28)

Then (27) and (28) lead to (26):

|Kn(u)(t2) − Kn(u)(t1)| = |
(
−F1(1)(t2, x0) + F1(1)(t1, x0)

)
u(x0)

+

n−1∑
k=1

(
F1(k)(t2, xk) − F1(k)(t1, xk) − F1(k+1)(t2, xk) + F1(k+1)(t1, xk)

)
u(xk) +

(
F1(n)(t2, xn) − F1(n)(t1, xn)

)
u(xn)|

≤

n∑
k=1

| − F1(k)(t2, xk−1) + F1(k)(t1, xk−1)| · |u(xk−1)| +
n∑

k=1

|F1(k)(t2, xk) − F1(k)(t1, xk)| · |u(xk)|

≤ 2
∫ b

a
|K(t2, x) − K(t1, x)|dx · ||u(x)||∞.

At point t = xi we get

u(xi) = f (xi) +

n∑
j=1

F1( j)(xi, x)u(x)|x j
x j−1

+ rn(xi) = f (xi) + F1(n)(xi, xn)u(xn)

− F1(1)(xi, x0)u(x0) +

n−1∑
j=1

(F1( j)(xi, x j) − F1( j+1)(xi, x j))u(x j) + rn(xi), (29)

where

rn(xi) =

∫ b

a
K(xi, x)u(x)dx −

n∑
j=1

F1( j)(xi, x)u(x)|x j
x j−1
.

Let (un(x0),un(x1), . . . ,un(xn)) be an approximate solution of the following system of linear equations (i =
0, 1, 2, . . . ,n):

un(xi) = f (xi) + F1(n)(xi, xn)un(xn) − F1(1)(xi, x0)un(x0) +

n−1∑
j=1

(F1( j)(xi, x j) − F1( j+1)(xi, x j))un(x j). (30)

If the values (un(x0),un(x1), . . . ,un(xn)) are known then we can approximate the value u(t) at any t ∈ D
by un(t) given by the formula:

un(t) = f (t) + F1(n)(t, xn)un(xn) − F1(1)(t, x0)un(x0) +

n−1∑
j=1

(F1( j)(t, x j) − F1( j+1)(t, x j))un(x j).

Subtracting (29) from (30) we have

un(xi) − u(xi) =F1(n)(xi, xn)(un(xn) − u(xn)) − F1(1)(xi, x0)(un(x0) − u(x0))

+

n−1∑
j=1

(F1( j)(xi, x j) − F1( j+1)(xi, x j))(un(x j) − u(x j)) − rn(xi).



G. Rza̧dkowski, E. Tohidi / Filomat 33:6 (2019), 1801–1815 1808

Lemma 3.5 shows moreover that the set of operators {Kn} is collectively compact, i.e., the closure of
the set {Knu : n ∈ N, ||u||∞ ≤ 1} is compact (see Hackbusch [8], p. 140). We can use now the results of
Anselone–Moore [2] , Anselone [1] and Brakhage [6] (see Hackbusch [8], Theorem 4.7.11, p. 135). From
them it follows that, if 1 is a regular value of the operator K, then there exists, for all n ≥ n0 (for a sufficiently
large n0), the operator (I − Kn)−1 and the following error estimate holds

||u − un||∞ ≤ ||(I − Kn)−1
|| ||(K − Kn)u||∞, (31)

where ||(I − Kn)−1
|| is the operator norm. Thus inequality (31) proves the requested convergence in the case

of the weakly singular Fredholm integral equations.
In the case of the kernel function of the form K(t, x) = 1

|t−x|α or K(t, x) = 1
(b−x)α , assuming that u(x) is of

class C2[a, b] one can perform the same calculations as we have done in the next section (see estimation (47)
and earlier steps) for the weakly singular Volterra integral equation. From these it follows that the rate of
convergence in this case is O(1/n2).

In the next section, we will study the convergence rate of the generalized Euler-Maclaurin summation
formula for solving weakly singular Volterra integral equations in the form of (2).

4. Weakly singular Volterra integral equations

We again consider equation (2). For clarity of presentation and in the sequel, we assume that the kernel
function has the form of K(t, x) = (t − x)−α, where 0 < α < 1. Convergence analysis with other kernels
may be done by a similar approach. For applying the quadrature rule (19), we should construct the first
order Bernoulli functions associated with the above-mentioned kernel K(t, x). Therefore by (7) we have for
x ∈ [xi−1, xi] and 1 ≤ k ≤ n:

F1(i)(xk, x) =

∫ x

xi−1

K(xk, ξ)dξ −
1

xi − xi−1

∫ xi

xi−1

(xi − ξ)K(xk, ξ)dξ

=

∫ x

xi−1

(xk − ξ)−αdξ −
1

xi − xi−1

∫ xi

xi−1

(xi − ξ)(xk − ξ)−αdξ, (32)

and by (8), (9) the values of F1(i)(xk, x), at the boundary of [xi−1, xi], are as follows

F1(i)(xk, xi−1) = −
1

xi − xi−1

∫ xi

xi−1

(xi − x)(xk − x)−αdx (33)

F1(i)(xk, xi) =
1

xi − xi−1

∫ xi

xi−1

(x − xi−1)(xk − x)−αdx. (34)

Now, collocating equation (2) at the nodes t = xk, k = 1, 2, . . . ,n, yields

u(x1) = f (x1) +

∫ x1

a
K(x1, x)u(x)dx,

u(x2) = f (x2) +

∫ x2

a
K(x2, x)u(x)dx,

...

u(xn) = f (xn) +

∫ xn

a
K(xn, x)u(x)dx. (35)
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At this stage we will apply the quadrature rule (19) for approximating the integral terms
∫ xi

a K(xi, x)u(x)dx
for i = 1, 2, . . . ,n, in equations (35). Thus

u(x1) ≈ f (x1) + F1(1)(x1, x1)u(x1) − F1(1)(x1, a)u(a),

u(x2) ≈ f (x2) + F1(2)(x2, x2)u(x2) +
(
F1(1)(x2, x1) − F1(2)(x2, x1)

)
u(x1) − F1(1)(x2, a)u(a),

... (36)

u(xn) ≈ f (xn) + F1(n)(xn, xn)u(xn) +

n−1∑
i=1

(
F1(i)(xn, xi) − F1(i+1)(xn, xi)

)
u(xi) − F1(1)(xn, a)u(a).

It should be noted that u(a) = f (a). We assume that ui is an approximation of u(xi) for i = 1, 2, . . . ,n, and
hence one can rewrite equations (36) in the following form

u1 =
(

f (x1) − F1(1)(x1, a) f (a)
)

+ F1(1)(x1, x1)u1,

u2 =
(

f (x2) − F1(1)(x2, a) f (a)
)

+
(
F1(1)(x2, x1) − F1(2)(x2, x1)

)
u1 + F1(2)(x2, x2)u2,

... (37)

un =
(

f (xn) − F1(1)(xn, a) f (a)
)

+

n−1∑
i=1

(
F1(i)(xn, xi) − F1(i+1)(xn, xi)

)
ui + F1(n)(xn, xn)un.

(38)

System (37) can be rewritten in the matrix form U = F + AU, where U = [u1 u2 · · · un]T, F = [ f (x1) −
F1(1)(x1, a) f (a) f (x2) − F1(1)(x2, a) f (a) · · · f (xn) − F1(1)(xn, a) f (a)]T and

A =


F1(1)(x1, x1) 0 · · · 0

F1(1)(x2, x1) − F1(2)(x2, x1) F1(2)(x2, x2) · · · 0
...

. . .
. . .

...
F1(1)(xn, x1) − F1(2)(xn, x1) · · · · · · F1(n)(xn, xn)


n×n

. (39)

The above-mentioned algebraic system can be solved by some suitable iterative methods and so we
have an approximation for the solution of (2). We now turn to the convergence analysis subject associated
with the above discretization.

Theorem 1. Suppose that K(t, x) = (t − x)−α, where α is a given real constant in the interval (0,1) and
also f (t) a given function in equation (2). If for approximating the solution of (2), we use the generalized
Euler-Maclaurin summation formula (19) and if the solution of the algebraic system (37) is the approximate
solution of (2), then the convergence rate is 2. In other words, |u(xk)−uk| ≤ c/n2 for a constant c independent
of n.

Proof. By using (33) and (34), for i = 1, 2, · · · , k − 1 (k ≤ n) we get

Cki :=F1(i)(xk, xi) − F1(i+1)(xk, xi) =

∫ xi

xi−1

(x − xi−1)(xk − x)−α

xi − xi−1
dx +

∫ xi+1

xi

(xi+1 − x)(xk − x)−α

xi+1 − xi
dx

≤ (xi+1 − xi−1)(xk − xi)−α. (40)

The inequality in (40) holds because the integrand of the first integral is increasing for x ∈ [xi−1, xi] and
the integrand of the second integral is decreasing as a function of x ∈ [xi, xi+1]. Therefore the maximum of
both the integrands is attained at point x = xi and equals (xk − xi)−α.

Moreover, since

F1(k)(xk, xk) =
1

xk − xk−1

∫ xk

xk−1

(x − xk−1)(xk − x)−αdx =
(xk − xk−1)1−α

(2 − α)(1 − α)
,
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then we choose sufficiently large number n that, under condition (5), F1(k)(xk, xk) < 1/2 i.e.,

n > C
(

2
(2 − α)(1 − α)

)1/(1−α)

. (41)

Assuming that u(x) is of class C2[a, b], we will now estimate the difference

Aki :=
∫ xi

xi−1

K(xk, x)u(x)dx − F1(i)(xk, x)u(x)|xi
xi−1

= −F2(i)(xk, x)u′(x)|xi
xi−1

+

∫ xi

xi−1

F2(i)(xk, x)u′′(x)dx, (42)

for i = 1, 2, . . . , k. Formula (13) gives

F2(i)(xk, xi) = F2(i)(xk, xi−1) =
1

2(xi − xi−1)

∫ xi

xi−1

(xi − x)(x − xi−1)(xk − x)−αdx > 0,

and since 0 ≤ (xi − x)(x − xi−1) ≤ (xi − xi−1)2/4 for x ∈ [xi−1, xi] then

F2(i)(xk, xi) = F2(i)(xk, xi−1) ≤
(xi − xi−1)

8

∫ xi

xi−1

(xk − x)−αdx. (43)

Thus inequality (43) implies the following estimation for the first term on the right hand side of the
equation (42)

| − F2(i)(xk, x)u′(x)|xi
xi−1
| = |F2(i)(xk, xi)u′(xi) − F2(i)(xk, xi−1)u′(xi−1)| = F2(i)(xk, xi)|u′(xi) − u′(xi−1)|

≤ max
xi−1≤x≤xi

|u′′(x)|(xi − xi−1)F2(i)(xk, xi) ≤ max
xi−1≤x≤xi

|u′′(x)|
(xi − xi−1)2

8

∫ xi

xi−1

(xk − x)−αdx. (44)

Similarly we can proceed with the second term on the right hand side of the equation (42). From Lemma
2.1 we know that function F2(i)(xk, x) defined in the interval [xi−1, xi] takes its maximal absolute value at
points xi−1 and xi i.e., max

xi−1≤x≤xi
|F2(i)(xk, x)| = F2(i)(xk, xi−1) = F2(i)(xk, xi) > 0. Therefore using (43) we have

|

∫ xi

xi−1

F2(i)(xk, x)u′′(x)dx| ≤
∫ xi

xi−1

|F2(i)(xk, x)||u′′(x)|dx ≤ max
xi−1≤x≤xi

|u′′(x)|
(xi − xi−1)2

8

∫ xi

xi−1

(xk − x)−αdx. (45)

Using (44) and (45) we obtain the requested estimate for the difference in (42)

|Aki| ≤ max
xi−1≤x≤xi

|u′′(x)|
(xi − xi−1)2

4

∫ xi

xi−1

(xk − x)−αdx. (46)

Therefore, to estimate the value of

Ak :=
k∑

i=1

Aki =

∫ xk

a
K(xk, x)u(x)dx −

k∑
i=1

F1(i)(xk, x)u(x)|xi
xi−1
,

we sum up inequalities (46) for i = 1, 2, . . . , k and use condition (5) for the partition. We arrive at

|Ak| ≤

k∑
i=1

|Aki| ≤ max
a≤x≤xk

|u′′(x)| ·
C2

4n2

∫ xk

a
(xk − x)−αdx = max

a≤x≤xk
|u′′(x)|

C2

4n2(1 − α)
(xk − a)1−α. (47)

Trivially for the error at the point t = x1, we have

u1 = f (x1) +
(
F1(1)(x1, x1)u1 − F1(1)(x1, x0)u(a)

)
,

u(x1) = f (x1) +

∫ x1

a
K(x1, x)u(x)dx.
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Subtracting the first equation from the second one yields

u(x1) − u1 =

∫ x1

a
K(x1, x)u(x)dx −

(
F1(1)(x1, x1)u1 − F1(1)(x1, x0)u(a)

)
. (48)

We rewrite equation (48) in the form of

u(x1) − u1 =
[ ∫ x1

a
K(x1, x)u(x)dx −

(
F1(1)(x1, x1)u(x1) − F1(1)(x1, x0)

u(x0)︷︸︸︷
u(a)

)]
+ F1(1)(x1, x1)(u(x1) − u1)

or denoting ek = u(xk) − uk (k = 1, 2, . . . ,n) and using our notation

e1 = A1 + F1(1)(x1, x1)e1

For the error at the point t = x2, the following equations hold

u2 = f (x2) + F1(2)(x2, x2)u2 +
(
F1(1)(x2, x1) − F1(2)(x2, x1)

)
u1 − F1(1)(x2, x0)u(a)

u(x2) = f (x2) +

∫ x2

a
K(x2, x)u(x)dx.

In other words

u(x2) − u2 =
[ ∫ x2

a
K(x2, x)u(x)dx − F1(2)(x2, x2)u(x2) − (F1(1)(x2, x1) − F1(2)(x2, x1))u(x1) + F1(1)(x2, x0)u(0)

]
+ (F1(1)(x2, x1) − F1(2)(x2, x1))(u(x1) − u1) + F1(2)(x2, x2)(u(x2) − u2),

which can be written as

e2 = A2 + C21e1 + F1(2)(x2, x2)e2.

Analogously for the error at the point t = xk, (k = 1, 2, . . . ,n) we get the following equation

ek = Ak +

k−1∑
i=1

Ckiei + F1(k)(xk, xk)ek. (49)

Similar system of equations has been regarded by Lü Tao and Huang Yong [21] (see their Theorem 1, p. 59)
in the case of the Navot [16] and Lyness [13] quadrature formula. The authors proved a generalization of
the Gronwall inequality, namely, in our notation, if in the system of inequalities

|ek| ≤ A +

k−1∑
i=1

Bki|ei|, k = 1, 2, . . . ,n

the coefficients Bki = const(xk − xi)−α/n, then for any k, |ek| ≤ AH, where a constant H does not depend on
n. For the above mentioned quadrature formula and the same kernel function, Tao and Yong obtained the
rate of convergence |ek| = O(n−2+α).

Using (47) and taking an n according to (41) we see that in our case of the system (49) we could put

A = max
1≤k≤n

|Ak|

1 − F1(k)(xk, xk)
≤ 2 max

1≤k≤n
|Ak| ≤ max

a≤x≤b
|u′′(x)|

C2

2n2(1 − α)
(b − a)1−α

and by (40)

Bki =
Cki

1 − F1(k)(xk, xk)
≤ 2Cki ≤

4C
n

(xk − xi)−α.

Thus from the proof of Theorem 1 by Tao and Yong [21] it follows that for any k = 1, 2, . . . ,n the error in (49)
is |ek| ≤ cn−2 for a constant c independent of n.
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5. Fractional differential equations

In this section, we will obtain a numerical solution for the FODE (3) via the Euler-Maclaurin quadrature
rule. For this purpose, we should first transform (3) into the associated weakly singular VIE of the first
kind. FODE (3) can be rewritten as

1
Γ(1 − α)

∫ t

0
(t − x)−αu′(x)dx = 1(t) + θ1u(t) + θ2, 0 ≤ α ≤ 1, u(0) = u0. (50)

Now, we assume that y(t) = u′(t). Integrating from this relation in the interval [0, t] yields

u(t) =

∫ t

0
y(x)dx + u0. (51)

By using (51), one can rewrite (50) in the following form∫ t

0
K̂(t, x)y(x)dx = f (t), (52)

where

f (t) = 1(t) + θ1u0 + θ2, K̂(t, x) =

(
1

Γ(1 − α)
(t − x)−α − θ1

)
. (53)

Equation (52) is a weakly singular VIE of the first kind and can be solved by a similar approach that is
provided in previous section.

6. Numerical examples

In this part of the paper, we will provide four test problems to show the efficiency of the considered
numerical scheme and all of these examples are designed on a laptop PC using programs written in
MATLAB 2015b. In this regard, we have reported in tables the values of the maximum of the absolute
error function en(x) =

∣∣∣u(x) − un(x)
∣∣∣, which is denoted by en, (or its logarithm in figures) at the considered

uniform or nonuniform meshes of the given interval (e.g., [0, 1]). It should be noted that in first test
problem we consider a system of weakly singular FIE in which our results are more accurate with respect
to the trapezoidal rule [3]. Also, since the trapezoidal rule can not solve these singular equations in the
interval [0,1], the associated results of this classical scheme have been done in the interval [0.05,0.95]. In
the second test problem, we consider a weakly singular VIE and in the third example we provide the
numerical solutions of a FODE. Moreover, in the fourth test problem we introduce two nonuniform meshes
and compare them with the uniform one.

The first order Bernoulli function F1(k)(t, x) in the second example for the kernel function K(t, x) = 1
√

t−x
is given by

F1(k)(t, x) = 2(
√

t − xk−1−
√

t − x)−
6xk
√

t − xk−1 − 4t
√

t − xk−1 − 2xk−1
√

t − xk−1 + 4t
√

t − xk − 4xk
√

t − xk

3(xk − xk−1)
, (54)

where 1 ≤ k ≤ n.
To get the first order Bernoulli function for the first and fourth examples, where the kernel is K(t, x) =

1
√

1−x
, we put t = 1 in (54). Similarly, to calculate it for the third example for the kernel K(t, x) = 1

Γ(0.5)
√

t−x
+ 1

we divide (54) by Γ(0.5) = 1.7724538509055 and add the first order Bernoulli function of the constant
function 1, which equals x − xk−1+xk

2 .
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Table 1: Numerical results of the first example

n en of PM for u1(t) en of PM for u2(t) en of TR for u1(t) en of TR for u2(t)
2 2.2179e-01 1.6274e-01 6.8510e-01 3.1458e-01
8 1.5863e-03 8.1953e-04 6.5012e-01 3.1003e-01

16 4.0994e-04 2.2146e-04 6.3125e-01 2.4198e-01
64 2.6590e-05 8.1776e-06 5.8547e-01 2.3000e-01

128 6.7171e-06 1.9624e-06 5.7219e-01 2.1034e-01

0 50 100 150 200 250 300

n ------------------>

-4
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10
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n

Error history comparison between of the PM and TR

Error of the PM for u(t))

Error of the TR for u(t)

Figure 1: Error history comparison between of the PM and TR for different values of n

Example 1. As the first test problem, we consider the following system of weakly singular FIE with the
exact solutions u1(t) = t and u2(t) = et

u1(t) = t − 5.3934 +

∫ 1

0

u1(x)
√

1 − x
dx +

∫ 1

0

u2(x)
√

1 − x
dx,

u2(t) = et
− 5.3934 +

∫ 1

0

u1(x)
√

1 − x
dx +

∫ 1

0

u2(x)
√

1 − x
dx.

We apply the considered numerical method for solving the above system of weakly singular FIEs. The
associated results of the presented method (PM) together with the results of the trapezoidal rule (TR) are
provided in Table 1. Superior results of our proposed scheme with respect to the TR can be seen in Table 1.

Example 2. As the second test problem, we consider the following weakly singular VIE with the exact
solution u(t) = t2

u(t) = t2
−

16
15

t5/2 +

∫ t

0

u(x)
√

t − x
dx.

Again, we implement the generalized Euler-Maclaurin quadrature rule for solving the above weakly
singular VIE. The associated results of the PM together with the results of the TR are provided in Figure 1.
More accurate numerical results of our suggested technique with respect to the TR confirms the efficiency
of the generalized Euler-Maclaurin summation formula.

Example 3. As the third test problem we consider the following FODE with the exact solution u(t) = t4+1

Dα
∗ u(t) = t4 + 1 +

24
Γ(4.5)

t3.5
− u(t), u(0) = 1.

Similar to the previous section, we first assume that y(t) = u′(t) and transform the above FODE into the
associated weakly singular VIE of the first kind and implement the generalized Euler-Maclaurin quadrature
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Figure 2: Error history for different values of n for the third example (fractional ODE)

Table 2: Numerical results of the fourth example

n en of UM for u(t) en of NM1 for u(t) en of NM2 for u(t)
4 3.4860e-02 3.2979e-02 2.6986e-02
8 9.2494e-03 8.3115e-03 6.8542e-03

16 2.4012e-03 2.0819e-03 1.7264e-03
32 6.1550e-04 5.2074e-04 4.3302e-04
64 1.5650e-04 1.3020e-04 1.0840e-04
128 3.9587e-05 3.2551e-05 2.7116e-05
256 9,9778e-06 8,1380e-06 6,7806e-06

rule for obtaining the numerical solution. It should be noted that, the solution of the weakly singular VIE
of the first kind is y(t) and after approximating this variable one can use a simple quadrature rule such as
TR for approximating u(t) =

∫ t

0 y(x)dx + u0 =
∫ t

0 y(x)dx + 1. The obtained numerical results for this equation
are depicted in Figure 2.

Example 4. As the fourth test problem, we consider the following weakly singular FIE with the exact
solution u(t) = t3

u(t) = t3
−

32
35

+

∫ 1

0

u(x)
√

1 − x
dx.

We implement the generalized Euler-Maclaurin quadrature rule for solving the above weakly singular FIE
for three different meshes. The first one is the uniform mesh (UM). In the second, nonuniform mesh (NM1),
the nodes are chosen in such a manner that the areas under the graph of the kernel function are equal, i.e.,∫ xk

xk−1
1/
√

1 − xdx =
∫ 1

0 1/
√

1 − xdx/n for k = 1, 2, 3, . . . ,n, then xk = k(2n − k)/n2 and the constant of condition
(5) for the partition is C = 2. The next nonuniform mesh (NM2) differs from NM1 in taking the square root

of the kernel function, i.e.,
∫ xk

xk−1
1/ 4√1 − xdx =

∫ 1

0 1/ 4√1 − xdx/n for k = 1, 2, 3, . . . ,n, then xk = 1 − (1 − k/n)4/3

with the constant C = 4/3 of condition (5). The associated results of the three methods are provided in Table
2. It seems to be interesting that, in this case, NM2 gives the lowest values of the error.

7. Conclusions

Convergence analysis of the generalized Euler-Maclaurin quadrature rule is provided for solving weakly
singular Fredholm and Volterra integral equations. It is proved that the rate of convergence is O(n−2) for
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both of the equations. Also numerical solution of fractional ordinary differential equations (FODEs) is
provided as an application of the considered summation formula. The numerical results for the above-
mentioned equations confirm the theoretical predictions. We also showed that the generalized Euler-
Maclaurin summation formula is a natural theoretical approach to the above issues.
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