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Abstract. A new concept in generalized convexity, called higher order (C, α, γ, ρ, d) type-I functions, is
introduced. To show the existence of such type of functions, we identify a function lying exclusively in
the class of higher order (C, α, γ, ρ, d) type-I functions and not in the class of (C, α, ρ, d) type-I functions
already existing in the literature. Based upon the higher order (C, α, γ, ρ, d) type-I functions, the optimality
conditions for a feasible solution to be an efficient solution are derived. A higher order Schaible dual has
been then formulated for nondifferentiable multiobjective fractional programs. Weak, strong and strict
converse duality theorems are established for higher order Schaible dual model and relevant proofs are
given under the aforesaid function.

1. Introduction

It is known that the higher order dual contains a number of parameters which give it a computational
advantage over the first order dual. This is due to the reason that higher order dual provides tighter
bounds for the value of the objective function, whenever approximations are used. Second and higher
order dual programs for nonlinear programs were introduced by Mangasarian [16] by taking the non-linear
approximations of the objective function and the constraints. Second order dual models were studied by
Ahmad [2] and Gupta [6], whereas in [1, 4, 5, 20] the higher order dual models were discussed.
Fractional programming problems have been of better utility in real life, as ratio optimization often describe
an efficiency measure for a system. In last few years, Schaible dual has been extensively used for fractional
programs. A dual program of such kind for a nonlinear fractional problem is first developed by Jagannathan
[10] and the duality results were further improved by Schaible in [18] and [19]. It was done by converting a
fractional program to a convex program, for which the solutions techniques already existed. Multiobjective
fractional programming problems are being widely used in optimization theory due to their practicability.
A large number of optimality and duality theorems have been established for these problems since their
introduction in literature. The Schaible dual for nondifferentiable multiobjective fractional programming
problems was discussed in [1, 20].
Due to the fact that not all properties of convex functions are required to set up sufficiency and duality
theorems, there has been an increasing interest in generalization of the concept of convexity in view of

2010 Mathematics Subject Classification. Primary 90C26 90C29, 90C30, 90C32, 90C46
Keywords. Nondifferentiable multiobjective programming problems, Fractional programs, Efficient solutions, Higher order

(C, α, γ, ρ, d) type-I convexity, Duality theorems
Received: 26 June 2018; Revised: 08 May 2019; Accepted: 14 July 2019
Communicated by Predrag Stanimirović
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optimality and duality results. Keeping this in view several new classes of generalized convex functions
have been introduced in [9, 11, 15, 17]. Integrating the above concepts of generalized invexity, (F, α, ρ, d)
- convex function where F is a sublinear functional was defined by Liang et al. [12] and their optimality
and duality results for a nonlinear fractional programming problem were proved. Later, in [13] three dual
models for multiobjective fractional program were proposed. Further generalizing the concept of sublinear
functional, the definition of (C, α, ρ, d) - convex function, where C being a convex function, was introduced in
[22] and the optimality and duality results for a minimax fractional programming problem were obtained.
Chinchuluun et al. [3] studied different dual models for multiobjective fractional programming problems.
The Mond-Weir dual for a nondifferentiable multiobjective fractional program was established by Long [14].
Later Dubey et al. [4] defined new type of function called higher order (C, α, γ, ρ, d) - convex function and
studied the optimality and duality results for a nondifferentiable multiobjective fractional programming
problem.
In [8] a new class of generalized (F, α, ρ, d) type-I functions was introduced and sufficient optimality and
duality results for nonlinear multiobjective programming problem were obtained. Second order duality
results for two dual models of non-differentiable minimax programming problems, which involve second
order (F, α, ρ, d) type-I convex functions were established in [2]. These were further generalized by Gupta et
al. [6] to second order (C, α, ρ, d) type-I convex functions and second order dual models for nondifferentiable
minimax fractional programming problems were formulated.
We are motivated by the earlier work given in [12], [8] and [4] to consider the optimality conditions and
duality theorems for nondifferentiable multiobjective fractional programming problems from the viewpoint
of (C, α, γ, ρ, d) type-I convexity assumptions.
This paper is organized as follows. Section 2 comprises some basic definitions along with the definition
of higher order (C, α, γ, ρ, d) type-I function, an example of such type of functions and formulation of a
nondifferentiable multiobjective fractional program. Necessary and sufficient optimality conditions for this
program are given in Section 3. In Section 4, the formulation of higher order dual model along with weak,
strong and strict converse duality theorems are given.

2. Preliminaries

Definition 2.1. [22] A function C : X × X × Rn
→ R(X ⊆ Rn) is said to be convex on Rn with respect to third

argument if and only if, for any fixed (x,u) ∈ X × X and for any α1, α2 ∈ Rn ,

C(x,u)(λα1 + (1 − λ)α2) ≤ λC(x,u)(α1) + (1 − λ)C(x,u)(α2), λ ∈ (0, 1).

Assume that C(x,u)(0) = 0, for every (x,u) ∈ X × X. Now, we introduce the definition of higher order
(C, α, γ, ρ, d) type-I function. Letφ : X→ Rk and h : X→ Rm be differentiable functions on X. Assume that
Fi,H j : X×Rn

→ R are differentiable functions on X. α = (α1
1, ..., α

1
k , α

2
1, ..., α

2
m), d = (d1

1, ..., d
1
k , d

2
1, ..., d

2
m), ρ =

(ρ1
1, ..., ρ

1
k , ρ

2
1, ..., ρ

2
m), α1

i , γ
1
i , α

2
j , γ

2
j : X×X→ R+\{0} and d1

i , d
2
j : X×X→ R+ satisfying d(x, x0) = 0⇔ x = x0

and p, q, r, s ∈ Rn, i = 1, 2, ..., k, j = 1, 2, ...,m.

Definition 2.2. The function (φ, h) is said to be higher order (strictly) (C, α, γ, ρ, d) type-I at u with respect to
F, p and r and H, q and s respectively, if for each x ∈ X,

1
α1(x,u)

[φ(x) − φ(u)] = (>) C(x,u)(∇φ(u) + ∇pF(u, p)) +
1

γ1(x,u)
[F(u, r) − rT

∇rF(u, r)] +
ρ1d1(x,u)
α1(x,u)

,

1
α2(x,u)

(−h(u)) = (>) C(x,u)(∇h(u) + ∇qH(u, q)) +
1

γ2(x,u)
[H(u, s) − sT

∇sH(u, s)] +
ρ2d2(x,u)
α2(x,u)

.

Note that, for a, b, c ∈ Rk.

1. the symbol ab
c denotes ( a1b1

c1
, a2b2

c2
, ..., akbk

ck
)T
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2. a+b
c denotes ( a1+b1

c1
, a2+b2

c2
, ..., ak+bk

ck
)T. And ab = (a1b1, a2b2, ..., akbk)T

3. the symbol C(x,u)(∇φ(u) + ∇pF(u, p)) means vector(
C(x,u)(∇φ1(u) + ∇pF1(u, p)),C(x,u)(∇φ2(u) + ∇pF2(u, p)), ...,C(x,u)(∇φk(u) + ∇pFk(u, p))

)T
.

Remark 2.3.

(i) If Fi(u, ·) = 0 and H j(u, ·) = 0 then the definition (2.2) becomes that of (C, α, ρ, d) type-I as defined by Yuan
et al. [21].

(ii) For Fi(u, ·) = 1
2 (·)t
∇

2 fi(u)(·), α(x,u) = γ(x,u),H j(u, ·) = 1
2 (·)t
∇

2h j(u)(·), p = r and q = s.

(a) If k = 1,m = 1 then definition (2.2) becomes second order (C, α, ρ, d) type-I function given in [6].

(b) If C is sublinear with respect to third variable then the above definition becomes the definition of second
order (F, α, ρ, p, d) type-I given by [7]. In addition to that, if p = 0 and q = 0 the function defined above
becomes (F, α, ρ, d) type-I function given in [8].

Example 2.4. Let k = 1,m = 1,X = R+
⊂ R, φ : X → R, h : X → R, C : X × X × R → R, F,H : X × R →

R, d1, d2 : X × X→ R+ be defined as follows

φ(x) =
(x + 1)4 + x2

− 3sin2(x)
x + 1

, h(x) = exp(x) − x2, d1, d2 = (x − u)2,

F(u, ·) =
(·)2

u + 1
, H(u, ·) = 2(·)2(u + 1), C(x,u)(a) =

a2

10
.

For α = (α1, α2), ρ = (ρ1, ρ2), γ = (γ1, γ2). Let α = (3/4, 1), γ = (3/4, 1), ρ = (1,−1), p = r = q = s = −1. At a
point u = 0, for all x ∈ X,

Ψ =
1

α1(x,u)
[φ(x) − φ(u)] − C(x,u)(∇φ(u) + ∇pF(u, p)) −

1
γ1(x,u)

[F(u, r) − rT
∇rF(u, r)]

−
ρ1d1(x,u)
α1(x,u)

=
4
3

[ (x + 1)4 + x2
− 3sin2(x)

x + 1
−

(0 + 1)4 + 02
− 3sin2(0)

0 + 1

]
− C(x,0)

(
3 +

2p
0 + 1

)
−

4
3

[ r2

0 + 1
− r.

2r
0 + 1

]
−

4x2

3

=
4
3

[ (x + 1)4 + x2
− 3sin2(x) − x − 1

(x + 1)

]
− C(x,0)(3 − 2) −

(4
3

)(
−r2

1

)
−

4x2

3

=
4
3

[ (x + 1)4 + x2
− 3sin2(x) − x − 1

(x + 1)

]
−

1
10

+
4
3
−

4x2

3

=
40x4 + 120x3 + 240x2 + 157x − 120sin2(x) + 37

30(x + 1)
≥ 0, ∀ x ∈ X,

as can be seen from figure 1(insert figure, named Fig1).

1
α2(x,u)

(−h(u)) − C(x,u)(∇h(u) + ∇qH(u, q)) −
1

γ2(x,u)
[H(u, s) − sT

∇sH(u, s)] −
ρ2d2(x,u)
α2(x,u)

= 0.1 + x2.

It is clear that the above function is always positive. So we have (φ, h) is higher order (C, α, γ, ρ, d) type-I at u = 0.
But for x = 0.1 the above function is not (C, α, ρ, d) type-I at u = 0.
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Figure 1: Graph of Ψ

Definition 2.5. Let C be a compact convex set in Rn. The support function S(x|C) of C at x is defined by

S(x|C) = max {xT y|y ∈ C}.

Such functions are convex and everywhere finite. So its subdifferential is given as

∂S(x|C) = {z ∈ C : xTz = S(x|C)}.

Let us consider a nondifferentiable multiobjective fractional programming problem

(MFP) Min F(x) =
{ f1(x) + S(x|C1)
11(x) − S(x|D1)

,
f2(x) + S(x|C2)
12(x) − S(x|D2)

, . . . ,
fk(x) + S(x|Ck)
1k(x) − S(x|Dk)

}
subject to

h j(x) + S(x|E j) ≤ 0, j = 1, 2, ...,m.

Feasible set is defined as X0 = {x ∈ X ⊆ Rn
| h j(x) + S(x|E j) ≤ 0, j = 1, 2, ...,m}.

Where Ci,Di and E j for i = 1, 2, ..., k, j = 1, 2, ...,m are compact convex sets in Rn. S(x|Ci), S(x|Di), S(x|E j)
denote support functions of convex sets Ci,Di and E j respectively, for i = 1, 2, ..., k , j = 1, 2, ...,m. And
fi, 1i, h j are continuously differentiable functions in Rn. fi(·) + S(·|Ci) ≥ 0 and 1i(·) − S(·|Di) > 0.

Definition 2.6. [4] A point u ∈ X0 is weakly efficient solution of (MFP), if there exists no x ∈ X0 such that for
every i = 1, 2, ...k,

fi(x) + S(x|Ci)
1i(x) − S(x|Di)

<
fi(u) + S(u|Ci)
1i(u) − S(u|Di)

.

Definition 2.7. [4] A point u ∈ X0 is said to be an efficient solution of (MFP), if there exists no x ∈ X0 such that
for every i = 1, 2, ..., k,

fi(x) + S(x|Ci)
1i(x) − S(x|Di)

≤
fi(u) + S(u|Ci)
1i(u) − S(u|Di)
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and for some r = 1, 2, ..., k,

fr(x) + S(x|Cr)
1r(x) − S(x|Dr)

<
fr(u) + S(u|Cr)
1r(u) − S(u|Dr)

.

Lemma 2.8. [20] If u is efficient solution of (MFP), then u solves (FPβ) for each r = 1, 2, ..., k where (FPβ) is given as

(FPβ) Min
fr(x) + S(x|Cr)
1r(x) − S(x|Dr)

subject to
fi(x) + S(x|Ci)
1i(x) − S(x|Di)

≤ βi, i = 1, 2, ..., k, i , r,

h j(x) + S(x|E j) ≤ 0, j = 1, 2, ...,m,

where βi =
fi(u) + S(u|Ci)
1i(u) − S(u|Di)

.

Now since 1i(·) − S(·|Di) > 0, for all i = 1, 2, ..., k therefore (FPβ) can be rewritten as

(FP1
β) Min

fr(x) + S(x|Cr)
1r(x) − S(x|Dr)

subject to fi(x) + S(x|Ci) − βi(1i(x) − S(x|Di)) ≤ 0, i = 1, 2, ..., k, i , r,
h j(x) + S(x|E j) ≤ 0, j = 1, 2, ...,m.

Lemma 2.9. [20] u is efficient solution of (MFP) if and only if u solves (FP1
β) for each r = 1, 2, ..., k, where βi is

defined as above.

3. Optimality Conditions

Theorem 3.1. (Necessary Optimality Condition) [4] Assume that u is an efficient solution of (MFP) and Slater’s
constraint qualification is satisfied on X. Then there exist λ̄ ∈ Rk, µ ∈ Rm, zi ∈ Rn, vi ∈ Rn, w j ∈ Rn, i =
1, 2, ..., k, j = 1, 2, ...,m, such that

k∑
i=1

λ̄i∇

( fi(u) + uTzi

1i(u) − uTvi

)
+

m∑
j=1

µ j∇(h j(u) + uTw j) = 0,

m∑
j=1

µ j(h j(u) + uTw j) = 0,

uTzi = S(u|Ci), uTvi = S(u|Di),uTw j = S(u|E j),
zi ∈ Ci, vi ∈ Di, w j ∈ E j, λ̄i > 0, µ j ≥ 0.

Theorem 3.2. ( Equivalent Necessary Optimality Condition) Assume that u is an efficient solution of (MFP)
and Slater’s constraint qualification is satisfied on X. Then there exist λ ∈ Rk, µ ∈ Rm, zi ∈ Rn, vi ∈ Rn, w j ∈

Rn, i = 1, 2, ..., k, j = 1, 2, ...,m, such that

k∑
i=1

λi(∇( fi(u) + uTzi) − βi∇(1i(u) − uTvi))

+

m∑
j=1

µ j∇(h j(u) + uTw j) = 0, (1)
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fi(u) + uTzi − βi(1i(u) − uTvi) = 0, (2)
m∑

j=1

µ j(h j(u) + uTw j) = 0, (3)

uTzi = S(u|Ci), uTvi = S(u|Di),uTw j = S(u|E j), (4)
zi ∈ Ci, vi ∈ Di, w j ∈ E j, λi > 0, µ j ≥ 0. (5)

Theorem 3.3. (Sufficient Optimality Condition) Let u be a feasible solution of (MFP). Assume that there exist
λi > 0 and µ j ≥ 0, for i = 1, 2, ..., k, j = 1, 2, ...,m, such that equivalent necessary optimality conditions (1)-(5)
hold. Let for any i = 1, 2, ..., k, j = 1, 2, ...,m, the following hold

(i) ( f (·) + (·)Tz, h(·) + (·)Tw) is higher order (C, α, γ, ρ, d) type-I with respect to K, p, r and H, q, s respectively,

(ii) (−(1(·)−(·)Tv), h(·)+(·)Tw) is higher order (C, α, γ, ρ, d) type-I with respect to −G, p, r and H, q, s respectively,

(iii)
∑k

i=1
λiρ

1
i d1

i (x,u)
α1

i (x,u)
(1 + βi) +

∑m
j=1

µ jρ
2
j d

2
j (x,u)

α2
j (x,u)

≥ 0,

(iv) γ1
i (x,u) = ξ(x,u), α2

j (x,u) = ζ(x,u) and γ2
j (x,u) = σ(x,u),

(v)
∑m

j=1 µ j(H j(u, s) − sT
∇sH j(u, s)) ≥ 0,

∑k
i=1 λi(Ki(u, r) − rT

∇rKi(u, r) − βi(Gi(u, r) − rT
∇rGi(u, r))) ≥ 0 and∑k

i=1 λi(∇pKi(u, p) − βi∇pGi(u, p)) +
∑m

j=1 µ j∇qH j(u, q) = 0.

Then u is an efficient solution of (MFP).

Proof If u is not an efficient solution, then there exists some x ∈ X0 such that the following holds.

fi(x) + S(x|Ci)
1i(x) − S(x|Di)

≤
fi(u) + S(u|Ci)
1i(u) − S(u|Di)

, for all i = 1, 2, ..., k,

fr(x) + S(x|Cr)
1r(x) − S(x|Dr)

<
fr(u) + S(u|Cr)
1r(u) − S(u|Dr)

for some r = 1, 2, ..., k.
(6)

For some zi ∈ Ci and vi ∈ Di, it is given that uTzi = S(u|Ci), uTvi = S(u|Di), i = 1, 2, ..., k, gives

fi(x) + xTzi

1i(x) − xTvi
≤

fi(x) + S(x|Ci)
1i(x) − S(x|Di)

≤
fi(u) + S(u|Ci)
1i(u) − S(u|Di)

=
fi(u) + uTzi

1i(u) − uTvi
= βi, for all i = 1, 2, ..., k,

fr(x) + xTzr

1r(x) − xTvr
≤

fr(x) + S(x|Cr)
1r(x) − S(x|Dr)

<
fr(u) + S(u|Cr)
1r(u) − S(u|Dr)

=
fr(u) + uTzr

1r(u) − uTvr
= βr, for some r = 1, 2, ..., k,

so that

fi(x) + xTzi

1i(x) − xTvi
≤ βi, for all i = 1, 2, ..., k

and

fr(x) + xTzr

1r(x) − xTvr
< βr, for some r = 1, 2, ..., k.

As 1i(x) − S(x|Di) > 0 , so we get

fi(x) + xTzi − βi(1i(x) − xTvi) ≤ 0, for all i = 1, 2, ..., k
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and

fr(x) + xTzr − βr(1r(x) − xTvr) < 0, for some r = 1, 2, ..., k.

For λi > 0 and α1
i (x,u) ∈ R+ \ {0},

k∑
i=1

λi

α1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi)) < 0 (7)

Using hypotheses (i) and (ii) we obtain

fi(x) + xTzi − ( fi(u) + uTzi)

α1
i (x,u)

≥ C(x,u)(∇( fi(u) + uTzi) + ∇pKi(u, p))+

1
γ1

i (x,u)
(Ki(u, r) − rT

∇rKi(u, r)) +
ρ1

i d1
i (x,u)

α1
i (x,u)

(8)

−(1i(x) − xTvi − (1i(u) − uTvi))

α1
i (x,u)

≥ C(x,u)(−∇(1i(u) − uTvi) − ∇pGi(u, p))+

1
γ1

i (x,u)
(−(Gi(u, r) − rT

∇rGi(u, r))) +
ρ1

i d1
i (x,u)

α1
i (x,u)

(9)

−(h j(u) + uTw j)

α2
j (x,u)

≥ C(x,u)(∇(h j(u) + uTw j) + ∇qH j(u,q
¯
))+

1
γ2

j (x,u)
(H j(u, s) − sT

∇sH j(u, s)) +
ρ2

j d
2
j (x,u)

α2
j (x,u)

(10)

Adding the two inequalities (8) and (9) after multiplying (9) by βi, (βi ≥ 0) i = 1, 2, ..., k, we get
1

α1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi) − ( fi(u) + uTzi − βi(1i(u) − uTvi)))

≥ C(x,u)(∇( fi(u) + uTzi) + ∇pKi(u, p)) +
1

γ1
i (x,u)

(Ki(u, r) − rT
∇rKi(u, r))

+
ρ1

i d1
i (x,u)

α1
i (x,u)

+ βiC(x,u)(−∇(1i(u) − uTvi) − ∇pGi(u, p))

− βi
1

γ1
i (x,u)

(Gi(u, r) − rT
∇rGi(u, r)) + βi

ρ1
i d1

i (x,u)

α1
i (x,u)

. (11)

Multiply inequality (10) by µ j(µ j ≥ 0), and (11) by λi(λi > 0), i = 1, 2, ..., k, j = 1, 2, ...,m , then adding over
their ranges, we have

k∑
i=1

λi

α1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi) − ( fi(u) + uTzi − βi(1i(u) − uTvi)))

+

m∑
j=1

µ j

α2
j (x,u)

(−(h j(u) + uTw j))

≥

k∑
i=1

λi[C(x,u)(∇( fi(u) + uTzi) + ∇pKi(u, p)) + βiC(x,u)(−∇(1i(u) − uTvi) − ∇pGi(u, p))]

+

k∑
i=1

λi

γ1
i (x,u)

(Ki(u, r) − rT
∇rKi(u, r) − βi(Gi(u, r) − rT

∇rGi(u, r)))
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+

k∑
i=1

λiρ1
i d1

i (x,u)

α1
i (x,u)

(1 + βi) +

m∑
j=1

µ jC(x,u)(∇(h j(u) + uTw j) + ∇qH j(u, q))

+

m∑
j=1

µ j

γ2
j (x,u)

(H j(u, s) − sT
∇sH j(u, s)) +

m∑
j=1

µ jρ2
j d

2
j (x,u)

α2
j (x,u)

. (12)

Taking τ =
∑k

i=1 λi(1 + βi) +
∑m

j=1 µ j , so τ > 0 , divide the equation by τ and using convexity of C we obtain
k∑

i=1

λi

τα1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi) − ( fi(u) + uTzi − βi(1i(u) − uTvi)))

+

m∑
j=1

µ j

τα2
j (x,u)

(−(h j(u) + uTw j))

≥ C(x,u)

[1
τ

k∑
i=1

λi

(
∇( fi(u) + uTzi) + ∇pKi(u, p) − βi∇(1i(u) − uTvi) − βi∇pGi(u, p)

)
+

1
τ

m∑
j=1

µ j

(
∇(h j(u) + uTw j) + ∇qH j(u, q)

)]
+

m∑
j=1

µ j

τγ2
j (x,u)

(H j(u, s) − sT
∇sH j(u, s))

+

k∑
i=1

λi

τγ1
i (x,u)

(Ki(u, r) − rT
∇rKi(u, r) − βi(Gi(u, r) − rT

∇rGi(u, r)))

+

k∑
i=1

λiρ1
i d1

i (x,u)

τα1
i (x,u)

(1 + βi) +

m∑
j=1

µ jρ2
j d

2
j (x,u)

τα2
j (x,u)

. (13)

It follows from hypotheses (iii) and (iv) that

k∑
i=1

λi

τα1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi))

≥ C(x,u)

[1
τ

k∑
i=1

λi

(
∇( fi(u) + uTzi) + ∇pKi(u, p) − βi∇(1i(u) − uTvi) − βi∇pGi(u, p)

)
+

1
τ

m∑
j=1

µ j

(
∇(h j(u) + uTw j) + ∇qH j(u, q)

)]
+

m∑
j=1

µ j

τσ(x,u)
(H j(u, s) − sT

∇sH j(u, s))

+

k∑
i=1

λi

τα1
i (x,u)

( fi(u) + uTzi − βi(1i(u) − uTvi)) +

m∑
j=1

µ j

τζ(x,u)
(h j(u) + uTw j)

+

k∑
i=1

λi

τξ(x,u)
(Ki(u, r) − rT

∇rKi(u, r) − βi(Gi(u, r) − rT
∇rGi(u, r))). (14)

Further, using hypothesis (v) we have

k∑
i=1

λi

τα1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi))

≥ C(x,u)

[1
τ

( k∑
i=1

λi(∇( fi(u) + uTzi) − βi∇(1i(u) − uTvi)) +

m∑
j=1

µ j∇(h j(u) + uTw j

)]
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+

k∑
i=1

λi

τα1
i (x,u)

( fi(u) + uTzi − βi(1i(u) − uTvi)) +
1

τζ(x,u)

m∑
j=1

µ j(h j(u) + uTw j). (15)

Finally, using fi(u) + uTzi − βi(1i(u) − uTvi) = 0,
∑m

j=1 µ j(h j(u) + uTw j) = 0 and C(x,u)(0) = 0, it follows that
k∑

i=1

λi

τα1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi)) ≥ 0, (16)

which contradicts (7). Hence u is an efficient solution of (MFP).

4. Duality Model

In this section, we consider the higher order Schaible dual to (MFP):

(MFD) Max β = (β1, β2, ..., βk)
subject to

k∑
i=1

λi[∇( fi(u) + uTzi) − βi∇(1i(u) − uTvi)] +

m∑
j=1

µ j∇(h j(u) + uTw j) +

k∑
i=1

λi(∇pKi(u, p)

−βi∇pGi(u, p)) +

m∑
j=1

µ j∇qH j(u, q) = 0, (17)

k∑
i=1

λi( fi(u) + uTzi − βi(1i(u) − uTvi) + (Ki(u, r) − rT
∇rKi(u, r)) − βi(Gi(u, r)

−rT
∇rGi(u, r))) ≥ 0, (18)

m∑
j=1

µ j(h j(u) + uTw j + H j(u, s) − sT
∇sH j(u, s)) ≥ 0, (19)

λi > 0, µ j ≥ 0, and βi ≥ 0, for i = 1, 2..., k and j = 1, 2, ...,m,
zi ∈ Ci, vi ∈ Di, w j ∈ E j. (20)

Theorem 4.1. (Weak Duality Theorem) Let x ∈ X0 and (u, β, λ, µ, z, v,w, p, q, r, s) be feasible solutions of (MFP)
and (MFD) respectively. Suppose that

(i) ( f (·) + (·)Tz, h(·) + (·)Tw) is higher order (C, α, γ, ρ, d) type-I with respect to K, p, r and H, q, s respectively,

(ii) (−(1(·)−(·)Tv), h(·)+(·)Tw) is higher order (C, α, γ, ρ, d) type-I with respect to −G, p, r and H, q, s respectively,

(iii)
∑k

i=1
λiρ

1
i d1

i (x,u)
α1

i (x,u)
(1 + βi) +

∑m
j=1

µ jρ
2
j d

2
j (x,u)

α2
j (x,u)

≥ 0,

(iv) α1
i (x,u) = γ1

i (x,u) = a(x,u) and α2
j (x,u) = γ2

j (x,u) = b(x,u).

Then the following can not hold:

fi(x) + S(x|Ci)
1i(x) − S(x|Di)

≤ βi, for all, i = 1, 2, ..., k,

fr(x) + S(x|Cr)
1r(x) − S(x|Dr)

< βr, for some r = 1, 2, ..., k.
(21)
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Proof Let if possible (21) hold. Then for λi > 0 and a(x,u) ∈ R+ \ {0}, for zi ∈ Ci and vi ∈ Di for i = 1, 2, ..., k
and using the definition of support function xTzi ≤ S(x|Ci), xTvi ≤ S(x|Di), we get the following

k∑
i=1

λi

a(x,u)
( fi(x) + xTzi − βi(1i(x) − xTvi)) < 0. (22)

Using higher order (C, α, γ, ρ, d) type-I convexity of ( f (·) + (·)Tz, h(·) + (·)Tw) with respect to K, p, r and
H, q, s respectively and that of (−(1(·) − (·)Tv), h(·) + (·)Tw) with respect to −G, p, r and H, q, s respectively,
we have the following

fi(x) + xTzi − ( fi(u) + uTzi)

α1
i (x,u)

≥ C(x,u)(∇( fi(u) + uTzi) + ∇pKi(u, p))+

1
γ1

i (x,u)
(Ki(u, r) − rT

∇rKi(u, r)) +
ρ1

i d1
i (x,u)

α1
i (x,u)

, (23)

−(1i(x) − xTvi − (1i(u) − uTvi))

α1
i (x,u)

≥ C(x,u)(−∇(1i(u) − uTvi) − ∇pGi(u, p))+

1
γ1

i (x,u)
(−(Gi(u, r) − rT

∇rGi(u, r))) +
ρ1

i d1
i (x,u)

α1
i (x,u)

, (24)

−(h j(u) + uTw j)

α2
j (x,u)

≥ C(x,u)(∇(h j(u) + uTw j) + ∇qH j(u, q))+

1
γ2

j (x,u)
(H j(u, s) − sT

∇sH j(u, s)) +
ρ2

j d
2
j (x,u)

α2
j (x,u)

. (25)

Multiply (24) by βi(βi ≥ 0), i = 1, 2, ..., k, then adding (23) and (24), we get

1
α1

i (x,u)
( fi(x) + xTzi − βi(1i(x) − xTvi) − ( fi(u) + uTzi − βi(1i(u) − uTvi)))

≥ C(x,u)(∇( fi(u) + uTzi) + ∇pKi(u, p)) +
1

γ1
i (x,u)

(Ki(u, r) − rT
∇rKi(u, r)) +

ρ1
i d1

i (x,u)

α1
i (x,u)

+ βiC(x,u)(−∇(1i(u) − uTvi) − ∇pGi(u, p)) − βi
1

γ1
i (x,u)

(Gi(u, r) − rT
∇rGi(u, r))

+βi
ρ1

i d1
i (x,u)

α1
i (x,u)

. (26)

Adding the inequalities (25) and (26) over their ranges after multiplying (25) by µ j(µ j ≥ 0) and (26) by
λi(λi > 0), i = 1, 2, ..., k, j = 1, 2, ...,m, we have

k∑
i=1

λi

α1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi) − ( fi(u) + uTzi − βi(1i(u) − uTvi)))

+

m∑
j=1

µ j

α2
j (x,u)

(−(h j(u) + uTw j))

≥

k∑
i=1

λi[C(x,u)(∇( fi(u) + uTzi) + ∇pKi(u, p)) + βiC(x,u)(−∇(1i(u) − uTvi) − ∇pGi(u, p))]

+

k∑
i=1

λi

γ1
i (x,u)

(Ki(u, r) − rT
∇rKi(u, r) − βi(Gi(u, r) − rT

∇rGi(u, r)))
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+

k∑
i=1

λiρ1
i d1

i (x,u)

α1
i (x,u)

(1 + βi) +

m∑
j=1

µ jC(x,u)(∇(h j(u) + uTw j) + ∇qH j(u, q))

+

m∑
j=1

µ j

γ2
j (x,u)

(H j(u, s) − sT
∇sH j(u, s)) +

m∑
j=1

µ jρ2
j d

2
j (x,u)

α2
j (x,u)

. (27)

Using (iii) and taking τ =
∑k

i=1 λi(1 + βi) +
∑m

j=1 µ j, so τ > 0 , divide the equation by τ and using convexity
of C

k∑
i=1

λi

τα1
i (x,u)

( fi(x) + xTzi − βi(1i(x) − xTvi) − ( fi(u) + uTzi − βi(1i(u) − uTvi)))

+

m∑
j=1

µ j

τα2
j (x,u)

(−(h j(u) + uTw j))

≥C(x,u)

[1
τ

k∑
i=1

λi

(
∇( fi(u) + uTzi) + ∇pKi(u, p) − βi∇(1i(u) − uTvi) − βi∇pGi(u, p)

)
+

1
τ

m∑
j=1

µ j

(
∇(h j(u) + uTw j) + ∇qH j(u, q)

)]
+

m∑
j=1

µ j

τγ2
j (x,u)

(H j(u, s) − sT
∇sH j(u, s))

+

k∑
i=1

λi

τγ1
i (x,u)

(Ki(u, r) − rT
∇rKi(u, r) − βi(Gi(u, r) − rT

∇rGi(u, r))). (28)

Using (17), hypothesis (iv) and the fact that C(x,u)(0) = 0, the last inequality yields
k∑

i=1

λi

τa(x,u)
( fi(x) + xTzi − βi(1i(x) − xTvi)) ≥

1
τb(x,u)

m∑
j=1

µ j(H j(u, s) − sT
∇sH j(u, s)) +

1
τb(x,u)

m∑
j=1

µ j((h j(u) + uTw j))

+
1

τa(x,u)

k∑
i=1

λi( fi(u) + uTzi − βi(1i(u) − uTvi)) +
1

τa(x,u)

k∑
i=1

λi(Ki(u, r)

− rT
∇rKi(u, r) − βi(Gi(u, r) − rT

∇rGi(u, r))). (29)

Finally using the dual feasibility conditions (18) and (19), the equation (29) becomes
k∑

i=1

λi

a(x,u)
( fi(x) + xTzi − βi(1i(x) − xTvi)) ≥ 0,

which contradicts (22). Hence the result.

Theorem 4.2. Let x ∈ X0 and (u, β, λ, µ, z, v,w, p, q, r, s) be feasible solutions of (MFP) and (MFD) respectively.
Suppose that

(i) ( f (·) + (·)Tz− β(1(·)− (·)Tv), h(·) + (·)Tw) is higher order (C, α, γ, ρ, d) type-I with respect to (K − βG), p, r and
H, q, s respectively

(ii)
∑k

i=1
λiρ1

i d1
i (x,u)

α1
i (x,u) +

∑m
j=1

µ jρ2
j d2

j (x,u)

α2
j (x,u) ≥ 0

(iii) α1
i (x,u) = γ1

i (x,u) = a(x,u) and α2
j (x,u) = γ2

j (x,u) = b(x,u)

Then the following can not hold
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fi(x) + S(x|Ci)
1i(x) − S(x|Di)

≤ βi, for all i = 1, 2, ..., k,

fr(x) + S(x|Cr)
1r(x) − S(x|Dr)

< βr, for some r = 1, 2, ..., k.
(30)

Proof It follows on the lines of Theorem 4.1.

Theorem 4.3. (Strong Duality Theorem) If u is an efficient solution of (MFP) and let Slater’s constraint qualifi-
cation is satisfied on X. Also if

H j(u, 0) = 0, ∇sH j(u, 0) = 0, ∇qH j(u, 0) = 0,
Ki(u, 0) = 0, ∇pKi(u, 0) = 0, ∇rKi(u, 0) = 0,
Gi(u, 0) = 0, ∇pGi(u, 0) = 0, ∇rGi(u, 0) = 0.

Then ∃ λ > 0, λ ∈ Rk, µ ∈ Rm, µ ≥ 0, β ≥ 0, β ∈ Rk, z ∈ Rn, v ∈ Rn, w ∈ Rn, such that (u, β, λ, µ, z, v,w, p =
0, q = 0, r = 0, s = 0) is a feasible solution of (MFD) and corresponding values of the objective functions are equal.
Further if, the conditions of weak duality theorem hold for all feasible solutions of (MFP) and each feasible solution
(u′, β′, λ′, µ′z′, v′,w′, p′, q′, r′, s′) of (MFD) then (u, β, λ, µ, z, v,w, p = 0, q = 0, r = 0, s = 0) is an efficient solution
of (MFD).

Proof If u is an efficient solution of (MFP) and Slater’s constraint qualification is satisfied on X then the
Theorem [3.2] gives that ∃ λ ∈ Rk, µ ∈ Rm, zi ∈ Rn, vi ∈ Rn, w j ∈ Rn, such that

k∑
i=1

λi(∇( fi(u) + uTzi) − βi∇(1i(u) − uTvi))

+

m∑
j=1

µ j∇(h j(u) + uTw j) = 0, (31)

fi(u) + uTzi − βi(1i(u) − uTvi) = 0, (32)
m∑

j=1

µ j(h j(u) + uTw j) = 0, (33)

uTzi = S(u|Ci), uTvi = S(u|Di), uTw j = S(u|E j), (34)
zi ∈ Ci, vi ∈ Di, w j ∈ E j,

λi > 0, µ j ≥ 0, i = 1, 2, ..., k, j = 1, 2, ...,m. (35)

So we have (u, β, λ, µ, z, v,w, p = 0, q = 0, r = 0, s = 0) as a feasible solution of (MFD). Due to (32) and (34)
the objective values of both programs are equal.
Now we claim that (u, β, λ, µ, z, v,w, p = 0, q = 0, r = 0, s = 0) is efficient solution of (MFD).
If not, then ∃ some (u′, β′, λ′, µ′, z′, v′,w′, p′, q′, r′, s′) such that,

β ≤ β′.
But this contradicts weak duality theorem. Hence (u, β, λ, µ, z, v,w, p = 0, q = 0, r = 0, s = 0) is an efficient
solution of (MFD).

Theorem 4.4. (Strict Converse Duality Theorem) Let x be an efficient solution of (MFP) and (u, β, λ, µ, z, v,w, p, q, r, s)
be an efficient solution of (MFD). Suppose that:

(i) ( f (·)+(·)Tz, h(·)+(·)Tw) is higher order strictly (C, α, γ, ρ, d) type-I with respect to K, p, r and H, q, s respectively,

(ii) (−(1(·) − (·)Tv), h(·) + (·)Tw) is higher order strictly (C, α, γ, ρ, d) type-I with respect to −G, p, r and H, q, s
respectively,
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(iii)
∑k

i=1
λiρ

1
i d1

i (x,u)
α1

i (x,u)
(1 + βi) +

∑m
j=1

µ jρ
2
j d

2
j (x,u)

α2
j (x,u)

≥ 0,

(iv) α1
i (x,u) = γ1

i (x,u) = a(x,u) and α2
j (x,u) = γ2

j (x,u) = b(x,u),

(v)
fi(x) + xTzi

1i(x) − xTvi
≤ βi.

Then x = u.

Proof Suppose x , u. Then due to hypotheses (i) and (ii) we have

fi(x) + xTzi − ( fi(u) + uTzi)

α1
i (x,u)

> C(x,u)(∇( fi(u) + uTzi) + ∇pKi(u, p))+

1
γ1

i (x,u)
(Ki(u, r) − rT

∇rKi(u, r)) +
ρ1

i d1
i (x,u)

α1
i (x,u)

(36)

−(1i(x) − xTvi − (1i(u) − uTvi))

α1
i (x,u)

> C(x,u)(−∇(1i(u) − uTvi) − ∇pGi(u, p))+

1
γ1

i (x,u)
(−(Gi(u, r) − rT

∇rGi(u, r))) +
ρ1

i d1
i (x,u)

α1
i (x,u)

(37)

−(h j(u) + uTw j)

α2
j (x,u)

> C(x,u)(∇(h j(u) + uTw j) + ∇qH j(u, q))+

1
γ2

j (x,u)
(H j(u, s) − sT

∇sH j(u, s)) +
ρ2

j d
2
j (x,u)

α2
j (x,u)

(38)

Following the similar manner as in Theorem 4.1 we are left with
k∑

i=1

λi

a(x,u)
( fi(x) + xTzi − βi(1i(x) − xTvi) > 0. (39)

It follows from hypothesis (v) that
fi(x) + xTzi

1i(x) − xTvi
≤ βi,

which further imply that
k∑

i=1

λi( fi(x) + xTzi − βi(1i(x) − xTvi)) ≤ 0 for λi > 0, (40)

contradicting (39). Hence x = u.
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