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Abstract. We define and classify minimal translation surfaces in the 3-dimensional Heisenberg group
H(1, 1).

1. Preliminaries

Historically, translation surfaces were first studied in the Euclidean 3−dimensional space and they are
represented as graphs z = f (x) + 1(y), where f and 1 are smooth functions. Scherk proved in 1835 that,
besides the planes, the only minimal translation surfaces are the surfaces given by

z =
1
a

log
∣∣∣∣∣ cos(ax)
cos(ay)

∣∣∣∣∣ ,
where a is a non-zero constant. See [S].

Since then, minimal translation surfaces were generalized in several directions. For example, the
Euclidean space E3 was replaced with other spaces of dimension 3 – usually being 3-dimensional Lie
groups and the notion of ”translation” was often replaced by using the group operation. See for example
[ILM], [Lop], [LM], [Seo], [Y-13], or [YLK]. For more results on translation surfaces see e.g. [DGW], [Liu],
[MN]. Another generalizations of Scherk surfaces are: affine translation surfaces in Euclidean 3-space [LY],
affine translation surfaces in affine 3-dimensional spaces [YF] and translation surfaces in Galilean 3-space
[Y-17]. On the other hand, Scherk surfaces were generalized to minimal translation surfaces in Euclidean
spaces of arbitrary dimensions. See e.g. [DVZ], [MM], [MPRH], [VWY]. Moreover, in [DVVW], translation
surfaces in the Euclidean 3-space are thought as sum of two curves. Similar approach appears also in [MM].

In the present paper we define the notion of translation surfaces in the Heisenberg group H(1, 1) as the
formal analogue to those in the Euclidean 3-space. Note that, because of the absence of an affine structure
on H(1, 1), we are not allowed to say that this concept is intrinsic for H(1, 1), as the group operation is not
involved. See e.g. [Lop, ILM].
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The 3-dimensional Heisenberg group H(1, 1) is an example of a connected, two-step nilpotent, real Lie
group with one-dimensional center. It can be represented as

H(1, 1) =
({

a∗ =

 1 a c
0 1 b
0 0 1

 : a, b, c ∈ R
}
, ·

)
, (1.1)

where dot denotes the usual matrix multiplication. A global coordinate system (x, y, z) may be defined on
H(1, 1) by setting x(a∗) = a, y(a∗) = b, z(a∗) = c. Hence, we can consider the left invariant metric on H(1, 1) as
follows

1̃ = dx2 + dy2 + (dz − xdy)2. (1.2)

An orthonormal basis of left invariant vector fields on H(1, 1) is obtained as

X =
∂
∂x
, Y =

∂
∂y

+ x
∂
∂z
, ξ =

∂
∂z
. (1.3)

Then, the Levi-Civita connection ∇̃ of H(1, 1) is given by

∇̃ξX = ∇̃Xξ = −
1
2

Y, ∇̃ξY = ∇̃Yξ =
1
2

X, ∇̃XY = −∇̃YX =
1
2
ξ, (1.4)

the other derivatives being zero. See for example [GC, K].
A regular surface in H(1, 1) is a 2-dimensional submanifold, which can be expressed, locally, as graphs

of smooth functions of two variables, that is one can write z = f3(x, y), y = f2(x, z) or x = f1(y, z). Of course,
interesting classes of surfaces appear when the functions involved have specific forms. In this paper, we
study minimal translation surfaces in H(1, 1).

Definition 1.1. A surface M in Heisenberg group H(1, 1) is a translation surface if it is given by an isometric
immersion F : U ⊂ R2

→ H(1, 1) of the form

F (u, v) = (u, v, f (u) + 1(v)), (Type I) (1.5)

or

F (u, v) = (u, f (u) + 1(v), v), (Type II) (1.6)

or

F (u, v) = ( f (u) + 1(v),u, v), (Type III) (1.7)

where f and 1 are smooth functions on opens of R.

Remark that in the Euclidean space, the three coordinates x, y and z are interchangeable, while in H(1, 1)
they are not. So, this is the reason for which we have to consider three types of translation surfaces in
H(1, 1).

The mean curvature of the immersion is defined as H = 1
2 (k1+k2) where k1 and k2 are principal curvatures

on an arbitrary point of M. Let {Fu, Fv} be the basis of TpM and denote by E, F and G the coefficients of first
fundamental form on M, that is

E = 1̃(Fu,Fu), F = 1̃(Fu,Fv), G = 1̃(Fv,Fv). (1.8)

Then the function H is obtained as

H =
G1̃(N, ∇̃E1 E1) − 2F1̃(N, ∇̃E1 E2) + E1̃(N, ∇̃E2 E2)

2(EG − F2)
, (1.9)
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where {E1, E2} is an arbitrary basis on the surface M [ILM]. Thus the minimality condition for the translation
surface M is given as follows:

G1̃(N, ∇̃FuFu) − 2F1̃(N, ∇̃FuFv) + E1̃(N, ∇̃FvFv) = 0. (1.10)

In the following, we investigate the minimality of translation surfaces of each of the three cases. Some
of the first examples of minimal surfaces in the Heisenberg group (with a slightly different metric) can be
found in [B].

2. Minimal translation surfaces of type I

Let us consider a translation surface M of type I in H(1, 1) parametrized by F (u, v) = (u, v, f (u) + 1(v)).
The tangent plane of M is spanned by

Fu = X + f ′(u)ξ and Fv = Y + (1′(v) − u)ξ, (2.1)

while the unit normal N (up to orientation) is given by

N =
1
α

[
− f ′(u)X − (1′(v) − u)Y + ξ

]
, (2.2)

where α2 = 1 + f ′(u)2 + (1′(v) − u)2.
We obtain the coefficients of the first fundamental form of F as

E = 1 + f ′(u)2, F = f ′(u)(1′(v) − u), G = 1 + (1′(v) − u)2. (2.3)

Then, the Levi-Civita connection on the surface is given by
∇̃FuFu = − f ′(u)Y + f ′′(u)ξ,

∇̃FvFv = (1′(v) − u)X + 1′′(v)ξ,

∇̃FuFv = 1
2
{
f ′(u)X − (1′(v) − u)Y − ξ

}
.

(2.4)

Consequently, the minimality condition (1.10) may be expressed as follows:

f ′′(u) + 1′′(v) + f ′′(u)[1′(v) − u]2 + f ′(u)21′′(v) + f ′(u)[1′(v) − u] = 0. (2.5)

Our aim now is to find the solutions of the partial differential equation (PDE) (2.5). Let us assume first that
f ′, f ′′, 1′ and 1′′ are different from zero at every point. Taking successive derivatives with respect to u and
v, we obtain

2
(

f ′′′

f ′ f ′′
+
1′′′

1′1′′

)
=

1
1′

(
1
f ′

+
2u f ′′′

f ′ f ′′

)
. (2.6)

Doing the same for the equation (2.6), that is taking the derivatives with respect to u and v successively, we
get (

1
1′

)′ ( 1
f ′

+
2u f ′′′

f ′ f ′′

)′
= 0. (2.7)

Since the first factor cannot vanish, we should have

1
f ′

+
2u f ′′′

f ′ f ′′
= c1, (2.8)
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where c1 is a constant.
Combining of (2.6) with (2.8) we find

f ′′′

f ′ f ′′
=

c1

21′
−
1′′′

1′1′′
. (2.9)

Remark that the left-hand side of equation (2.9) is a function of u, while the right-hand side is a function of
v. Therefore, there exist other two constants c2 and c3 such that

f ′′ =
c2

2
f ′2 + c3, (2.10)

1′′′

1′′
=

c1

2
− c21

′. (2.11)

Now, plugging (2.10) into (2.8) we obtain

f ′ =
1

c1 − 2c2u
. (2.12)

Because f ′′ , 0, the constant c2 must be different from zero.
By substituting in (2.10), we obtain a polynomial in u of degree 2, namely

8c2
2c3u2

− 8c1c2c3u + 2c2
1c3 − 3c2 = 0. (2.13)

It follows that all the coefficients vanish, and if this happens, c2 must be zero. But this is a contradiction
with f ′′ , 0.

Let us see what happens if f ′′ , 0 at every point, but there exists u0 such that f ′(u0) = 0. As f ′ , 0 on
(u0−ε,u0) and (u0,u0 +ε) for a certain ε > 0, we make the same discussion as before to get the contradiction.
Analogue for 1. Now we analyze the remained cases, namely f ′′ = 0 and 1′′ = 0, respectively.

First let f be an affine function of the form

f (u) = Au + B, (2.14)

where A and B are constants. Then the minimality condition (2.5) becomes

(1 + A2)1′′ + A1′ = Au. (2.15)

Obviously, the constant A must be zero and this implies also 1′′ = 0. Hence the minimal translation surface
of type I is realized as the plane F (u, v) = (u, v, av + b), for certain a, b ∈ R.

If the function 1 is affine, 1(v) = av + b, the minimality (2.5) writes as:[
1 + (a − u)2

]
f ′′ + (a − u) f ′ = 0. (2.16)

The general solution of this ODE is found as

f (u) = c1

[
(u − a)

√
1 + (u − a)2

− log
(√

1 + (u − a)2
− (u − a)

)]
+ c2,

where c1 and c2 are constants.
Note that if the constant c1 vanishes, we find the plane (u, v, av + b). Consequently, we can state the

following theorem.

Theorem 2.1. Type I minimal translation surfaces in the three-dimensional Heisenberg group H(1, 1) are of the
following form

F (u, v) =
(
u, v, c

[
(u − a)

√
1 + (u − a)2 − log

(√
1 + (u − a)2 − (u − a)

)]
+ av + b

)
,

where a, b and c are constants.
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3. Minimal translation surfaces of type II

In this section, we endeavor to obtain all the minimal translation surfaces of type II in H(1, 1). In
accordance with this purpose, we have to obtain and solve the minimality equation.

Let M be a translation surface of type II parametrized by F (u, v) = (u, f (u) + 1(v), v). The tangent plane
of M is spanned by {Fu,Fv}, where

Fu = X + f ′(u)Y − u f ′(u)ξ and Fv = 1′(v)Y + (1 − u1′(v))ξ. (3.1)

The unit normal to M is computed as

N =
1
µ

(
f ′(u)X − (1 − u1′(v))Y + 1′(v)ξ

)
, (3.2)

where µ =
[

f ′(u)2 + 1′(v)2 + (1 − u1′(v))2
]1/2

.
If we proceed as the previous section, we find that M is minimal if and only if

f ′′
[
1′2 + (1 − u1′)2

]
+ 1′′

[
1 + (1 + u2) f ′2

]
+ f ′1′(1 − u1′) = 0. (3.3)

Taking the derivative with respect to v under the assumption 1′1′′ , 0 we obtain

1′′′

1′1′′

[
1 + (1 + u2) f ′2

]
+

1
1′

[
f ′ − 2u f ′′

]
+ 2

[(
1 + u2

)
f ′′ − u f ′

]
= 0. (3.4)

This equation has the following form:

A(v)B(u) + C(v)D(u) + E(u) = 0,

for (u, v) in a certain 2-dimensional domain. Suppose that B′(u) and C′(v) never vanish. Then, there exist
constants c and c1 such that

A(v) = c C(v) + c1, D(u) = −c B(u), and E(u) = −c1B(u).

To prove this, take the derivatives with respect to u and v successively to obtain

A′(v)
C′(v)

= −
D′(u)
B′(u)

.

As the left part depends only on v and the right part depends only on u, they must be a constant, let’s call
it c. It follows that A(v) = c C(v) + c1 and −D(u) = c B(u) + c2, where c1, c2 ∈ R. Inserting these expressions
into the initial equality we get

c1B(u) − c2C(v) + E(u) = 0, for all (u, v).

Hence c2 = 0 and E(u) = −c1B(u).
Going back to the equation (3.4) we obtain that

1′′′

1′1′′
=

c
1′

+ c1, (3.5)

2u f ′′ − f ′ = c
[
1 + (1 + u2) f ′2

]
(3.6)

and

2
[
u f ′ −

(
1 + u2

)
f ′′

]
= c1

[
1 + (1 + u2) f ′2

]
, (3.7)
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where c and c1 are constants.
The minimality condition (3.3) may be rewritten as

1′′
[
1 + (1 + u2) f ′2

]
+ 1′

(
f ′ − 2u f ′′

)
+ 1′2

[
(1 + u2) f ′′ − u f ′

]
+ f ′′ = 0.

By replacing (3.6) and (3.7) in the equation above, we obtain that[
1 + (1 + u2) f ′2

] (
1′′ − c1′ +

c1

2
1′2

)
+ f ′′ = 0.

Identifying the terms depending on u, respectively those depending on v, we deduce the existence of a
constant k ∈ R such that

1′′ − c1′ −
c1

2
1′2 = k, (3.8)

f ′′ = −k
[
1 + (1 + u2) f ′2

]
. (3.9)

Combining (3.6) and (3.7) with (3.9), we find

f ′ + (c + 2ku)
[
1 + (1 + u2) f ′2

]
= 0

2u f ′ −
[
c1 − 2k(1 + u2)

] [
1 + (1 + u2) f ′2

]
= 0.

If f ′ , 0 (on an interval), these two equalities imply

c1 − 2k
(
1 + u2

)
+ 2u (c + 2ku) = 0,

which represents a second order polynomial in variable u. It follows that the coefficients vanish. This
means that the constants k, c and c1 must be zero. Hence, f ′ = 0, which is a contradiction. If f ′ = 0 (locally),
from (3.3) we obtain that 1 is an affine function and this contradicts the assumption 1′1′′ , 0.

Until now, we worked under the hypothesis 1′1′′ , 0. Suppose that 1′′ , 0, but there exists v0 such
that 1′(v0) = 0 and 1′(v) , 0 for v ∈ (v0 − ε, v0 + ε) \ {v0}, where ε is a small enough positive number. We
make similar computations as before in the intervals (v0 − ε, v0), respectively (v0, v0 + ε) and get the same
contradiction.

Let now 1 be an affine function, namely 1(v) = av + b, with a, b ∈ R. Hence, the minimality condition
(3.3) becomes[

(1 − au)2 + a2
]

f ′′ + a (1 − au) f ′ = 0.

Obviously, any constant function is a solution of this ODE. The other solutions are obtained as follows:
• if a = 0 then f is an affine function;
• if a , 0 then

f (u) = c1

[
(au − 1) f̄ (u) + a2 log

(
au − 1 + f̄ (u)

) ]
+ c2, (3.10)

where f̄ (u) =

√
a2 + (au − 1)2 and c1, c2 are real constants.

We can state the following.

Theorem 3.1. The minimal translation surfaces of type II in the three dimensional Heisenberg group H(1, 1) are

• planes F (u, v) = (u,au + b, v), with a,b ∈ R and

• cylinders parametrized by F (u, v) = (u, f (u) + av, v), where a ∈ R\{0}, and f (u) is given by (3.10).
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4. Minimal translation surfaces of type III

In this section we investigate the minimal translation surfaces of type III in H(1, 1), parametrized by
F (u, v) = ( f (u) + 1(v), v,u). As usual, consider the natural basis in the tangent plane T(u,v)M as well as the
unit normal as follows

Fu = f ′(u)X + ξ,

Fv = 1′(v)X + Y − ( f (u) + 1(v))ξ,

N = 1
η

[
−X +

[
1′(v) + f ′(u)( f (u) + 1(v))

]
Y + f ′(u)ξ

]
,

(4.1)

where η =
[
1 + f ′(u)2 +

[
1′(v) + f ′(u)( f (u) + 1(v))

]2
]1/2

. By providing the necessary elements for the mini-

mality condition (1.10), we obtain

f ′′
[
1 + 1′2 + ( f + 1)2

]
+ 1′′

(
1 + f ′2

)
+ f ′2( f + 1) + f ′1′ = 0. (4.2)

Taking successive derivatives with respect to u and v one gets

2 f ′′′1′
(

f + 1 + 1′′
)

+ 2 f ′ f ′′
(
21′ + 1′′′

)
+ f ′′1′′ = 0. (4.3)

Now we assume that f ′′′1′ is different from zero; then (4.3) is equivalent to

2 f + 2(1 + 1′′) +
2 f ′ f ′′

f ′′′

(
2 +
1′′′

1′

)
+

f ′′

f ′′′
1′′

1′
= 0. (4.4)

Taking again successive derivatives with respect to u and v, we obtain(
f ′′

f ′′′

)′ (
1′′

1′

)′
+

(
2 f ′ f ′′

f ′′′

)′ (
1′′′

1′

)′
= 0. (4.5)

A. Suppose that f ′ f ′′

f ′′′ and 1′′

1′
are not constant functions. Then, there exist constants c, c1 and c2 such that

f ′′

f ′′′
= 2c

f ′ f ′′

f ′′′
+ c1 (4.6)

and

1′′′

1′
= −c

1′′

1′
+ c2. (4.7)

Substituting (4.6) and (4.7) in (4.4) we obtain[
f + (c2 + 2)

f ′ f ′′

f ′′′
]

+
[
(1 + 1′′) + c1

1′′

21′
]

= 0. (4.8)

Hence, there exists another constant λ ∈ R such that

f + (2 + c2)
f ′ f ′′

f ′′′
= λ (4.9)

and

2(1 + 1′′) + c1
1′′

1′
= −2λ. (4.10)
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A.1 Suppose that c , 0. Combining (4.6) and (4.9) we obtain

f ′ =
λ − f
x + y f

(4.11)

where x = 2cλ + c1(2 + c2) and y = −2c. Moreover, we have

f ′′ = −
(x + λy)(λ − f )

(x + y f )3 . (4.12)

By integrating (4.6) we get

f ′ = c f ′2 + c1 f ′′ + α, (4.13)

where α is a constant.
Now, plugging (4.11) and (4.12) into (4.13) we obtain a polynomial equation of degree three in f (u).

Since at least one real root exists, all the coefficients must be zero. Thus, we must have α = 1
4c and x = 2cλ.

It follows that x + λy = 0, which implies f ′′ = 0 and this contradicts the hypothesis f ′′′1′ , 0.

A.2 If c = 0 we obtain f ′′

f ′′′ = c1 and 1′′′

1′
= c2. Moreover, we have

f + (2 + c2)c1 f ′ = λ, 1 + 1′′ + c1
1′′

1′
= −2λ, λ ∈ R. (4.14)

It follows that f ′′ + (2 + c2)c1 f ′′′ = 0 and hence c1 f ′′′(3 + c2) = 0. Since c1 is different from zero and f ′′′ is
supposed to be non zero, we must have c2 = −3. Therefore, we get

1′′ = −31 + β, (4.15)

for a certain constant β. Now, from the equation (4.14) we obtain

f − c1 f ′ = λ (4.16)

and

1′ = c1
β − 31

21 − β − 2λ
. (4.17)

Substituting (4.17) into (4.15) we obtain

(β − 31)

1 − c2
1(β + 6λ)

(21 − β − 2λ)3

 = 0.

This implies that 1 is a constant, which contradicts f ′′′1′ , 0.

B. If f ′ f ′′

f ′′′ is a constant function, then the equation (4.5) yields

• either f ′′

f ′′′ is constant, case in which f ′ is also constant and this contradicts f ′′′1′ , 0;

• or 1
′′

1′
is constant.

Set f ′ f ′′

f ′′′ = a1 and 1′′

1′
= a2, where a1, a2 ∈ R. We have also 1

′′′

1′
= a2

2. Now, using (4.4), it follows that there
exists a constant c such that

f +
a2 f ′′

2 f ′′′
= c and 1 + 1′′ = −a1(2 + a2

2) − c.
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Multiplying the first equation by f ′ we immediately obtain f ′ = a1a2
2(c− f ) and hence f ′′ =

a2
1a2

2
4(c− f )3 . On the other

hand, since f ′ f ′′ = a1 f ′′′, there exists a constant α such that f ′2 = 2a1 f ′′ + α. We obtain

(c − f )a2
1a2

2 = 2a3
1a2

2 + 4α(c − f )3.

Thus, f satisfies a polynomial equation for all u. Therefore, we must have α = 0 and a2 = 0 (since a1 is
different from 0). It follows that f = c, and this is false.

We conclude that under the hypothesis f ′′′1′ , 0, the minimality equation (4.2) has no solution.
Let us discuss the situation when f ′′′1′ vanishes. We will distinguish the following cases.

Case 1. Let 1(v) = a be a constant function. Hence the minimality condition is formed as the second-order
nonlinear o.d.e

f ′′
[
1 + ( f + a)2

]
+ f ′2( f + a) = 0. (4.18)

Of course, any constant function f is a solution of this equation. We are looking now to non constant
solutions. First we observe that

d
du

log
[

f ′2
[
1 + ( f + a)2

]]
= 0.

Hence f ′
√

1 + ( f + a)2 = k1, where k1 ∈ R. Integrating, one gets

I( f (u) + a) = k1u + k2,

where I is the function defined by

I(x) = x
√

1 + x2 + log
(
x +
√

1 + x2
)

(4.19)

and k2 is a constant.

Case 2. Suppose that f ′′′ = 0, that is f (u) = au2 + bu + c, with a, b, c ∈ R. Replacing f into the minimality
equation (4.2) we obtain a polynomial equation of degree 4 in u whose coefficients are functions depending
on v. As this equation is satisfied for an infinitely many u, its coefficients must be zero. The leading
coefficient is 6a3. So, a = 0. We obtain

1′′(1 + b2) + b2(bu + c + 1) + b1′ = 0.

This is a linear equation in u with infinitely many solutions. Thus b = 0 and hence 1 is an affine function.
All the computations we have made so far can be summarized in the following result.

Theorem 4.1. The minimal translation surfaces of type III in the three dimensional Heisenberg group H(1, 1) belong
to the following list

F (u, v) = (av + b, v,u)

or

F (u, v) =
(
I−1(k1u + k2), v,u

)
where I is defined by (4.19) and a, b, k1 and k1 are constants.

Remark 4.2. In general, surfaces of different types I–III are not isometric. Nevertheless, some isometries of H(1, 1)
can carry a surface of type (i) into a surface of type (j).



Ç. Ramis, M.I. Munteanu / Filomat 33:6 (2019), 1583–1592 1592

Example 1. Consider the map φ : H(1, 1) → H(1, 1), φ(x, y, z) = (x, y + b, z + c) with b, c ∈ R and two
translation surfaces in H(1, 1) of type I, respectively type II, as follows:

M1: F1(u, v) = (u, v, au + v), (u, v) ∈ R2;
M2: F2(ū, v̄) = (ū,−aū + (v̄ + b − c), v̄), (ū, v̄) ∈ R2, a ∈ R.

We have that φ is an isometry of H(1, 1), which maps M1 into M2, that is φ(F1(u, v)) = F2(ū, v̄).

Example 2. Consider the map φ : H(1, 1)→ H(1, 1), φ(x, y, z) = (x + a, y, z + ay) with a ∈ R \ {0} and two
translation surfaces in H(1, 1) of type I, respectively type III, as follows:

M1: F1(u, v) = (u, v,u − v), (u, v) ∈ R2;
M3: F3(ū, v̄) =

(
(1 − a)ū + (v̄ + a), ū, v̄

)
, (ū, v̄) ∈ R2.

We have that φ is an isometry of H(1, 1), which maps M1 into M3, that is φ(F1(u, v)) = F3(ū, v̄).

For more details on the geometry of the Heisenberg group see, e.g. [I] and [IKOS].
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