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Abstract. An element a in a Banach algebraA has ps-Drazin inverse if there exists p2 = p ∈ comm2(a) such
that (a − p)k

∈ J(A) for some k ∈ N. LetA be a Banach algebra, and let a, b ∈ A have ps-Drazin inverses. If
a2b = aba and b2a = bab, we prove that

1. ab ∈ A has ps-Drazin inverse.
2. a + b ∈ A has ps-Drazin inverse if and only if 1 + adb ∈ A has ps-Drazin inverse.

As applications, we present various conditions under which a 2 × 2 matrix over a Banach algebra has
ps-Drazin inverse.

1. Introduction

Let A be a Banach algebra with an identity. The commutant of a ∈ A is defined by comm(a) = {x ∈
A | xa = ax}. The double commutant of a ∈ A is defined by comm2(a) = {x ∈ A | xy = yx for all y ∈ comm(a)}.
An element a in a Banach algebra A has g-Drazin inverse (i.e., generalized Drazin inverse) if there exists
b ∈ comm2(a) such that b = bab, a − a2b ∈ Aqnil. The preceding b is unique, if such element exists, and called
the g-Drazin inverse of a and denote b by ad. Also, aπ = 1 − aad is called spectral idempotent of a. As is
known, a ∈ A has g-Drazin inverse if and only if there exists e2 = e ∈ comm2(a) such that a + e ∈ U(A) and
ae ∈ Aqnil. Here, Rqnil = {x | 1 − xr ∈ U(A) for any r ∈ comm(x)}. Following [10], an element a ∈ A has
p-Drazin inverse (i.e., pseudo Drazin inverse) if there exists b ∈ A such that

b = bab, b ∈ comm2(a), ak
− ak+1b ∈ J(A)

for some k ∈N. Evidently, a ∈ A has p-Drazin inverse if and only if there exists e2 = e ∈ comm2(a) such that
a + e ∈ U(A) and (ae)k

∈ J(A) for some k ∈N, if and only if there exists b ∈ A such that

b = bab, b ∈ comm2(a), (a − a2b)k
∈ J(A)

for some k ∈N. Following [4], an element a ∈ A has gs-Drazin inverse if there exists b ∈ A such that

b = bab, b ∈ comm2(a), a − ab ∈ Aqnil.
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These generalized inverses in a Banach algebra have extensively studied from different points of view, e.g.,
[1]-[8], [13] and [14].

Motivating by g-Drazin, p-Drazin and gs-Drazin inverses, we introduce a new kind of generalized
inverses in a Banach algebra. An element a in a Banach algebra A has ps-Drazin inverse if there exists
p2 = p ∈ comm2(a) such that (a − p)k

∈ J(A) for some k ∈ N. As in the proof of [8, Lemma 2.2], we easily
prove that a ∈ A has ps-Drazin inverse if and only if there exists b ∈ A such that

b = bab, b ∈ comm2(a), (a − ab)k
∈ J(A)

for some k ∈N.
The purpose of this paper is to investigate further algebraic properties of ps-Drazin inverses. Let a, b ∈ A

have ps-Drazin inverses. In Section 2, we investigate when the product of a and b has ps-Drazin inverse in
a Banach algebra. If a2b = aba and b2a = bab, we prove that ab ∈ A has ps-Drazin inverse. In Section 3, we
determine when the sum of a and b has ps-Drazin inverse. We prove that a + b ∈ A has ps-Drazin inverse
if and only if 1 + adb ∈ A has ps-Drazin inverse. Finally, in the last section, we present various conditions
under which a 2 × 2 matrix over a Banach algebra has ps-Drazin inverse.

Throughout the paper, all Banach algebras are complex with an identity. We use J(A) and U(A) to
denote the Jacobson radical ofA and the set of all units in A. Apd andAps denote the sets of all elements
having p-Drazin and ps-Drazin inverses in the Banach algebra A, respectively. N stands for the set of all
natural numbers.

2. Multiplicative property

In this section, we investigate multiplicative property of ps-Drazin inverses. We begin with the relation
between ps-Drazin and p-Drazin inverse, which will be used frequently in the sequel.

Theorem 2.1. LetA be a Banach algebra, and let a ∈ A. Then a ∈ A has ps-Drazin inverse if and only if

(1) a ∈ Apd;
(2) (a − a2)k

∈ J(A) for some k ∈N.

Proof. =⇒Write a = e+w with e2 = e ∈ comm2(a),wk
∈ J(A) for some k ∈N. Then a+(1−e) = 1+w ∈ U(A) and

(a(1− e))k = (1− e)wk
∈ J(A). Therefore, a has p-Drazin inverse. Moreover, (a− a2)k = (1− 2e−w)kwk

∈ J(A),
as desired.
⇐= Since a ∈ A has p-Drazin inverse, we can find some b ∈ comm2(a) such that b = bab and (a − a2b)k

∈

J(A). We check that (a − 1 + ab)(b − 1 + ab) = 1 − (a − a2b) ∈ U(A). Hence, a − 1 + ab ∈ U(A). Set e = 1 − ab.
Then e2 = e ∈ comm2(a) and u := a − e ∈ U(A). Hence, a − a2 = (e + u) − (e + u)2 = −u(2e + u − 1). This shows
that a − (1 − e) = −u−1(a − a2). This implies that (a − (1 − e))k

∈ J(A). This completes the proof.

Corollary 2.2. LetA be a Banach algebra, and let a ∈ A. If a ∈ A has ps-Drazin inverse, then a ∈ A has p-Drazin
inverse.

We note that the converse of Corollary 2.2 is not true, in general. Let C be the field of all complex
numbers. Then 2 ∈ C has p-Drazin inverse. But it has no ps-Drazin inverse, as (22

− 2)k = 2k < J(C) for all
k ∈N.

Lemma 2.3. (see [12, Lemma 2.6]) LetA be a Banach algebra with a2b = aba and b2a = bab. Then, the following
hold for any integer k ∈N.

(1) (ab)k = akbk.
(2) (a + b)k =

∑k−1
i=0 Ci

k−1(ak−ibi + bk−iai).

Lemma 2.4. (see [12, Theorem 2.8]) LetA be a Banach algebra and a, b ∈ A have p-Drazin inverse. If a2b = aba
and b2a = bab, then ab has p-Drazin inverse.
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Theorem 2.5. Let A be a Banach algebra, and let a, b ∈ A have ps-Drazin inverses. If a2b = aba and b2a = bab,
then ab ∈ A has ps-Drazin inverse.

Proof. Let a and b have ps-Drazin inverses. Then there exists m,n ∈ N such that (a − a2)m
∈ J(A) and

(b − b2)n
∈ J(A) by Theorem 2.1. Let c = a − a2.

c2b = (a − a2)2b
= (a2

− 2a3 + a4)b
= aba − 2aba2 + aba3

= (a − a2)b(a − a2)
= cbc.

Also, b2c = b2(a − a2) = b2a − b2aa = bab − baba = bab − ba2b = b(a − a2)b = bcb. Thus, for any integer k ≥ 0,
((a − a2)b)k = (a − a2)kbk by Lemma 2.3. Similarly, (a2(b − b2))l = (a2)l(b − b2)l for any integer l ≥ 0. Now, let
x = (a − a2)b and y = a2(b − b2). We show that x2y = xyx.

x2y = (a − a2)b(a − a2)ba2(b − b2)
= (a − a2)(bab − baba)a2(b − b2)
= (a − a2)bab(a2

− a3)(b − b2)
= (a − a2)bab(a2b − a2b2

− a3b + a3b2)
= (a − a2)bab(a2

− a2b)(b − ab)
= (a − a2)bab(a2

− a2b)(1 − a)b
= (a − a2)ba2(b − b2)(a − a2)b
= xyx.

Also,
y2x = a2(b − b2)a2(b − b2)(a − a2)b

= a2(b − b2)a2b(ab − a2b − bab + ba2b)
= a2(b − b2)a2(bab − baba − b2ab + b2aba)
= a2(b − b2)a2(bab − baba − bab2 + b2aba)
= a2(b − b2)a2b(ab − a2b − ab2 + abba)
= a2(b − b2)a2b(ab − a2b − ab2 + abab)
= a2(b − b2)a2b(ab − a2b − ab2 + a2b2)
= a2(b − b2)a2b(1 − a)a(b − b2)
= a2(b − b2)(a − a2)ba2(b − b2)
= yxy.

Hence, (ab − (ab)2)m+n+1 = (x + y)m+n+1 =
∑m+n

i=0 Ci
m+n(xm+n+1−iyi + ym+n+1−ixi) by Lemma 2.3. As we proved,

xk = ((a − a2)b)k = (a − a2)kbk for any integer k ≥ 0 and yl = (a2(b − b2))l = (a2)l(b − b2)l for any integer l ≥ 0.
Also, (a − a2)m

∈ J(A) and (b − b2)n
∈ J(A) for some m,n ∈ N, and so we have (ab − (ab)2)m+n+1

∈ J(A).
Therefore, ab has ps-Drazin inverse by Theorem 2.1 and Lemma 2.4.

Corollary 2.6. Let A be a Banach algebra, and let a, b ∈ A have ps-Drazin inverses. If ab = ba, then ab ∈ A has
ps-Drazin inverse.

Proof. It is clear by Theorem 2.5, since the condition ab = ba implies that a2b = aba and b2a = bab.

3. Additive property

In this section, we concern on the additive properties of ps-Drazin inverses. For the convenience, we
use J#(A) do denote the set of all elements x with xn

∈ J(A) for some n ∈N. We now derive

Lemma 3.1. Let A be a Banach algebra, and let a, b ∈ A have ps-Drazin inverses. If ab = ba = 0, then a + b has
ps-Drazin inverse.
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Proof. In view of [10, Theorem 5.4], a + b has p-Drazin inverse. We easily checks that a + b − (a + b)2 =
(a − a2) + (b − b2) ∈ J#(A). This completes the proof by Theorem 2.1.

Lemma 3.2. LetA be a Banach algebra, and let a, b ∈ J#(A). If a2b = aba and b2a = bab, then a + b ∈ J#(A).

Proof. Write am, bn
∈ J(A) for some m,n ∈ N. According to Lemma 2.3, we see that (a + b)m+n

∈ J(A), as
desired.

Lemma 3.3. LetA be a Banach algebra, and let a, b ∈ A have ps-Drazin inverses. If ab = ba and 1 + adb ∈ A has
ps-Drazin inverse, then a + b ∈ A has ps-Drazin inverse.

Proof. Clearly, (1 + adb) − (1 + adb)2 = −(1 + adb)adb ∈ J#(A) since 1 + adb has ps-Drazin inverse. Hence,
adb+ (ad)2b2

∈ J#(A). Thus, aadb+adb2
∈ J#(A). Also, b−b2

∈ J#(A) since b ∈ Aps. So ad(b−b2) ∈ J#(A) as well.
Therefore, aadb+adb = (aadb+adb2)+ad(b−b2) ∈ J#(A). Then, 2ab = (a2adb+aadb)−(a2ad

−a)b−(aad
−a)b ∈ J#(A).

Consequently, (a + b) − (a + b)2 = (a − a2) + (b − b2) − 2ab ∈ J#(A). Furthermore, a + b has p-Drazin inverse
since 1 + adb has p-Drazin inverse (see [12, Theorem 2.10]). So we have a + b ∈ Aps.

Theorem 3.4. Let A be a Banach algebra, and let a, b ∈ A have ps-Drazin inverses. If a2b = aba and b2a = bab,
then a + b ∈ A has ps-Drazin inverse if and only if 1 + adb ∈ A has ps-Drazin inverse.

Proof. =⇒ Let a + b has ps-Drazin inverses. Write 1 + adb = x + y where x = 1 − aad and y = ad(a + b). Then
x ∈ Aps and xy = 0. Moreover, we see that yx = ad(a + b)(1 − aad) = adb(1 − ada) = (ad)2(ab)(1 − aad) = 0,
as a ∈ comm(ab). WE easily check that (ad)2(a + b) = ad(a + b)ad, (a + b)2ad = (a + b)ad(a + b). Since a has
ps-Drazin inverse, it has p-Drazin inverse and by we can find some k ∈ N such that (a − a2)k

∈ J(A). In
view of [12, Theorem 2.3], ad has p-Drazin inverse. We easily check that ad

− (ad)2 = −(ad)3(a − a2), and so
(ad
− (ad)2)k

∈ J((A)). In light of Theorem 2.1, ad has ps-Drazin inverse. By hypothesis, a + b ∈ Aps, and so
y ∈ Aps. Therefore 1 + adb ∈ Aps by Lemma 3.1.
⇐= Step 1. Clearly, 1 + (a2ad)d(aad)b = 1 + (aaad)d(aadb) = 1 + adaadaadb = 1 + a(ad)2b = 1 + adb ∈ Aps. Also,

(a2ad)(aadb) = (aadb)(a2ad). Since a(aad) = (aad)a and (aad)b = b(aad), it follows by Corollary 2.6 that a2ad and
aadb have ps-Drazin inverses. Hence, we have a2ad + aadb = aad(a + b) ∈ Aps by applying Lemma 3.3 to a2ad

and aadb.
Step 2. Assume that b ∈ J#(A). Then (1 − aad)(a + b) = x + y where x = (a − a2ad) and y = (1 − aad)b. Then
x2y = xyx and y2x = yxy. Also, x = a − a2ad

∈ J#(A) and y = (1 − aad)b ∈ J#(A) since b ∈ J#(A). Hence,
(1 − aad)(a + b) = x + y ∈ J#(A). Choose p = aad. Then

a + b =

(
p(a + b)p 0

(1 − p)(a + b)p (1 − p)(a + b)(1 − p)

)
p
.

Since p(a + b)p = p(a + b) ∈ Aps and (1 − p)(a + b)(1 − p) = (1 − p)(a + b) ∈ Aps, a + b ∈ Aps.

Step 3. Choose p = bbd. Then a =

(
a1 0
∗ a2

)
p

and b =

(
b1 0
∗ b2

)
p

where a1 = pap, a2 = (1 − p)a(1 − p),

b1 = pbp and b2 = (1 − p)b(1 − p). Hence,

a + b =

(
a1 + b1 0
∗ a2 + b2

)
p
.

Obviously, a1, b1 ∈ A
ps and a1b1 = b1a1. As in Step 1, we see that 1 + ad

1b1 ∈ A
ps. Therefore a1 + b1 ∈ A

ps

by Lemma 3.3. As b2a = bab, we see that ba ∈ comm(b), and so bd(ba) = (ba)bd. This implies that a2 =
(1 − bbd)a(1 − bbd) = (a − bbda)(1 − bbd) = a(1 − bbd) = a − a(bbd). It is easy to verify that a2(bbd) = a(bbd)a
and (bbd)2a = (bbd)a(bbd). It follows by Theorem 2.5 that abbd has ps-Drazin inverse. Moreover, we see that
a2(bbd) = (aba)bd = a(bbd)a. We verify that 1 − ada(bbd) = 1 − ad(ab)bd = 1 − (ab)(ab)d has ps-Drazin inverse by
Theorem 2.5. As in the proof of [15, Theorem 3.3], we see that a2 ∈ A

ps. Clearly, b2 ∈ J#(A), a2
2b2 = a2b2a2

and b2
2a2 = b2a2b2. By Step 2, a2 + b2 ∈ A

ps. Consequently, a + b ∈ Aps.
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We see that the condition in Theorem 3.4 is a generalization of the commutativity of a and b. But we
have,

Example 3.5. Let a =

 0 1 0
1 0 0
0 0 0

, b =

 0 1 0
1 0 0
0 1 0

 ∈ M2(Z2). Then a2b = aba, b2a = bab. In this case

a, b, 1 + adb ∈M2(Z2) has ps-Drazin inverse and ab , ba.

4. Splitting in Banach algebras

The goal of this section is to use splitting approach to determine when an element in a Banach algebra
has ps-Drazin inverse. We derive

Lemma 4.1. LetA be a Banach algebra. If a, d ∈ A have ps-Drazin inverses, then
(

a b
0 d

)
∈M2(A) has ps-Drazin

inverse.

Proof. In view of Theorem 2.1, a, d ∈ A have p-Drazin inverse and (a − a2)k, (b − b2)k
∈ J(A) for some k ∈N.

In view of [10, Theorem 5.3],
(

a b
0 d

)
∈ M2(A) has p-Drazin inverse. On the other hand, we have some

z ∈ A such that ( a b
0 d

)
−

(
a b
0 d

)22k

=

(
(a − a2)k z

0 (d − d2)k

)2

=

(
(a − a2)2k (a − a2)kz + z(d − d2)k

0 (d − d2)2k

)2

∈ J(M2(A)).

According to Theorem 2.1, we complete the proof.

Theorem 4.2. Let A be a Banach algebra, and let a, d ∈ A have ps-Drazin inverses. If bc = dc = 0, then(
a b
c d

)
∈M2(A) has ps-Drazin inverse.

Proof. Clearly, we have
(

a b
c d

)
= p + q, where

p =

(
a b
0 d

)
, q =

(
0 0
c 0

)
.

In view of Lemma 4.1, p ∈ M2(A) has ps-Drazin inverse. As q2 = 0, we easily see that q ∈ M2(A) has
ps-Drazin inverse. Moreover,

q2p = 0 =

(
0 0

cbc 0

)
= qpq,

and

p2q =

(
abc + bdc 0

d2c 0

)
= 0 =

(
bca bcb
dca dcb

)
= pqp.

Clearly, qd = 0, and so 1 + qdp = 1 has ps-Drazin inverse. Therefore, p + q ∈ A has ps-Drazin inverse, by
Theorem 3.4. This completes the proof.
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Corollary 4.3. Let A be a Banach algebra, and let a, d ∈ A have ps-Drazin inverses. If bc = 0 and dc = c, then(
a b
c d

)
∈M2(A) has ps-Drazin inverse.

Proof. Since dc = c, −(1 − d)c = 0. So in light of Theorem 4.2, I2 −

(
a b
c d

)
∈ M2(A) has ps-Drazin inverse

since bc = 0 and −(1 − d)c = 0. Thus, we can find an idempotent E ∈ comm2

(
I2 −

(
a b
c d

))
such that

(
I2 −

(
a b
c d

)
− E

)k

∈ J(M2(A)) for some k ∈N,

and so ((
a b
c d

)
− (I2 − E)

)k

∈ J(M2(A)).

Clearly, I2 − E ∈ comm2

((
a b
c d

))
. This completes proof.

Next we consider another splitting of the matrix
(

a b
c d

)
and get the alternative results.

Theorem 4.4. Let A be a Banach algebra, and let a, d ∈ A have ps-Drazin inverses. If bc = cb = 0 and dc = ca,

then
(

a b
c d

)
∈M2(A) has ps-Drazin inverse.

Proof. We see that (
a b
c d

)
= p + q,

where

p =

(
a b
0 d

)
, q =

(
0 0
c 0

)
.

In view of Lemma 4.1, p has ps-Drazin inverse. Since q− q2
∈ J(M2(A)) and q ∈ Apd, q has ps-Drazin inverse

by Theorem 2.1. Clearly, qd = 0, and so 1 + qdp has ps-Drazin inverse. From bc = cb = 0 and dc = ca, we see
that

pq =

(
bc 0
dc 0

)
=

(
0 0
ca cb

)
= qp.

In light of Lemma 3.3, p + q has ps-Drazin inverse, as asserted.

Example 4.5. Let A,B,C be operators, acting on separable Hilbert space l2(N), defined as follows respectively:

A(x1, x2, x3, x4, · · · ) = (x1, x2, x3, x4, · · · ),
B(x1, x2, x3, x4, · · · ) = (x1,−x1, 0, 0, · · · ),
C(x1, x2, x3, x4, · · · ) = (0, x1 + x2, x3, x4, · · · ),
D(x1, x2, x3, x4, · · · ) = (−x1, x2, x3, x4, · · · ).

Then we easily check that BC = CB = 0 and DC = CA. In light of Theorem 4.4, the operator matrix
(

A B
C D

)
has

ps-Drazin inverse. In this case, DC , 0.

Lemma 4.6. Let A be a Banach algebra, and let a ∈ A have ps-Drazin inverse. If e2 = e ∈ comm(a), then ea ∈ A
has ps-Drazin inverse.
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Proof. Since e ∈ Aps, we easily obtain the result by Theorem 2.5.

Let a ∈ A have ps-Drazin inverse. Then it has g-Drazin inverse. We use aπ to denote the spectral
idempotent of a, i.e., aπ = 1 − aad. We now derive

Theorem 4.7. LetA be a Banach algebra, and let a, d ∈ A have ps-Drazin inverses. If bc = cb = 0, ca(1−aπ) = dπdc

and aπab = bd(1 − dπ), then M =

(
a b
c d

)
∈M2(A) has ps-Drazin inverse.

Proof. Let

p =

(
a(1 − aπ) b

0 ddπ

)
, q =

(
aaπ 0
c d(1 − dπ)

)
.

Then M = p + q. In view of Lemma 4.1, p has ps-Drazin inverse. Likewise, q has ps-Drazin inverse. It is
easy to verify that

pq =

(
0 bd(1 − dπ)

ddπc 0

)
=

(
0 aaπb

ca(1 − aπ) 0

)
= qp.

One easily checks that

pd =

(
(a(1 − aπ))d x

0 dddπ

)
=

(
ad x
0 0

)
where x = (ad)2 ∑

∞

n=0(ad)nb(ddπ)n. Hence,

pdq =

(
ad x
0 0

) (
aaπ 0
c d(1 − dπ)

)
=

(
xc xd(1 − dπ)
0 0

)
where xc = (ad)2(b +

∑
∞

n=1(ad)nb(ddπ)n)c = 0 as bc = 0, b(ddπ)nc = 0. Moreover, we have

xd(1 − dπ) = (ad)2(b +
∑
∞

n=1(ad)nb(ddπ)n)d(1 − dπ)
= (ad)2(b + bd(1 − dπ))
= (ad)2(b + aπab)
= (ad)2b

and so pdq =

(
0 (ad)2b
0 0

)
. Thus, 1 + pdq is invertible. So, it has p-Drazin inverse. Further, we have

(1 + pdq) − (1 + pdq)2 = −pdq(1 + pdq)

=

(
0 −(ad)2b
0 0

) (
1 (ad)2b
0 1

)
=

(
0 −(ad)2b
0 0

)
= ∈ J#(A).

In light of Theorem 2.1, 1 + pdq ∈ Aps. Therefore, we complete the proof by Theorem 3.4.

Finally, we concern on the ps-Drazin inverse for a operator matrix M has ps-Drazin inverse. Here,

M =

(
A B
C D

)
(1)

where A,D ∈ L(X) has ps-Drazin inverses and X is a complex Banach space. Then M is a bounded linear
operator on X ⊕ X.
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Lemma 4.8. LetA be a Banach algebra, and let A ∈ Mm×n(A),B ∈ Mn×m(A) and k ∈ N. Then AB ∈ Mm(A) has
ps-Drazin inverse if and only if BA ∈Mn(A) has ps-Drazin inverse.

Proof. Suppose that AB ∈ Mm(A) has ps-Drazin inverse. Then AB ∈ Mm(A) has p-Drazin inverse and
(AB − (AB)2)k

∈Mm(J(A)). In light of [10, Theorem 3.6], BA has p-Drazin inverse. One easily checks that

(BA − (BA)2)k+1 = B(AB − (AB)2)k(A − ABA) ∈Mn(J(A)).

According to Theorem 2.1, BA ∈Mn(A) has ps-Drazin inverse, as asserted.

Lemma 4.9. LetA be a Banach algebra, and let a, b ∈ A. If a, b have ps-Drazin inverses and ab = 0, then a + b ∈ A
has ps-Drazin inverse.

Proof. Let A = (1, b) and B =

(
a
1

)
. By the similar technique to the Lemma 4.1, BA =

(
a ab
1 b

)
has ps-Drazin

inverse. By virtue of Lemma 4.8, AB = a + b ∈ A has ps-Drazin inverse, as asserted.

Theorem 4.10. Let A ∈ L(X) has ps-Drazin inverse, D ∈ L(X) and M be given by (4.1). Let W = AAd + AdBCAd.
If AW has ps-Drazin inverse,

AπBC = 0,D = CAdB,

then M has ps-Drazin inverse.

Proof. We easily see that

M =

(
A B
C CAdB

)
= P + Q,

where

P =

(
A AAdB
C CAdB

)
,Q =

(
0 AπB
0 0

)
.

By hypothesis, we verify that QP = 0. Clearly, Q has ps-Drazin inverse. Furthermore, we have

P = P1 + P2, P1 =

(
A2Ad AAdB
CAAd CAdB

)
, P2 =

(
AAπ 0
CAπ 0

)
and P2P1 = 0. By virtue of Theorem 4.2, P2 has ps-Drazin inverse. Obviously, we have

P1 =

(
AAd

CAd

) (
A AAdB

)
.

By hypothesis, we see that (
A AAdB

) ( AAd

CAd

)
= AW

has ps-Drazin inverse. In light of Lemma 4.8, P1 has ps-Drazin inverse. Thus, P has ps-Drazin inverse by
Lemma 4.9. According to Lemma 4.9, M has ps-Drazin inverse. Therefore, we complete the proof.
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