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Abstract.
In this paper, we extend bounded sobriety and k-bounded sobriety to the setting of Q-cotopological

spaces, where Q is a commutative and integral quantale. The main results are: (1) The category BSobQ-CTop
of all bounded sober Q-cotopological spaces is a full reflective subcategory of the category SQ-CTop
of all stratified Q-cotopological spaces; (2) We present the relationships among Hausdorff, T1, sobriety,
bounded sobriety and k-bounded sobriety in the setting of Q-cotopological spaces; (3) For a linearly ordered
quantale Q, a topological space X is bounded (resp., k-bounded) sober if and only if the corresponding
Q-cotopological space ωQ(X) is bounded (resp., k-bounded) sober, where ωQ : Top −→ SQ-CTop is the
well-known Lowen functor in fuzzy topology.

1. Introduction

In the classical setting, sobriety of topological spaces can be described in terms of open sets as well as
closed sets. A topological space X is sober if each irreducible closed subset of X is the closure of exactly one
point in X. Moreover, sobriety of topological spaces can be described via the Papert-Papert-Isbell adjunction
O a pt (see [7, 14]) between the category Top of topological spaces and the category Loc of locales (see [8]).
More precisely, a topological space X is sober if ηX : X −→ pt(O(X)) is a bijection, where ηX denotes the unit
of the above adjunction.

Extending the theory of sober spaces to the fuzzy setting is an interesting topic in fuzzy topology. In
the fuzzy setting, since the table of truth values is not usually a Boolean algebra, there is no natural way to
switch between open sets and closed sets. So, it makes a difference whether we postulate sobriety of fuzzy
topological spaces in terms of open sets or in terms of closed sets. On one hand, most of the existing works
on sobriety of fuzzy topological spaces extend the frame approach in the classical setting. The main method
is to establish a fuzzy counterpart of the Papert-Papert-Isbell adjunction, please see Rodabaugh (see [20]),
Zhang and Liu (see [29]), Kotzé (see [9, 10]), Srivastava and Khastgir (see [22]), Pultr and Rodabaugh (see
[15–18]), Gutiérrez Garcı́a, Höhle and de Prada Vicente (see [5]), and Yao (see [24, 25]), etc. On the other
hand, Kotzé (see [9, 10]) studied the irreducible-closed-set approach to sobriety of fuzzy topological space,
when the table of truth values is a frame with an order reversing involution. Recently, for a commutative
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and integral quantale Q, making use of the fuzzy order between closed sets, Zhang (see [28]) established a
theory of sobriety for Q-cotopological spaces based on irreducible closed sets.

In the classical setting, studying generalizations of sobriety is also an interesting topic. Zhao and Fan (see
[31]) introduced a weak notion of sobriety, called bounded sobriety. They proved that the category BSob of
all bounded sober spaces is a full reflective subcategory of the category Top0 of all T0 spaces. Furthermore,
motivated by the definition of the Scott topology on posets, Zhao and Ho (see [32]) introduced a method
of deriving a new topology from a given one by using irreducible sets, in a similar way as one derives the
Scott topology on a poset from the Alexandroff topology on the poset. This derived topology leads to a
weak notion of bounded sobriety, called k-bounded sobriety. Following the idea of Zhang, the main aim of
this paper is to extend bounded sobriety and k-bounded sobriety to the setting of Q-cotopological spaces
based on irreducible closed sets.

2. Preliminaries

Throughout the paper, we refer to [1] for category theory, to [21] for quantale theory.

Definition 2.1. ([21]) A commutative and integral quantale is a triple (Q,&,≤) such that (Q,≤) is a complete
lattice with a bottom element 0 and a top element 1, (Q,&, 1) is a commutative monoid and p&(

∨
j∈J

q j) =∨
j∈J

(p&q j) for all p ∈ Q and {q j} j∈J ⊆ Q.

Since p&− preserves arbitrary sups, it has a right adjoint, which we shall denote by p →−. Thus
p&q ≤ r⇐⇒ q ≤ p→ r for all p, q, r ∈ Q.

From now on, unless otherwise stated, Q always denotes a commutative and integral quantale. In fact, a
commutative and integral quantale is just a complete residuated lattice (see [2]). Let X be a set. QX denotes
the set of all Q-subsets of X, that is, the set of all maps from X to Q. Clearly, QX is a complete lattice under
the pointwise order.

Proposition 2.2. ([21]) Let Q be a quantale. Then the following statements hold:
(1) 1→ p = p;
(2) p ≤ q⇐⇒ 1 = p→ q;
(3) p→ (q→ r) = (p&q)→ r;
(4) p&(p→ q) ≤ q;
(5) (
∨
j∈J

p j)→ q =
∧
j∈J

(p j → q);

(6) p→ (
∧
j∈J

q j) =
∧
j∈J

(p→ q j).

Definition 2.3. ([2, 23]) Let X be a set. A map R : X×X −→ Q is called a Q-preorder on X if for all x, y, z ∈ X,
(1) R(x, x) = 1 (reflexivity);
(2) R(x, y)&R(y, z) ≤ R(x, z) (transitivity).
A Q-preorder R on a set X is called a Q-order on X if for all x, y ∈ X, R(x, y) = R(y, x) = 1 implies x = y

(antisymmetry). The pair (X,R) is called a Q-preordered set (resp., Q-ordered set) if R is a Q-preorder (resp.,
Q-order) on X. For convenience, we often write simply X for a Q-preordered set (X,R) and X(x, y) for R(x, y)
if no confusion would arise.

Let X be a set. The map subX : QX
×QX

−→ Q is defined by subX(A,B) =
∧

x∈X(A(x)→ B(x)). Then subX
is a Q-preorder on QX. In particular, if X is a singleton set, then the Q-preordered set (QX, subX) reduces to
the Q-preordered set (Q, eQ), where eQ(p, q) = p→ q. For all p ∈ Q,A ∈ QX, we write p&A, p→ A ∈ QX for
the fuzzy sets given by (p&A)(x) = p&A(x) and (p→ A)(x) = p→ A(x), respectively.

A fuzzy upper (resp., lower) set in a Q-preordered set X is a map ϕ : X −→ Q such that X(x, y)&ϕ(x) ≤ ϕ(y)
(resp., X(x, y)&ϕ(y) ≤ ϕ(x)) for all x, y ∈ X. A map f : X −→ Y between Q-preordered sets is order-preserving
if X(x, y) ≤ Y( f (x), f (y)) for all x, y ∈ X. A pair ( f , 1) of order-preserving maps f : X −→ Y and 1 : Y −→ X
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is called a Q-adjunction (see [23, 26]) between Q-preordered sets X and Y, if Y( f (x), y) = X(x, 1(y)) for all
x ∈ X, y ∈ Y. In this case, f is called the left adjoint of 1 and dually 1 the right adjoint of f .

Let X,Y be sets and f : X −→ Y a map. Then the Zadeh forward power set operator f→ : QX
−→ QY and the

Zadeh backward power set operator f← : QY
−→ QX are defined, respectively, by

f→(A)(y) =
∨

f (x)=y

A(x), f←(B) = B ◦ f

for all A ∈ QX, y ∈ Y and B ∈ QY. It can be easily seen that ( f→, f←) is a Q-adjunction between (QX, subX)
and (QY, subY).

Definition 2.4. ([28]) A Q-topology on a set X is a subset δ of QX such that
(O1) pX ∈ δ for all p ∈ Q;
(O2) A ∧ B ∈ δ for all A,B ∈ δ;
(O3)

∨
j∈J

A j ∈ δ for all {A j} j∈J ⊆ δ.

The pair (X, δ) is called a Q-topological space. Note that a Q-topological space in this paper is also called
a weakly stratified Q-topological space in [6]. A Q-topology δ on X is stratified (see [6]) if p&A ∈ δ for all
p ∈ Q,A ∈ δ.

It is observed in [6, 27] that a Q-topology δ on a set X is stratified if and only if its corresponding interior
operator K satisfying subX(A,B) ≤ subX(K (A),K (B)) for all A,B ∈ QX, where K : QX

−→ QX is defined by
K (A) =

∨
{B ∈ δ|B ≤ A}.

Definition 2.5. ([28]) A Q-cotopology on a set X is a subset τ of QX such that
(C1) pX ∈ τ for all p ∈ Q;
(C2) A ∨ B ∈ τ for all A,B ∈ τ;
(C3)

∧
j∈J

A j ∈ τ for all {A j} j∈J ⊆ τ.

The pair (X, τ) is called a Q-cotopological space, elements in τ are called closed sets of (X, τ). A Q-cotopology
τ is stratified if

(C4) p→ A ∈ τ for all p ∈ Q,A ∈ τ.

We often write X for a Q-cotopological space (X, τ). A map f : X −→ Y between Q-cotopological spaces
is continuous if f←(A) = A ◦ f is closed in X whenever A is closed in Y. Let SQ-CTop denote the category of
stratified Q-cotopological spaces with continuous maps.

Given a Q-cotopological space (X, τ), its closure operator − : QX
−→ QX is defined by

A =
∧
{B ∈ τ|A ≤ B}

for all A ∈ QX. One can check that the following conditions hold:
(cl1) pX = pX for all p ∈ Q;
(cl2) A ≤ A for all A ∈ QX;
(cl3) A ∨ B = A ∨ B for all A,B ∈ QX;

(cl4) A = A for all A ∈ QX.

Proposition 2.6. ([28]) Let (X, τ) be a Q-cotopological space. The following statements are equivalent:
(1) X is stratified;
(2) p&A ≤ p&A for all p ∈ Q and A ∈ QX;
(3) The closure operator − : (QX, subX) −→ (QX, subX) is order-preserving.
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It follows immediately from Proposition 2.6(3) that if X is a stratified Q-cotopological space and B is a
closed set in X, then subX(A,B) = subX(A,B) for all A ∈ QX.

Let (X, τ) be a Q-cotopological space. Define Ω(τ) : X × X −→ Q by

Ω(τ)(x, y) =
∧
A∈τ

(A(y)→ A(x)).

Then Ω(τ) is a Q-preorder on X, called the specialization Q-preorder of (X, τ). Clearly, each closed set in (X, τ)
is a fuzzy lower set in the Q-preordered set (X,Ω(τ)).

We often write Ω(X) for the Q-preordered set obtained by equipping X with its specialization Q-preorder.

Proposition 2.7. ([19]) Let X be a stratified Q-cotopological space. Then Ω(X)(x, y) = 1y(x) for all x, y ∈ X.

3. Bounded Sober Q-Cotopological Spaces

Let X be a topological space. A closed set F in X is irreducible if it is non-empty and for all closed sets
A,B in X, F ⊆ A ∪ B implies either F ⊆ A or F ⊆ B. The specialization preorder ≤ on X is defined by x ≤ y if
and only if x ∈ cl({y}), where cl({y}) denotes the closure of {y}. If X is T0, then ≤ is a partial order, called the
specialization order. A closed set F in X is bounded if there exists x ∈ X such that F ⊆ cl({x}). A topological
space is bounded sober if each bounded irreducible closed set in it is the closure of exactly one point. Bounded
sobriety is an interesting property in non-Hausdorff topology and domain theory. Now we hope to extend
the theory of bounded sober spaces to the setting of Q-cotopological spaces.

Definition 3.1. ([28]) Let X be a Q-cotopological space. A closed set F in X is irreducible if
∨

x∈X F(x) = 1 and
subX(F,A ∨ B) = subX(F,A) ∨ subX(F,B) for all closed sets A,B in X.

Definition 3.2. Let X be a Q-cotopological space. An irreducible closed set F in X is bounded if there exists
x ∈ X such that F ≤ 1x.

Example 3.3. Let X be a stratified Q-cotopological space. Then 1x is a bounded irreducible closed set for
each x ∈ X.

Definition 3.4. A stratified Q-cotopological space X is called bounded sober if every bounded irreducible
closed set in X is the closure of 1x for a unique x ∈ X.

A stratified Q-cotopological space X is called sober if every irreducible closed set in X is the closure of
1a for a unique a ∈ X. A Q-cotopological space X is said to be T0 if x , y implies 1x , 1y for all x, y ∈ X. A
Q-cotopological space X is called T1 if 1x = 1x for each x ∈ X.

Remark 3.5. (1) Every bounded sober Q-cotopological space is T0.
(2) Every sober Q-cotopological space is clearly bounded sober, but the converse may not be true, please

see Example 3.14.
(3) A sober Q-cotopological space may not be T1. For example, let Q = ([0, 1],&) with & being the

Lukasiewicz t-norm. The Alexandroff Q-cotopology τAL on the Q-preordered set ([0, 1], dR) is the Q-
cotopology consisting of all its fuzzy lower sets, where dR(x, y) = y→ x for all x, y ∈ [0, 1]. Then ([0, 1], τAL)
is sober (see Proposition 4.3 in [28]), but not T1. In fact, for each x ∈ X, since 1x = x→ id (see (F2) of Section
4 in [28]), we have that 1x(y) = x → y for all y ∈ [0, 1]. When x < y, 1x(y) = 1, but 1x(y) = 0. Then 1x , 1x,
and thus ([0, 1], τAL) is not T1.

Proposition 3.6. Let X be a stratified T1 Q-cotopological space. Then it is bounded sober.

Proof. Suppose that F is a bounded irreducible closed set in X. Then there exists x ∈ X such that F ≤ 1x = 1x.
For all y ∈ X, if y , x, then F(y) ≤ 1x(y) = 0. Since F is irreducible,

∨
y∈X F(y) = F(x) = 1. Thus,

F = 1x = 1x.
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A Q-cotopological space X is Hausdorff if the diagonal 4 : X × X −→ Q, given by

4(x, y) =

{
1, x = y,
0, x , y.

is a closed set in the product space X×X. If Q is a linearly ordered quantale, then every stratified Hausdorff
Q-cotopological space is sober (see Proposition 3.11 in [28]) and T1.

Let BSobQ-CTop denote the category of bounded sober Q-cotopological spaces with continuous maps.
Given a stratified Q-cotopological space X, let B(X) denote the set of all bounded irreducible closed sets in
X. For each closed set F in X, define a map KF : B(X) −→ Q by

KF(A) = subX(A,F).

Lemma 3.7. Let (X, τ) be a stratified Q-cotopological space. Then the following statements hold:
(1) KpX (A) = p for all p ∈ Q and A ∈ B(X);
(2) KF1 ∨ KF2 = KF1∨F2 for all F1,F2 ∈ τ;
(3)
∧
j∈J

KF j = K∧
j∈J

F j for all {F j} j∈J ⊆ τ;

(4) Kp→F = p→ KF for all p ∈ Q and all F ∈ τ;
(5) subX(F1,F2) = subB(X)(KF1 ,KF2 ) for all F1,F2 ∈ τ.

Proof. (1) KpX (A) = subX(A, pX) =
∧

x∈X
(A(x)→ pX(x)) = 1→ p = p.

(2) KF1∨F2 (A) = subX(A,F1 ∨ F2) = subX(A,F1) ∨ subX(A,F2) = KF1 (A) ∨ KF2 (A).
(3) K∧

j∈J
F j (A) = subX(A,

∧
j∈J

F j) =
∧
j∈J

subX(A,F j) =
∧
j∈J

KF j .

(4) Kp→F(A) = subX(A, p→ F) =
∧

x∈X
(A(x)→ (p→ F(x))) = p→ KF(A).

(5) On one hand, since subX(A,F1)&subX(F1,F2) ≤ subX(A,F2),

subX(F1,F2) ≤
∧

A∈B(X)

(subX(A,F1)→ subX(A,F2)) = subB(X)(KF1 ,KF2 ).

On the other hand,

subB(X)(KF1 ,KF2 ) =
∧

A∈B(X)
(KF1 (A)→ KF2 (A))

=
∧

A∈B(X)
(subX(A,F1)→ subX(A,F2))

≤
∧

x∈X
(subX(1x,F1)→ subX(1x,F2))

=
∧

x∈X
(subX(1x,F1)→ subX(1x,F2))

=
∧

x∈X
(F1(x)→ F2(x))

= subX(F1,F2).

This completes the proof.

By the above lemma, {KF | F is a closed set in X} is a stratified Q-cotopology on B(X). We write B(X) for
the resulting Q-cotopological space.

Theorem 3.8. Let X be a stratified Q-cotopological space. Then B(X) is bounded sober.

Proof. Suppose that KF is a bounded irreducible closed set in B(X). Since KF is the closure of 1F in B(X), it
suffices to prove that F ∈ B(X). We prove this conclusion in three steps.

(1) Since KF is a bounded irreducible closed set in B(X), then∨
A∈B(X)

KF(A) =
∨

A∈B(X)

subX(A,F) = 1.
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For each A ∈ B(X), x ∈ X,

A(x)&subX(A,F) = A(x)&
∧
z∈X

(A(z)→ F(z)) ≤ F(x),

it follows that ∨
x∈X

F(x) ≥
∨
x∈X

∨
A∈B(X)

A(x)&subX(A,F) =
∨

A∈B(X)

subX(A,F) = 1.

(2) For all closed sets B, C in X, since KF is a bounded irreducible closed set in B(X), then

subX(F,B ∨ C) = subB(X)(KF,KB∨C)
= subB(X)(KF,KB ∨ KC)
= subB(X)(KF,KB) ∨ subB(X)(KF,KC)
= subX(F,B) ∨ subX(F,C).

(3) Since KF is a bounded irreducible closed set in B(X), there exists A ∈ B(X) such that KF ≤ 1A. It
follows from Proposition 2.7 that KA = 1A. By Lemma 3.7(5), we conclude that

subX(F,A) = subB(X)(KF,KA) = subB(X)(KF, 1A) = 1.

So F ≤ A. Since A is bounded, it follows that F is bounded. Thus F ∈ B(X) and KF = 1F.

Proposition 3.9. Let X be a stratified Q-cotopological space. Define

κ : X −→ B(X)

by κ(x) = 1x. Then
(1) κ : X −→ B(X) is continuous;
(2) X is bounded sober if and only if κ is a homeomorphism.

Proof. (1) Let F be a closed set in X. For all x ∈ X,

κ←(KF)(x) = KF(1x) = subX(1x,F) = subX(1x,F) = F(x).

Then κ←(KF) = F, and thus κ is continuous.
(2) Sufficiency. By Theorem 3.8, it is clear.

Necessity. Since X is bounded sober, for all A ∈ B(X), there exists a unique x ∈ X such that A = 1x = κ(x).
Then κ is a bijection. Let F be a closed set in X. For all x ∈ X, we have that

κ→(F)(1x) =
∨

κ(y)=1x

F(y) = F(x) = KF(1x).

This shows that κ is a continuous closed bijection, hence a homeomorphism.

Lemma 3.10. Let X,Y be stratified Q-cotopological spaces, f : X −→ Y be a continuous map. Then f→(A) ∈ B(Y)
for all A ∈ B(X).

Proof. Let F1,F2 be closed sets in Y.

subY( f→(A),F1 ∨ F2) = subY( f→(A),F1 ∨ F2)
= subX(A, f←(F1 ∨ F2))
= subX(A, f←(F1)) ∨ subX(A, f←(F2))
= subY( f→(A),F1) ∨ subY( f→(A),F2).
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Since A is bounded, there exists x ∈ X such that A ≤ 1x. As f is continuous, it preserves the specialization
Q-preorder. For all y ∈ Y, by Proposition 2.7, we conclude that

f→(A)(y) =
∨

f (z)=y
A(z)

≤
∨

f (z)=y
1x(z)

=
∨

f (z)=y
Ω(X)(z, x)

≤
∨

f (z)=y
Ω(Y)( f (z), f (x))

= Ω(Y)(y, f (x))
= 1 f (x)(y).

This means f→(A) ≤ 1 f (x). Then f→(A) ≤ 1 f (x), and thus f→(A) ∈ B(Y).

Theorem 3.11. BSobQ-CTop is a full reflective subcategory of SQ-CTop.

Proof. Let X be a stratified Q-cotopological space. We shall prove that κ : X −→ B(X) is universal. Suppose
that Y is a bounded sober Q-cotopological space and f : X −→ Y is a continuous map. We need to prove
that there exists a unique continuous map f ∗ : B(X) −→ Y, such that f = f ∗ ◦ κ.

(1) Existence. For all A ∈ B(X), by Lemma 3.10, f→(A) ∈ B(Y). Since Y is bounded sober, there is a unique
y ∈ Y such that f→(A) = 1y. Define f ∗ : B(X) −→ Y by

f ∗(A) = y.

Clearly, f ∗ is well defined. For each closed set B in Y, since f is continuous, f←(B) is a closed set in X. We
conclude that

K f←(B)(A) = subX(A, f←(B))
= subY( f→(A),B)
= subY( f→(A),B)
= subY(1 f ∗(A),B)
= B( f ∗(A))
= ( f ∗)←(B)(A).

Then ( f ∗)←(B) = K f←(B), and thus f ∗ is continuous. For all x ∈ X, since 1 f (x) ≤ f→(1x) ≤ f→(1x) = 1 f (x), it

follows that 1 f (x) = f→(1x). Then f = f ∗ ◦ κ.
(2) Uniqueness. If 1 : B(X) −→ Y is a continuous map such that f = 1 ◦ κ. For all A ∈ B(X), it suffices to

prove that f→(A) = 11(A). On one hand, for all x ∈ X,

A(x) = subX(1x,A)
= Ω(B(X))(κ(x),A)
≤ Ω(Y)(1(κ(x)), 1(A))
= Ω(Y)( f (x), 1(A))
= 11(A)( f (x)),

Then f→(A) ≤ 11(A), and thus f→(A) ≤ 11(A). On the other hand, we first show that κ→(A) = KA. Since
κ→(A) ≤ KA, we have that κ→(A) ≤ KA. Conversely, since κ→(A) is a closed set in B(X), there is a closed set
F in X such that κ→(A) = KF. For each x ∈ X,

A(x) ≤ κ→(A)(1x) ≤ KF(1x) = F(x).
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Then KA ≤ KF = κ→(A). It follows that

f→(A)(1(A)) = 1→ ◦ κ→(A)(1(A)) ≥ 1→(KA)(1(A)) ≥ KA(A) = 1.

Then f→(A) ≥ 11(A), and thus f→(A) = 11(A).

In [28], Zhang proved that the category SobQ-CTop of all sober Q-cotopological spaces is a full reflective
subcategory of SQ-CTop. Obviously, SobQ-CTop is a full subcategory of BSobQ-CTop. By Theorem 3.11,
we can easily obtain that SobQ-CTop is a full reflective subcategory of BSobQ-CTop.

An element a in a lattice L is a coprime if for all b, c ∈ L, a ≤ b ∨ c implies that either a ≤ b or a ≤ c. A
complete lattice L is said to be have enough coprimes if each element in L can be written as the join of a set
of coprimes. Clearly, every linearly ordered quantale has enough coprimes. We say that a quantale Q has
enough coprimes if the complete lattice Q has enough coprimes.

Let Q be a quantale and X be a topological space. We say that a map λ : X −→ Q is upper semicontinuous
if for all p ∈ Q, λ[p] = {x ∈ X | λ(x) ≥ p} is a closed set in X. If Q is a quantale with enough coprimes, then for
each topological space X, the set of upper semicontinuous maps X −→ Q forms a stratified Q-cotopology
on X(see [28]). We write ωQ(X) for the resulting stratified Q-cotopological space.

Let X be a topological space. For each closed set A ∈ X, 1A : X −→ Q is obviously upper semicontinuous.
Then every closed set in X is also a closed set in ωQ(X). Moreover, for each A ⊆ X, 1A = 1cl{A}, where cl{A} is
the closure of A in X. The following example illustrates that a stratified T1 Q-cotopological space may not
be sober.

Example 3.12. Let Q be a linearly ordered quantale and X be an infinite set. If (X,T ) is a finite complement
space, then (X,T ) is a T1 space, but not a sober space. Thus the stratified Q-cotopological space ωQ(X) is
T1, but not sober.

The correspondence X 7−→ ωQ(X) defines an embedding functor ωQ : Top −→ SQ-CTop. This functor is
one of the well-known Lowen functors in fuzzy topology (see [13]). The following proposition presents
that for a linearly ordered quantale Q, the notion of bounded sobriety for Q-cotopological spaces is a good
extension in the sense of Lowen.

Proposition 3.13. Let Q be a linearly ordered quantale. Then a topological space X is bounded sober if and only if
the stratified Q-cotopological space ωQ(X) is bounded sober.

Proof. Sufficiency. Let K be a bounded irreducible closed set in X. Then 1K is a bounded irreducible closed
set in ωQ(X). In fact, by the proof of Proposition 3.14 in [28], 1K is an irreducible closed set in ωQ(X). It
suffices to prove that 1K is bounded. Since K is bounded, there exists x ∈ X such that K ⊆ cl({x}). Thus
1K ≤ 1cl({x}) = 1x. Since ωQ(X) is bounded sober, there is a unique z ∈ X such that 1K = 1z = 1cl({z}). Hence
K = cl({z}).
Necessity. Let λ be a bounded irreducible closed set in ωQ(X). By the proof of Proposition 3.14 in [28],
we have that λ = 1K for some irreducible closed set K in X. Since λ is bounded, there is x ∈ X such that
λ ≤ 1x = 1cl({x}). Then K ⊆ cl({x}), and thus K is a bounded irreducible closed set in X. Since X is bounded
sober, there is a unique t ∈ X such that K = cl({t}). Hence λ = 1K = 1cl({t}) = 1t.

Example 3.14. Let Q be a linearly ordered quantale and N be the set of natural numbers. The Alexandroff
topology Υ(N) onN is the topology consisting of all its upper subsets. Then (N,Υ(N)) is a bounded sober
space (see Proposition 2 in [31]). By Proposition 3.13, the stratified Q-cotopological spaceωQ(N) is bounded
sober. We can check that a map f : N −→ Q is upper semicontinuous if and only if it is antitone. Define a
map 1 : N −→ Q by 1(x) = 1. Then 1 is an irreducible closed set in ωQ(N), but it is not the closure of 1a for
any a ∈N.



Y. Zhang, K. Wang / Filomat 33:7 (2019), 2095–2106 2103

4. k-Bounded Sober Q-Cotopological Spaces

A topological space X is called k-bounded sober if for every irreducible closed set F whose supremum
exists, there is a unique point x ∈ X such that F = cl({x}). It is weaker than bounded sobriety. k-bounded
sobriety plays an important role in non-Hausdorff topology and domain theory, for instance, for each poset
P, upper topology on P is k-bounded sober. The aim of this section is to generalize k-bounded sobriety to
the setting of Q-cotopological spaces.

Definition 4.1. ([11]) Let X be a Q-preordered set and A ∈ QX. A supremum of A in X is an element sup A
in X such that X(sup A, x) =

∧
y∈X

(A(y)→ X(y, x)) for all x ∈ X.

Definition 4.2. A stratified Q-cotopological space X is called k-bounded sober, if every irreducible closed set
whose supremum exists in X under the specialization Q-preorder is the closure of 1x for a unique x ∈ X.

Remark 4.3. (1) Every k-bounded sober Q-cotopological space is T0.
(2) Every bounded sober Q-cotopological space is clearly k-bounded sober, but the converse may not be

true, please see Example 4.10.

Let X be a Q-preordered set. The stratified Q-cotopology on X generated by {X(−, x) | x ∈ X} is called
the upper Q-cotopology on X, denoted by τν.

Proposition 4.4. For each Q-ordered set X, (X, τν) is k-bounded sober.

Proof. Let F be an irreducible closed set in X with sup F existing. Then subX(F,A) ≤ A(sup F) for all A ∈ τν.
In fact, it suffices to prove subX(F,A) ≤ A(sup F) for the case of A = X(−, x) for all x ∈ X. Obviously,

subX(F,X(−, x)) =
∧
y∈X

(F(y)→ X(y, x)) = X(sup F, x).

Since F is an irreducible closed set in X, we have that F(sup F) ≥ subX(F,F) = 1. Then F = 1sup F. Assume
that there exists b ∈ X such that F = 1b. Then 1sup F = 1b. Since the antisymmetry of the Q-order, sup F = b.
Thus τν is k-bounded sober.

Let X be a stratified Q-cotopological space and KB(X) denote the set of all irreducible closed sets in X
whose suprema exist. Clearly, 1x ∈ KB(X). For each closed set F in X, define a map HF : KB(X) −→ Q by

HF(A) = subX(A,F).

Lemma 4.5. Let (X, τ) be a stratified Q-cotopological space. Then the following statements hold:
(1) HpX (A) = p for all p ∈ Q and A ∈ KB(X);
(2) HF1 ∨HF2 = HF1∨F2 for all F1,F2 ∈ τ;
(3)
∧
j∈J

HF j = H∧
j∈J

F j for all {F j} j∈J ⊆ τ;

(4) Hp→F = p→ HF for all p ∈ Q and all F ∈ τ;
(5) subX(F1,F2) = subKB(X)(HF1 ,HF2 ) for all F1,F2 ∈ τ.

Proof. Similar to the proof of Lemma 3.7.

By the above lemma, {HF | F is a closed set in X} is a stratified Q-cotopology on KB(X). We write KB(X)
for the resulting Q-cotopological space.

Lemma 4.6. Let (X, τ) be a stratified Q-cotopological space and A ∈ KB(X). Then HA = 1A.

Proof. For all B ∈ KB(X), by Proposition 2.7,
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HA(B) = subX(B,A)
=
∧
F∈τ

(subX(A,F)→ subX(B,F))

=
∧
F∈τ

(HF(A)→ HF(B))

= Ω(KB(X))(B,A)
= 1A(B).

This means HA = 1A.

Theorem 4.7. Let X be a stratified Q-cotopological space. Then KB(X) is k-bounded sober.

Proof. Suppose that HF is an irreducible closed set in KB(X), whose supremum exists. Denote this supremum
sup HF by some E ∈ KB(X). By the proof of Theorem 3.8, F is an irreducible closed set in X. Next we shall
prove that sup E is a supremum of F. On one hand, since sup HF = E, for all A ∈ KB(X),

HF(A) ≤ Ω(KB(X))(A,E) ≤ HE(E)→ HE(A) = HE(A).

By Lemma 4.5(5), subX(F,E) = subKB(X)(HF,HE) = 1. Then F(x) ≤ E(x) ≤ Ω(X)(x, sup E) for all x ∈ X, and thus
Ω(X)(sup E, y) ≤

∧
x∈X

(F(x)→ Ω(X)(x, y)). On the other hand, since sup HF = E, for all B in KB(X),

∧
A∈KB(X)

(HF(A)→ Ω(KB(X))(A,B)) = Ω(KB(X))(E,B).

This means
∧

A∈KB(X)
(subX(A,F)→ subX(A,B)) = subX(E,B). Then for all y ∈ X,

∧
x∈X

(F(x)→ Ω(X)(x, y)) =
∧

x∈X
(F(x)→ 1y(x))

= subX(F, 1y)
≤

∧
A∈KB(X)

(subX(A,F)→ subX(A, 1y))

= subX(E, 1y)
=
∧

x∈X
(E(x)→ Ω(X)(x, y))

= Ω(X)(sup E, y).

Thus
∧

x∈X
(F(x)→ Ω(X)(x, y)) = Ω(X)(sup E, y). It follows that sup E is a supremum of F. Therefore F ∈ KB(X).

By Lemma 4.6, HF = 1F. Let B ∈ KB(X) with HF = 1B. Then subX(B,F) = 1F(B) = 1B(B) = 1 and
subX(F,B) = 1B(F) = 1F(F) = 1. Thus B = F.

Proposition 4.8. Let X be a stratified Q-cotopological space. Define

ι : X −→ KB(X)

by ι(x) = 1x. Then ι : X −→ KB(X) is continuous.

Proof. Similar to the proof of Proposition 3.9(1).

The following proposition presents that for a linearly ordered quantale Q, the notion of k-bounded
sobriety for Q-cotopological spaces is a good extension in the sense of Lowen.

Proposition 4.9. Let Q be a linearly ordered quantale. Then a topological space X is k-bounded sober if and only if
the stratified Q-cotopological space ωQ(X) is k-bounded sober.
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Proof. Sufficiency. Let K be an irreducible closed set whose supremum exists under the specialization
preorder of X. By Proposition 3.13, we have that 1K is a bounded irreducible closed set in ωQ(X). Next, we
shall prove that sup 1K =

∨
K. For all y ∈ X,∧

x∈X
(1K(x)→ Ω(ωQ(X))(x, y)) =

∧
x∈K

(1→ Ω(ωQ(X))(x, y))

=
∧
x∈K

Ω(ωQ(X))(x, y)

= Ω(ωQ(X))(
∨

K, y).

Then sup 1K =
∨

K, and thus 1K is an irreducible closed set whose supremum exists in ωQ(X). Since ωQ(X)
is k-bounded sober, there is a unique x ∈ X such that 1K = 1x = 1cl({x}). Hence K = cl({x}).

Necessity. Let λ be an irreducible closed set in ωQ(X), whose supremum exists. By the proof of
Proposition 3.13, we have that λ = 1K for some bounded irreducible closed set K in X. Next, we shall prove
that

∨
K = supλ. Since λ(x) ≤ Ω(ωQ(X))(x, supλ) = 1supλ(x) = 1cl({supλ})(x) for all x ∈ X, λ = 1K ≤ 1supλ =

1cl({supλ}). Then K ⊆ cl({supλ}). Let a be a upper bound of K. Then K ⊆ cl({a}), and thus λ = 1K ≤ 1cl({a}) = 1a.
It follows that supλ ≤ a. Therefore K is an irreducible closed set in X, whose supremum exists. Since X is
k-bounded sober, there is a unique t ∈ X such that K = cl({t}). Hence λ = 1K = 1cl({t}) = 1t.

Example 4.10. Let Q be a linearly ordered quantale and Q be the poset of all rational numbers with the
conventional order. The upper topology ν(Q) on Q is the topology generated by sets of the form X− ↓ x for
x ∈ Q, where ↓ x = {a ∈ Q | a ≤ x}. Then (Q, ν(Q)) is k-bounded sober, but not bounded sober (see Example
4.14 in [32]). By Proposition 3.13 and 4.9, the stratified Q-cotopological space ωQ(Q) is k-bounded sober,
but not bounded sober.

The following diagram indicates the relationships of Hausdorff, T1, T0, sobriety, bounded sobriety, and
k-bounded sobriety in the setting of Q-cotopological spaces.

5. Concluding Remarks

In this paper, we prove that BSobQ-CTop is a full reflective subcategory of SQ-CTop. Let KBSobQ-
CTop denote the category of k-bounded sober Q-cotopological spaces with continuous maps. A natural
question raised here is that whether KBSobQ-CTop is a full reflective subcategory of SQ-CTop. In fact,
in the classical setting, the above corresponding problem is also unsolved, that is, whether the category
KBSob of k-bounded sober spaces is a full reflective subcategory of Top0. In the concluding remarks of
[32], Zhao and Ho asked whether KB(X) (the set of all closed irreducible sets of a T0 space X whose suprema
exist) is the canonical k-bounded sobrification of X in the sense of Keimel and Lawson with respect to the
map x 7−→ cl({x}). Zhao, Lu and Wang (see [30]) constructed a counterexample to illustrate that (KB(X), cl)
is not the canonical k-bounded sobrification of a T0 space X in the sense of Keimel and Lawson. Although
we possess no answer on the above question, we know that (KB(X), ι) is not universal with respect to I,
where I : KBSobQ-CTop−→ SQ-CTop is the inclusion functor.
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