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Abstract. In this paper, we give the definition of an asymptotic circular mth-order Markov chain indexed by
an m rooted homogeneous tree. By applying the limit property for a sequence of multi-variables functions
of a nonhomogeneous Markov chain indexed by such tree, we estabish the strong law of large numbers
and the asymptotic equipartition property (AEP) for asymptotic circular mth-order finite Markov chains
indexed by this homogeneous tree. As a corollary, we can obtain the strong law of large numbers and AEP
about the mth-order finite nonhomogeneous Markov chain indexed by the m rooted homogeneous tree.

1. Introduction

Let N be the set of all natural numbers, for a positive integer d, two numbers 4,b € N are said to be
congruent modulo d, written:

a = b(mod d) 0<b<d-1,

if their difference a — b is an integer multiple of d (or d divides a — b). Equivalently, a = b(mod d) can also be
thought of as asserting that the remainders of the division of both 4 and b by d are the same. We call the set
of natural numbers x € N, which satisfies the relation x = a(mod d), to be the residue class of 2 modulo 4 in
set N, and denote by

[a] = {x]x € N, x = a(mod d)}.

Obviously, the natural numbers set N can be divided into d subsets by the congruent relation of modulo d
as follows:

[0]=1{0,d,2d,3d,--- ,nd,---}
[11={1,d+1,2d+1,3d+1,--- ,nd+1,---}

[d-1]={d-1,d+d-1,2d+d-1,3d+d-1,--- ,nd+d-1,---}
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For our later purpose, we may let
[d] = {d/2d13dl'.' /nd/."}/

that is, [d] = [0] \ {0}. For more details about the knowledge of number theory, please see ([5]).

Now let’s start to introduce the definition of an asymptotic circular mth-order Markov chain indexed by
an m-rooted homogeneous tree and give some notations about tree graph and such Markov chain.

A tree T is a connected graph and does’t contain any loop. Given any two vertices s # t € T, let st be the
unique path connecting s and ¢. Define the graph distance d(s, t) to be the number of edges contained in the
path st.

Let Tcn be an infinite Cayley tree with root 0, in which the root 0 has only N neighbours and all other
vertices have N + 1 neighbors. For each vertex f, there is a unique path from 0 to ¢, and |f| = d(0, t) for the
number of edges on this path. We denote the first predecessor of t by !t, the second predecessor of t by
2t, and denote by "t the n-th predecessor of . Now we can formulate an m rooted Cayley tree Tcy by the
Cayley tree Tcy with the root connecting another ray, where there are m — 1 edges and m vertices denoted
by 0,10,20,---,"10 (see Figure 1). When the context permits, this type of tree is simply denoted by T.

level 3

level 2

level 1

level 0 root 0
level 1 root 10
level -2 root 20

level —(m —2)  root ™20

level -(m —1)  root ™10
Figure 1 An m rooted Cayley tree T,

For any two vertices s and t of a tree T, write s < t if s is on the unique path from the root 0 to ¢. For any
two vertices s and (s, t ¢ {0,10,20,---,™710}), denote by s A t the vertex farthest from 0 satisfying s At < s
and s A t < t. The set of all vertices with distance n from the root 0 is called the n-th generation of T, which
is denoted by L,. That is, L, is the set of all vertices on level n from the root 0. By analogy, the root —1 is on
the level L_q, root —2 is on the level L_, root —(m — 1) is on the level L_,,_1). We denote XA = {X;,t € A} and
|A| is the number of vertices of set A.

For each nonnegative integer 1, we denote by T the subtree of an m rooted Cayley tree T containing

the vertices from level 0 to level n. Similarly, for any i € {0,1,2,--- ,d — 1}, we denote by TE?]) the union of all

vertices in [i]-generations from level 0 to level n.

Definition 1.1(Nonhomogeneous Markov chains indexed by tree T(see [8]) Let T be an m-rooted infinite
homogeneous tree Tcn, {Xi,t € T} a stochastic process in a finite state space X = {1,2,- - , b} defined on probability
space (QQ, F, P). Denote x{' = (x1,x2,- -+ ,Xm) € X™. Let

p = 1{p(xy), xy' € X} (1.1)
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be a distribution on X", and
Py, = (Pu(ylx])), ye X xf' e X" (1.2)
be a transition probability matrix on X™1, For every vertex t € Lyq,n 20, if

P(X; = yIXoy = x1, Xop = %0, Xoy = 3, -+, X = Xy and X5 = x5 for t As <™F)
=P(X; = y1Xo; = x1, Xop = X2, X3y = X3, -+, Xoy = X)) = Pu(ylx]’) Yy € X, x]' € X",

and
P(Xin-1g = x1, Xn2g = X2, ++ , X19 = X1, Xo = Xp) = p(x]") Vai' € X", (1.3)

then we call {X;,t € T} to be an X-valued mth-order nonhomogeneous Markov chain indexed by m-rooted
infinite homogeneous tree with the initial distribution (1.1) and transition matrices (1.2), or called tree-indexed
mth-order nonhomogeneous Markov chains.

Remark 1.1: In definition 1.1, if for all n € N,
P, =P =(Pylx}")), ye€ X xi' e X", (1.4)

then {X;,t € T} will be called X-valued mth-order homogeneous Markov chains indexed by tree Ten.

Definition 1.2 Let T be an m-rooted infinite homogeneous tree Ten, (X, t € T} be X-valued mth-order nonhomo-
geneous Markov chains indexed by a tree T defined as definition 1.1. Let Qo, Q1,Q2, -+, Q-1 be a sequence of
stochastic matrices, where Qr = (QI(YIx]"))yex yrexnfor 0 <1 <d—1. If

lim Pyaa(yl)) = Quyley), y € Xy € X7, 1=0,1,+,d~1, (15)

then {X;,t € T} is called an asymptotic circular mth-order Markov chain indexed by tree T. Especially, if
Prd+l=er l:0/112/"'/d_l;rzorlrzr'”/ (16)

then we call {X;,t € T} to be a circular mth-order Markov chain indexed by tree T.

Remark 1.2 It is easy to see that definition 1.2 is a special case of definition 1.1. If N = 1, then our model is
reduced to the asymptotic circular mth-order Markov chains on the line.

The subject of tree-indexed processes has been deeply studied and made abundant achievements. Ben-
jamini and Peres ([1]) introduced the notion of the tree-indexed Markov chains and studied the recurrence
and ray-recurrence for them. Berger and Ye ([9]) have studied the existence of entropy rate for some sta-
tionary random fields on a homogeneous tree. Ye and Berger (see [9, 10]), by using Pemantle’s result([7])
and a combinatorial approach, have studied a Shannon-McMillan theorem with convergence in probability
for a PPG-invariant and ergodic random field on a homogeneous tree. Yang and Liu ([11]) and Yang([13])
proved a strong law of large numbers for Markov chains fields on a homogeneous tree ( a particular case
of tree-indexed Markov chains and PPG-invariant random fields ). Yang and Ye([14]) have established
a Shannon-McMillan theorem with convergence almost surely for nonhomogeneous Markov chains on a
homogeneous tree. Huang and Yang (see [3]) has studied the Shannon-McMillan theorem in the sense of
almost surely for finite homogeneous Markov chains indexed by a uniformly bounded infinite tree. As we
have known that Zhong, Yang and Liang ([15]) have studied the asymptotic equipartition property with
convergence almost surely for asymptotic circular Markov chains, which is under condition of convergence
in Cesaro sense.

Arbitrary stochastic process can be approximated by a high-order Markov process, therefore it is greatly
significant to study the subject of the high-order Markov process. Of course, to study the high-order Markov
process indexed by trees is also of great significance of its own. Yang and his coauthors have already tried to
do it and made some good results. Yang and Liu ([12])have studied the asymptotic equipartition property
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for mth-order nonhomogeneous Markov information source. Shi and Yang ([8]) also studied the strong law
of large numbers and a Shannon-McMillan theorem with a.e convergence for mth-order nonhomogeneous
Markov chains indexed by an m-rooted homogeneous tree.

In this article, we introduce the model of an asymptotic circular mth-order Markov chain indexed by an
m-rooted homogeneous tree defined as definition 1.2 and mainly establish the strong law of large numbers
and Shannon-McMillan theorem with convergence almost surely for this model. This paper will generalize
the results of Shi and Yang ([8]) .

Let 6;(-) be the Kronecker delta function in X, that is

N1 o ifi=g .
6]-(1)—{0 ifiij,l’]EX'

For k € N, let

1 ifkell];
1y — = e d—
(k) = { 0 ifke[l], 1=0,1,---,d-1,d.

Denote

0, = {"'0,%720,---,10,0}

0, = {™'0,%20,--- 10}

Xllq(t) = {X"t/ ) CRVARE /XZerw}
X0() = {Xog, Xy, -+, Xap, Xoy, X4}

Let x}(t) and x)(t) be the realizations of X}(t) and X! (t) respectively.

Recall that T™ is the subtree of an m rooted homogeneous tree T containing the vertices from level
0 to level n and Tg;) is the union of all vertices in [i]-generations from level 0 to level n for any i €
{0,1,2,---,d - 1}. Let S,(i]") and S,,(i;"”) be the number of " = (i1,i2,- -+ ,in) in the ordered items of the
sequence {X® _ (t),t € T} and the number of /"*! = (1,13, -+ , im, im+1) in the ordered items of the sequence
of {X%(t),t € T \ {0}} respectively. For each [ = 0,1,2,---,d —1,d, we also let Sg](i;”) and SE,”(i’l””) be
the number of i" = (i1,1,- - ,iy) in the ordered items of the sequence {Xgi_l(t),t € TE;;)} and the number

of "1 = (i1,iy,-++ ,im, im+1) in the ordered items of the sequence of {X),(f),t € TEI’? \ {0}} respectively. For

simplicity of the notations, we denote

O (XD, 1 () = 01, (Xn11)01, (Xny) - - 63, (Xi) 1.7)
O (X (1)) = 01y (Xine)0iy (Xineag) -+ 04,1 (Xi) (1.8)

Thus we have

Su@y =Y Y o (X5, (9), (19)
k=0 teLy
s =Y Y 10005, (X5, 1), (1.10)
k=0 teLy
Sui ) = ) ) o (X000, (111)
k=1 teLy
Sy = Y Y 10 = 1)5; (X0,(). (1.12)

k=1 teLy
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Obviously, we have

skl = Sy — 6 (Xo,), (1.13)
Sm+ty = g0l m+y, (1.14)

2. Some lemmas

Let A be any mth-order transition matrix. Now we define another stochastic matrix as follows:

A= (AG)) i e X, 2.1)
where

A M A(]mll )r as jv :iv+1rv:1/21”'1m_1;

AT = { otherwise. (22)

A is called the m-dimensional stochastic matrix determined by the mth-order transition matrix A.

Now we give three lemmas which are very useful to prove our main results.
Lemma 2.1 Set Ry = QoQ1Qz -+ - Qu-1, for 0 < I < d — 1, where Qy is the m—dimensional transition matrix which is
determined by the mth-order transition matrix Q. If all the elements of {Q;,0 < I < d — 1} are positive, that is

Q1 = Q). Quliy) >0, Vje X,if' e X",0<1<d -1, (2.3)
then Ry is ergodic.
Proof. We say a matrix A > 0 if every element of A is positive. Then we have Q; > 0 for 0 < <d —1, since

all the elements of {Q;,0 < I < d — 1} are positive. Let {£,, n > 0} be an mth-order circular Markov chain with
mth-order transition matrices P, = (P,(jli[")), ' € X™, j € X which satisfies that

Pyay=Q;, t=0,1,2,...,0<1<d-1. (2.4)

Obviously, Pizy; > 0 forall t = 0,1,2,..,0 < I < d— 1. We also let {P,} be the m-dimensional stochastic
matrix determined by the mth-order transition matrix {P,}. Now we let n, = &1 = (&,, -+, Epam—1), if
n=td+1,t=0,1,2,..,0<1<d-1,wehave

Praa (1) = Q1Y)
{ gl(]mlll ), as jo =iy, 0=12,--,m=-1; (2.5)

pn(’]n+1 = ]‘r{lmn = ZT)

otherwise.

So that {nn, n > 0} is an 1th-order circular Markov chain with its circular transition matrices {Q;,0 < < d-1}.
For Vif', ji' € X™,

PyP1Py -+ Py 1(]1 1) =P = ji'lno = 17")
= Pt = jriget =i
= P =ju&m1 =2, Eoma1 = jmlo =11,E1 = in, -+, Emmt = iy)
= Po(juli")P1(jaliy, j1) - - Pt Glim, 7 1) > 0. (2.6)

Now denote
S=DPgP1Py---Py 1Py Ppa,

naturally, we have S > 0 by (2.6).
If m = nd, we have

= (Q0010Q2-+-Qs1)" =S5 >0.
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which implies that Ry is ergodic.
On the other hand, if m < nd, then

Rg = Spmpm+1 o 'pnd—1~

By the definitions of Py, P41, - -+ , Pua—1, we assert that, for each m < r < nd — 1, every column of P, has an
positive element. Then it follows that Rfj > 0, so that R is ergodic.
The proof of Lemma 2.1 is completed.

Lemma 2.2 Let Qy, Q1, Qa, - -+, Qu—1 be a sequence of m—dimensional transition matrices which is determined by the

sequence of mth-order transition matrix {Q;,0 < I < d—1}. Set Ry = QoQ1Q2 - Qu-1,R1 = 0102+ Q4-1Qo, -+ , Ry =

Qi-1Q0Q1 - Qu-o. Suppose that Ry is ergodic, then Ry, Ry, - -+, R4y are also ergodic. Let R} (j|i}') be the n—step
transition probability determined by a stochastic matrix R;, then

lim RI(j; 1) = 7/ (71),1=0,1,2,--- ,d =1, 2.7)
n—oo

where i = (nl(z';")),-TE xn 1s the unique stationary distribution determined by the m-dimensional transition matrix R;.
Proof. A constant stochastic matrix is a stochastic matrix that has identical rows. Since the stochastic matrix
Rp is ergodic, then there is a constant stochastic matrix Sy such that

lim Rjj = So. (2.8)

n—oo

for which each row of Sy is the stationary distribution determined by stochastic matrix Ry.

LetS; = Sy ]_[Z 0Qi,1=12,--,d-1. Obviously, S; is also a constant stochastic matrix. By induction, for
each positive integer 1 > 1, it is easy to see,

d-1 -1
=([Jor ][,
i=l i=0

then we have

d— — -1
R -5 = H IRY” 1(H Q»—(HQ)SO HQ,)
=l i=l i=0
d-1
= ([Jowy? So)(HQ) 29)
i=l
By (2.8), it follows that
d-1 1-1
lim (R} - )) = H ) lim (R} so)(H Q) = 0. (2.10)
i=l i=0

so that Ry, Ry, -+, R4_1 are ergodic, and (2.7) holds accordingly. The proof of this lemma is completed.

Let {X;,t € T} be an asymptotic mth-order circular Markov chain indexed by an m-rooted homogeneous
tree T defined as definition 1.2 and {g, (xT”), n > 1} be a sequence of functions defined on X m+l Denote

Gul@) = Y, ) Elgu(X5,0)IX;, ()], (2.11)
k=1 teLy
Hy(@) = ) ) gX08). (212)

k=1 tely
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Lemma 2.3(See [8]) Let {X;,t € T} be a nonhomogeneous mth-order Markov chain indexed by an m rooted
Cayley tree T defined as definition 1.1 and {g,(x'"*"),t € T} be a sequence of uniformly bounded functions defined
on X™*1. That is, there is a constant k > 0 such that |g,, (x'l”“)l <kforalln > 0. Let Gy(w) and H,(w) be defined as
above two equations (2.11) and (2.12) respectively, {a,, n > 1} be a sequence of nonnegative random variables. Set

Qo = {lim 4, = oo, lim sup — Z Z E[lge(X2 OIXL(H] = M(w) < oo}, (2.13)
n—eo T ko tely
Then
im @ =Gu@) o Qo. (2.14)

n—oo ay

3. Strong law of large numbers

In this section, we mainly focus on studying the strong law of large numbers for an asymptotic mth-order
circular Markov chain indexed by an m rooted Cayley tree T.
Theorem 3.1 Let {X;,t € T} be an asymptotic mth-order circular Markov chain indexed by an m rooted Cayley
tree T defined as definition 1.2, for 1 = 0,1,2,--- ,d — 1 and ¥n € N, let SL”(]'T) be defined as (1.11). Then for all
e X™, we have

1
”}L“{IT(’”I Pl - IT(" 1)| Z SN Qo (727! )} =0 ae. (3.1)
irexm
—1 - HAYe |
;}g?o{lrr(n)l [l]( 1)~ |T(n 1 Z 55_11(11 )Qa-1(j7' 17 } =0,1<l<d-1ae. (3.2)
[l 1 IMEXV"

where Qy is the m—dimensional transition matrix which is determined by the mth-order transition matrix Q; for
0<l<d-1.
Proof . Fortelyandke Nand!=1,2,--,d, in Lemma 2.3 letting gi(X0,()) = I (k)6;(X°_, () and

a, = |T( |, obviously |gx(X? _ (£)| < 1. Itis easy to see

lim sup n) Z Y Ellge eI 6] < lim sup T ZZIU](k) <1. ae. (3.3)
n- [ | %=1 feT

n—eo [1] =1 tel;

which implies that )y = Q. Then we have

Y ) ElgX e)Ixh 0]

Gu(w) =
k=1 teLy
= ZZE[I (k)(sz’” XO 1(t))|X11ﬂ(t)]
k=1 teLy
= Z Z I[l](k)éirln 1 1(t))Pk 1(1m|X (t))
k=1 teLy

Z Z 1K) Bip (XL (D) Prc (i X, 771

k=1 teLy
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n

Y Y 10006, (X)S -1 (X, () Pecr (ilio, 77,
k=1 tely ipeX

- Zl[l](k)ém 1 (X0, () Pica (il ™)

k=1 tely ipeX

- NZZZI“ k) (X, (PGl ™)

- Y Y I (K )P )

r=0 te€L,j41—1 ipeX

here and thereafter |a] is the largest integer less than a.

Zn] Y aX5,)

k=1 tely

i Y 1GRk)03 (X0, (1))

k=1 teLy
SWE) = 0 (X, )1M(0).

Combining above two equations and (2.14), we get

H,(w)

1

lim {—— i) -

n—oo L (1) 1 (n D)

,T

2 2 8int (X (D) Prasia (i ™} = 0. ace.
r=0 t€Lyg41-1 ip€X
where we have used the following fact
T4y
|T(n | — Nl + Nd+l +oeee NL%J&HZ m —
[1 ’ n—00 |T(n 1)|

By (1.11), we have
Y S Qe Ginliy ™)
IUEX
L]

Z N Y 6 (00 (0)Qua iy ™)

r=0 t€L,jy-1 igeX

it follows from (3.4) — (3.6) that

1 my _ gli-1l(jm-1 P
iioo{wn By IT(" = ), U Qr iy )

[1-1] | ioeX

) T D) ZZ Y St (XSO Prasialinliy ™) = Quea Gy ™))

n—>m |Tl 1] IOEX r=0 t€Lyg11-1
| n 1)|
. -1 m—1 [I-1]
< lim sup  sup  |Pusi-1(imliy ) — Qioa(imlig ™)1 - 1 D
n—o0 n=I| ;m-1 (I —)OO T |
O<r<| &2 Jig~teXm ineX | [-1]

0. a.e.

1824

(3.4)

(3.5)

(3.6)
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which implies that

st - (n D Y S Qi ™ =0, 1=1,2,++ dae. (3.7)
11] | ioex

By (2.2) and (3.7), we have

sm 1 sy am
lim {—=si) - ——= ) SGQu ) =0, 1=1,2,- dae. (3.8)
n |T | |T[1_1] | j;”EX'”

Combining with (1.14) and (3.8), it follows that (3.1) and (3.2) are really true.

Theorem 3.2 Let {X;,t € T} be an mth-order asymptotic circular Markov chain indexed by an m rooted homogeneous

tree T defined as definition 1.2, for | = 0,1,2,--- ,d —1and Vn € N, let S[l](] ) be defined as (1.11), R; defined as
Lemma 2.2 and R be ergodic. Then for all if' € X ™, we have

[l] m
lim (]1 )
n—oo |T

=nl(j"), ae. (3.9)
[ |

where i = (r( Ji')jmexn is the unique stationary distribution determined by the transition matrix R, for each
1=0,1,2,--- ,d-1.

Proof: Forl=1,2,---,d, multiplying (3.8) by Ql(kl’”li’ln) and adding them together for all i{" € X™, by using
(3.8) again, we have

lim {

ni—00 |T(n) Z S Qi)

m exm

Z Z SIGIQA Q1)

-1
IT(" )l exr

= lim {[ Z S[l](ZT)Q (ky'liY") — |T(”+1)| nl:i]( )]

n—eo |T[l] | imexm [1+1]

1
s st - IT(" g Y Y S Qe Qi)
[1+1] [1 ]’"EX'" if'e X"
. 1 ,
= lim [ S - — Y SE Qe QOGN = 0 ace.
IT[1+1]| | [I-1] ' jyrex™
(3.10)
Noting t;i ba51; fact that in’jj Hery = U () = 0n(Xo,)01 (1) and [T 01 = 1T 701 = 610 for 1 =
1,2,---,d, by induction we have
l+d 1](km) 1
Jimn | l";fifd o o L, S ONQQr Qe Qo Q)
[l+d-1] [I-1] ! jyex™
S (K1) = Sx(Xo,)01() 1
- lim n+d—1 hn [1:1](j;'l)R1_1(k§n|j;”) =0 ae.,
o T T ]ZX 1 |
which implies that
li n+d 1 km) 1 [1-11/ :m R K imy = 1
nl_r,rolo{ T+-D) |T(n ) Z Syc1 UTRa (kY17 )} =0 ae. (3.11)

[-1] [-1] | ]mEXm
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Multiplying (3.11) by R;-1(i'[k]") and adding them together for all k" € X™, by using (3.11) again, we arrive

at

 Zirexn S U1 (kMR- ()
lim {

500 (n+d-1)
" |T[l 1] |

: Z Z st )Rz—l(k'f'|fT)Rl—1(iT|kT)}

-1
|T(" )| k'"EXm ]”’EX"‘

[l 0 gm
= 1 — 1 [-11 gm )70 n+2d 1 )
- 7}1—1};10{[ T("+d—1) Z Si’H’d 1(k1 )Rl_l(ll |k1 ) - (n+2d 1) ]

Ty e Ty |
S @) 1
n+2d 1 [1 1] -
[ |24 |T(n D) Z G IR, (I )]}
[-1] [1=1] | jreXm

S[l 1] (l'm) 1
= lim[—2ld Z (]1 RZ L@@/ =0 ae.

n—oo |Tn+2d 1)| |Tn l)l

[-1] (=11 ! jyex™

By induction again we get

i Ll”lwd 1(1m) 1 [1 1]/ m RM MM = 0
wol M) | ) Z JEHRM @I =0 ae.
[-1] [-1] ' e
Since
) 1-1], - 1
A}Ilirgo R (117 = i) Z SL—ll(]T) [lrZ 1])|’

]';n eXm

combining (3.13) and (3.14), it follows that

[1-1] rm
lim S”—(ll)

_ A-1/m _ o - "
n—o0 |T(71) | =T (ll )’ for l - 1/21 /d, 11 € X a.e..

it follows that (3.9) is true. The proof of theorem 3.2 is completed.

For any nonnegative integer 7, there exist two nonnegative integer numbers r and [ such that

n=rd+l1. forl=0,1,---,d-1

Forsuch!=0,1,--- ,d —1, we have

) {N1'+Nd+i+N2d+"+-~-+N’d+i for0<i<l;
[il -

iliNfd
NUND  fori+1<i<d-1.

1-N4

{M for0<i<I;

Noting that

1-— Nrd+l+l

T(rd+l)=1+N+N2+"‘+Nrd+l= ,
| | TN

Ni+ N+ 4 N2+ o NODd for [+ 1<i<d -1,

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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it is easy to see

(rd+1) — s .
i |T[1] | _ Nl(_lNQV) X lim, o0 % for0<i<;
oo [TCd])] RO X limy o TN forl+1<i<d-1,
Nd—l—1+i(1_N) f 0 < . < l
= { Nf-l-ll_d\]—dN) orrste ; (3.19)
N7 fOl'l+1SlSd—1,
Combining (3.9) and (3.19), we can arrive at the following corollary easily.
Corollary 3.3 Under the same conditions of Theorem 3.2, for each 1 = 0,1,--- ,d — 1, we have
Nd—l—lﬂ' 1-N c. .
lim ,d+1(] ) _ TI\(IJ) X nl(]T) for0<i<l; (3.20)
oo TOdD] | N semi(my fori+1<i<d-1, ae.

where 7' = (n’(jT))]-{neXm is the unique stationary distribution determined by the transition matrix R; for each
1=0,1,2,---,d-1.

Foreach!=0,1,---,d — 1, noting that

d-1

Srasi(j Z S1..G. (321)

i=0

We can also derive another corollary from above one as follows:
Corollary 3.4 Under the same conditions of Theorem 3.2, we have

1

S N*--14(1 - N)) &N - N) i
lim |T(fd+ll Z — X () + Z o X ae. (3.22)
=0 i=l+1

where 7' = (711'(j’1"))]»¥1E xn 1s the unique stationary distribution determined by the transition matrix R; for each
i=0,12,---,d-1

Theorem 3.5 Let {X;,t € T} be an asymptotic mth-order circular Markov chain indexed by an m rooted Cayley
tree T defined as definition 1.2, for | = 0,1,2,-++ ,d — 1and ¥n € N, let S (i"*") be defined as (1.11). Then for all

e X™1 we have

S[ll(imH)
lim —— = 7/ (") Q(ims1li")  ace. (3.23)
n—oo |T(”)|

[

where 7' = (n’(i’ln))l-vlnexm is the unique stationary distribution determined by the transition matrix R; for each
1=0,1,2,---,d-1

Proof : Fort € Lyand k € N, letting gx(X%,(+)) = I (k—1)s; i+t (X%(t)), and a, = IT[(;)I in Lemma 2.2, apparently
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lgx(X9,(1)] < 1, it is easy to see (g = Q. Then we have

Gul@) = ) ElgXoe)Ixh o]
teTM\{0}
= )Y Bk = 150 (XOE)IX ()]
k=1 teLy !

= ZZZIU (k = 1)0im (X3, ()03, (1) Pt (x| X3, (1)),

k=1 teLy x;eX

= Y Y 0= 1o (XL () Pes (iman i),

k=1 teLk

= N Z N 10 (X5, ()Pl

k=0 teLy

Hy@) = Y gX5,0) Z 1k = 1), (X0,(8)) = SE™).

th(V‘)\ tely

Combining above two equations and (2.14), we get

lim ——{stl(i+) - NZZI[’](k)(Sm(X (Pl =0 ae.

n—00 |T(")| b
Now we assert that
: [ 1 [
lim IT(”)I{S (@) = NI (1)Qnnl)} =0 ae.

In fact, by (3.24),(1.6) and (1.11), we obtain

st = NI, () Qi)

n—oo IT(
1 n-1
= lim ——{N 1S3 (X0, (0)Pelimsalif') = NSEL (1) Qi )]
ITU] | k=0 teLy
1 n—1
= lim — | 155 (X5, D) Pelimna i) = Qi 7))}
|TU_1] | k=0 teLy
1=
< dim e Y Y 6 (X WP inetli) ~ Qi )
|Tl 1]| r=0 t€Lgy
| Ty
< 1}52 sup sup |Prd+l(1m+1|11 ) — Ql(1m+1|11 ) 11_1;1; |Tn 1)| =0ae.,

0<r<| nf;flJ i;nﬂ eXm+1 [l 1]

1828

(3.24)

(3.25)

(3.26)

which implies (3.25), here the second equation holds because of (3.5). Then our conclusion (3.23) can be

derived from (3.9) and (3.25).
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By using (3.19) again, Theorem 3.5 will imply the following corollary apparently.
Corollary 3.6 Under the same conditions of Theorem 3.5, for each1=0,1,2,--- ,d — 1, we have

m d—1-1+k . . .
) Sl _ { 8 (i) Qiliman li) for 0 <k <1 (3.27)

1-N4
1-1
e |TCHD)] NN s b (i Q™) forl+1<k<d—1,

where Tt = (nl(ig”))qxexm is the unique stationary distribution determined by the transition matrix R; for each
1=0,1,2,---,d-1

Obviously, foreach ! =0,1,2,--- ,d — 1, noting that

d—
rd+l 1T+1 Z S[I]H( m+1 . (328)

i=0

,_.

Thus, the following corollary can be derived from the above one easily.
Corollary 3.7 Under the same conditions of Theorem 3.5, for each 1 =0,1,2,--- ,d — 1, we have

X nk(iT)Qk(imHV’ln))

Syt (i) iwﬂw N)

e T[T 1IN
N1 - N . .
+ Z # X T () Qelimsali?)  ace. (3.29)
k=I+1

where 7 = (nl(i’lﬂ))ivlnexm is the unique stationary distribution determined by the transition matrix R; for each
1=0,1,2,---,d-1

4. Shannon-McMillan theorem

In this section, we mainly prove the asymptotic equipartition (AEP) for asymptotic mth-order circular
Markov chain indexed by an m rooted homogeneous tree Tc .

Let T be the homogeneous tree TC,N, (Xp)ter be a stochastic process indexed by tree T with state space
X={1,2,---,b}. Denote

T = T U{Om}, (4.1)
and
Py = pX™" = %), 4.2)
Let
- e
fulw) = o |10 gP(X" ), 4.3)

fu(w) will be called the entropy density of X™". If (X;)cr is an asymptotic mth-order circular Markov chain
indexed by the m rooted homogeneous tree T with finite state space X defined as Definition 1.2, obviously,
we have

PGT") = pxT” = 1) = P[Xo, = x0,,] H H Pr (xilx,, (£)). “4

k=1 teLy

where x}, () is the realization of X}, (t) = (Xut, Xu1y, -+, X1;). Thus we have

fulw) = [ogP(xo,,,>+ZZIong 1GIXE )] (45)

k=1 teLy
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Obviously, we have

T ™
}}gl;lo [T i T +m—-1" (4.6)
so that
lim fu(w) = = lim == |[10gP Xo,) + 2 Y log P 1 (Xil X5 (D)1 47)

k=1 tely

The convergence of f,(w) to a constant in a sense (L; convergence , convergence in probability, a.e. con-
vergence ) is called the Shannon-McMillan theorem or the entropy theorem or the AEP in information
theory.

Lemma 4.1 (see Theorem 3 in [8]) Let (X;)ier be a finite mth-order nonhomogeous Markov chain indexed by an
m rooted homogeneous tree T defined as Definition 1.1. Let f,(w) be defined by (4.7). Then we have

m{fn(w)—'Tfn)lZZH[Pk HAXL0), Pea@IXL0), -, PeaGIXL O =0, ae. (48)

k=1 teLy

where H[p1,p2,- -+ , pvl is the entropy of the distribution (p1,p2,- -+ , py), that is

b
H[plrer"' er] = _Zpilogpi'
i=1

Theorem4.2 Let{X,,t € T} bean asymptotic circular mth-order Markov chain indexed by an m—rooted homogeneous
tree Tcn defined as definition 1.2. Let f,(w) be defined by (4.7). Then for two nonnegative integer number r and |
which satisfy equation (3.16), for each 1 = 0,1,2,--- ,d — 1 we have

-1

Nd—l+k 1-N
lm f(@) = - Y N M) b ) Qi 2 log Qulime )
r—o0 . 1 —_ N
ITI"HEX’”H k=0
d-1 k—1
N'(1-N
- Y Y A ) Qi) 108 Qe ) e
, 1-N
lylnﬂexmﬂ k=1

4.9)
where Tt = (T(l(l.;ﬂ))flﬂgxm is the unique stationary distribution determined by the transition matrix R; for each
1=0,1,2,---,d -1

Proof of Theorem 4.2 : Letting @(x) = xlogx,x > O(suppose @(0) = 0), obviously ¢(x) = xlogx is a
continuous function at any x > 0, then by (1.5), for all i’1”+1 eX"land1=0,1,2,--- ,d -1, we have

rlgg |Prd+l(im+1|iT) 10g Prd+l(im+1|iT) - Ql(im+1|i71n) 10g Ql(im+1|i’1ﬂ)| =0. (4.10)

Apparently, Lemma 4.1 can imply that

lm (@) + ">I ZZ Z Pect (i | XL, (8)) Iog Py (st XL,(0)} = 0, ace. (4.11)

k=1 teLy iy1€X
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2.0 Y, PealinmsalX3, () 10g Peca (s | X1, (8))

k=1 tely iy 1€X

n d-1
Yo YUY Y = 10 (X (B)Pk- (s i) N0 P (s )

im+lexm+l k=1 tely 1=0

n—-1

N Y

m+1 eXm+l k=0

WY Y

d-1

3 1005 (X5, ()Pl i5") log Piline )
1=0

tely
1=
XY (X O)Prasilinelif) 108 Prasalieali)

=0 imeiexm+l =0 t€ly

4.12)
Now we claim that
Jim |T(”)| ZZ Z P (i1 15, (£)) 10g Picy (11X, (1)
k=1 tELk ims1€X
i)
—Z Y. IT(” oy Qlinsali?) 10g Quinnlif)} = 0. ae. (4.13)
1=0 1'1'”16(\”"”
In fact, we have
fim | Y Y T Pt 0) 108 Perir X10)
k=1 tELk ime1€X
G
—Z Y, W B ) Qi) 108 Qi)
1=0 ITHGXY"H
L2
m 0 .
< n—»oo |T(”l 1)| Z Z Z Z 61 (mel(t))
=0 fmilexm+t =0 t€lyy
\Prasi(im+11i]) 108 Prasi(ime118') — Qi(im+11i]") 1og Qr(im+1liy)]
. Cm Cm Cm Cm Limexn Lico Sy i})
< lim osup U [Prasi(inelif) 108 Prasi(inmsn i) = Quimsalif') log Qulimalif) Y
n—co 1) s ) |T(" 1)|
Osr<| 2=t | i eXme i €X
= 0 ae (4.14)

The last equation holds because X is a finite state space and (4.10) holds. Thus the assertion (4.13) is true.
So that, for such two nonnegative integer number r and ! which satisfy equation (3.16), we have

rlgg fravi(w) =

d-1 [k] (m

Srarin (1) i et [T
r_)oo ka(Zm+1|ll ) log Qk(im1liy')

k=0 l:]/r:+1€)(rrz+1
-1

Z Nd I+k 1 N)

T X Qi i) In Qi i)

k=0
d-1
NEl(1 =N . . ) . \
B R Qe ) 10 Qulili) (@.15)

k=1
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where the second equation can be implied by (3.20). The proof of this theorem is completed.

Let Qo =0Q1=Q=--=Qu1 =P thenQy=Q1=Qy=--=Qs1 =Psothat Ry = R; = R, =
-+ = Ry_; = R = P4, Since the stochastic matrix P is ergodic, then R = P? is also ergodic. Suppose that
7t is the unique stationary distribution determined by R, then we have e (@) = n(@@}"), for all if' € X™ and
1=0,1,2,--- ,d =1, so that it is easy to derive a corollary as follows by doing some simple computations to
the results of Corollary 3.4, Corollary 3.7 and Theorem 4.2 respectively.

Corollary 4.3(See [8]) Let (X;)er be a finite nonhomogeneous Markov chain indexed by an m—rooted homogeneous
tree with finite initial distribution (1.1) and finite transition matrices (1.2). Let P = (P(im+1Ii’ln))iqmE xm+1 be another

finite mth-order transition matrix and the m-dimensional stochastic matrix P determined by P be ergodic. Let S, (i"")
and S, (i) be defined as (1.10) and (1.12) respectively, and f,(w) be defined by (4.7). If

lim Pyy(ips1[i]") = Plimali), Vit e XM (4.16)
n—oo0

Then we have

s

I}EEIQWZH(H) a.e., (417)

sy

,}g{}owzn(zl YP(@nli]’) ae., (4.18)

im fi(@) = = Y mEPlnlif) 10g Plinnlif)  ac. (419)
ileX

where 1t = (1(i}')) is the unique stationary distribution determined by the transition matrix p.
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