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Abstract. We prove several numerical radius inequalities for products of two Hilbert space operators.
Some of our inequalities improve well-known ones. More precisely, we prove that, if A,B ∈ B(H ) such
that A is self-adjoint with λ1 = minλi ∈ σ (A) (the spectrum of A) and λ2 = maxλi ∈ σ (A). Then

ω(AB) ≤ ‖A‖ω(B) +
(
‖A‖ −

|λ1 + λ2|

2

)
DB

where DB = inf
λ∈C
‖B − λI‖. In particular, if A > 0 and σ(A) ⊆ [k‖A‖, ‖A‖], then

ω(AB) ≤ (2 − k)‖A‖ ω(B).

1. Introduction and preliminaries

LetB(H ) be the C∗-algebra of all bounded linear operators on Hilbert space H . For A ∈ B(H ), let w(A)
and ‖A‖, denote the numerical radius and the usual operator norm of A, respectively. It is well-known that
for every A ∈ B(H ),

1
2
‖A‖ ≤ w(A) ≤ ‖A‖. (1)

The first inequality becomes an equality if A2 = 0 . The second inequality becomes an equality if A is
normal. Many authors have obtained several refinements and reverse for the inequalities in (1) see e.g.,
[3, 9, 10]. It has been shown in [6], that if A ∈ B(H ), then

‖A‖2 ≤ D2
A + ω2(A). (2)

It is well-known to all that the submultiplicative property is not hold for the numerical radius, see [4]. If A
and B are bounded linear operators in B(H ), then

w(AB) ≤ 4w(A)w(B). (3)
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In the case AB = BA, then

ω(AB) ≤ 2ω(A)ω(B).

If A is an isometry and AB = BA, or a unitary operator that commutes with another operator B, then

w(AB) ≤ w(B).

Concerning the inequality (3), it is shown in [1] that if A,B ∈ B(H ), then

ω(AB) ≤ ω(A)(DB + ‖B‖). (4)

Also, if A > 0, then

ω(AB) ≤
3
2
‖A‖ ω(B). (5)

If A and B are operators in B(H ), we write the direct sum A ⊕ B for the 2 × 2 operator matrix
[

A 0
0 B

]
,

regarded as an operator on H ⊕H . Thus

ω(A ⊕ B) = max{ω(A), ω(B)} (6)

and

‖A ⊕ B‖ =

∥∥∥∥∥∥
[

0 A
B 0

]∥∥∥∥∥∥ = max{‖A‖, ‖B‖}. (7)

Some numerical radius inequalities for certain 2 × 2 operator matrices is obtained in [8]. More precisely,

2n
√

max(ω((AB)n), ω((BA)n) ≤ ω
([

0 A
B 0

])
≤
‖A‖ + ‖B‖

2
(8)

for n = 1, 2, ....
For other results and historical comments on the numerical radius see [7].

In Section 2, we introduce some new refinements of numerical radius inequalities for products of two
operators and establish reverse for inequality (2). Also, we obtain upper and lower bounds for the numerical
radius of the off-diagonal parts of 2 × 2 operator matrices.

2. Main Results

We use the following lemma due to Dragomir [5] to establish reverse for inequality (2).

Lemma 2.1. For any a, b ∈H and b , 0, we have

inf
λ∈C
‖a − λb‖2 =

‖a‖2‖b‖2 − |〈a, b〉|2

‖b‖2
. (9)

Theorem 2.2. If A ∈ B(H ), then

D2
A + m2(A) ≤ ‖A‖2,

where m(A) = inf{ |〈Tx, x〉| : ‖x‖ = 1 }.
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Proof. Suppose that x ∈H with ‖x‖ = 1. Choose a = Ax, b = x in (9) to give

inf
λ∈C
‖Ax − λx‖2 = ‖Ax‖2 − |〈Ax, x〉|2

≤ ‖A‖2 − |〈Ax, x〉|2

≤ ‖A‖2 −m2(A)

and so

inf
λ∈C
‖Ax − λx‖2 ≤ ‖A‖2 −m2(A).

Taking the supremum over x ∈H with ‖x‖ = 1 gives

D2
A ≤ ‖A‖2 −m2(A).

This completes the proof.

The following result may be stated as well.

Theorem 2.3. If A,B ∈ B(H ), then

ω(AB) ≤ ω(A)ω(B) + DADB. (10)

Proof. On account of [2, Theorem 7], we have

|〈x, y〉 − 〈x, z〉〈z, y〉| ≤
(1

4
|α − β|2 +

∥∥∥∥∥x −
α + β

2
z
∥∥∥∥∥2) 1

2
(1

4
|λ − µ|2 +

∥∥∥∥∥y −
λ + µ

2
z
∥∥∥∥∥2) 1

2

,

for all x, y, z ∈H with ‖z‖ = 1, and for every α, β, λ, µ ∈ C. If replace λ = µ and α = β, then

|〈x, y〉 − 〈x, z〉〈z, y〉| ≤ ‖x − αz‖ ‖y − λz‖. (11)

Choose z = u, y = B∗u and x = Au in (11) to give

|〈BAu,u〉 − 〈Au,u〉〈Bu,u〉| ≤ ‖Au − αu‖ ‖B∗u − λu‖.

Taking the supremum over u ∈ H with ‖u‖ = 1 gives

ω(BA) − ω(A)ω(B) ≤ ‖A − αI‖ ‖B∗ − λI‖,

which is exactly the desired result.

Let RA denote the radius of the smallest disk in the complex plane containing σ(A). It is known (see, e.g.,
[11]) that DA = RA for any normal operator A. The following corollaries are immediate consequences of
Theorem 2.3.

Corollary 2.4. Let A,B ∈ B(H ) such that A is normal. Then

ω(AB) ≤ ω(B)(‖A‖ + 2RA).

Corollary 2.5. Let A,B ∈ B(H ). If DA ≤ k‖A‖, then

ω(AB) ≤ ω(A)(2kDB + ω(B)) (12)

Remark 2.6. In some cases the inequality (10) strengthen (4). For example, if A ∈ B(H ) is an invertble operator
and ‖A‖ ‖A−1

‖ ≤
2
√

3
3 , then

ω(AB) ≤ ω(A)(DB + ω(B)). (13)

Also, for k ≤ 3
4 the inequality (12) strengthen (3).



M. Shah Hosseini et al. / Filomat 33:7 (2019), 2089–2093 2092

In the next result we give a new upper and lower bound for ω
(

0 B
A 0

)
.

Corollary 2.7. If A,B ∈ B(H ), then

max(ω(A), ω(B)) −DT1 ≤ ω

(
0 B
A 0

)
≤ max(ω(A), ω(B)) + DT2 ,

where T1 =

(
0 B
A 0

)
and T2 =

(
A 0
0 B

)
.

Proof. By (6),

max(ω(A), ω(B)) = ω

(
A 0
0 B

)
= ω

((
0 A
B 0

) (
0 I
I 0

))
(by Theorem 2.3)

≤ ω

(
0 A
B 0

)
+ DT1

and so

max(ω(A), ω(B)) ≤ ω
(

0 A
B 0

)
+ DT1 . (14)

On the other hand,

ω

(
0 A
B 0

)
= ω

((
A 0
0 B

) (
0 I
I 0

))
≤ ω

(
A 0
0 B

)
+ DT2

and so

ω

(
0 A
B 0

)
≤ max(ω(A), ω(B)) + DT2 . (15)

The result follows from (14) and (15).

The following result may be stated as well.

Theorem 2.8. Let A,B ∈ B(H ). If λ1 = minλi ∈ σ (A), λ2 = maxλi ∈ σ (A) and A be a self-adjoint operator, then

ω(AB) ≤ ‖A‖ω(B) +
(
‖A‖ −

|λ1 + λ2|

2

)
DB.

Proof. Since A is a self-adjoint operator, then DA = λ2−λ1
2 . It follows from the inequality (10) that

ω (AB) ≤ ‖A‖ ω(B) +
λ2 − λ1

2
DB

= ‖A‖ ω(B) +
λ2 − λ1 + |λ2 + λ1|

2
DB −

|λ2 + λ1|

2
DB

and so

ω(AB) ≤ ‖A‖ ω(B) +
(
max (|λ1|, |λ2|) −

|λ2 + λ1|

2

)
DB. (16)

Since ‖A‖ = max (|λ1|, |λ2|), the result follows from (16).
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The following corollaries are immediate consequences of Theorem 2.8.

Corollary 2.9. Let A,B ∈ B(H ) such that A > 0, then

ω(AB) ≤ ‖A‖
(
ω(B) +

1
2

DB

)
.

Corollary 2.10. Let A,B ∈ B(H ). If A > 0 and σ(A) ⊆ [k‖A‖, ‖A‖], then

ω(AB) ≤ (2 − k)‖A‖ ω(B). (17)

Proof. By Corollary 2.8,

ω(AB) ≤ ‖A‖ω(B) +
(
‖A‖ −

|λ1 + λ2|

2

)
DB

≤ ‖A‖
(
ω(B) +

1 − k
2

DB

)
.

Therefore,

ω(AB) ≤ (2 − k)‖A‖ω(B).

This completes the proof.

In some cases, for 1
2 ≤ k ≤ 1, the inequality (17) strengthen (5).
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