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Available at: http://www.pmf.ni.ac.rs/filomat

On the Essential Numerical Spectrum of Operators on Banach Spaces
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Abstract. The purpose of this paper is to define and develop a new notion of the essential numerical
spectrum σen(.) of an operator on a Banach space X and to study its properties. Our definition is closely
related to the essential numerical range We(.).

1. Introduction

In 1918, O. Toeplitz [23] and F. Hausdorff [14] introduced the notion of the numerical range of a matrix A
acting on a finite dimensional space X = Cn. Afterward, J. R. Giles and G. Josef [13] generalized this notion
to operators on Hilbert spaces. G. Lummer in 1961 [17] and F. L. Bauer in 1962 [6] succeeded to generalize
these definitions to a more general setting of unbounded operators on a Banach space X as:

W(A) := {〈Ax, x′〉 : x ∈ D(A), x′ ∈ X′, ‖x‖ = ‖x′‖ = 1 = 〈x, x′〉},

where X′ is the dual of X. W(A) is called the spatial numerical range.
Due to the lack of an inner product, the numerical range of an operator on a Banach space loses some
properties. Using a semigroup approach, M. Adler, W. Dada and A. Radl [1] [10], introduced a new
definition, called the numerical spectrum σn(A), for a closed and densely defined linear operator A on a
Banach space X as:
σn(A) = C\ρn(A), where ρn(A) =

⋃
(θ,ω)∈M

Hθ,ω, Hθ,ω := {eiθz : Rez > ω} and

M := {(θ,ω) ∈ [0, 2π) ×R :Hθ,ω ⊂ ρ(A) and ‖R(λ,A)‖ ≤
1

dist(λ, ∂Hθ,ω)
; ∀λ ∈ Hθ,ω}.

The authors succeeded to prove that σn(A) remains unitary invariant set and satisfies some properties
similar to that of the case of Hilbert space.
The definition of numerical spectrum introduced in [1] is closely related to the numerical range W(A), since
in the case of bounded operator on a Hilbert space we have σn(A) = cl(W(A)) and in the case of bounded
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operator on a Banach space σn(A) = cl(coW(A)), where cl denotes the closer and co denotes the convex hull.

One of the most important development of the numerical range is the study of the essential numerical
range. This notion appeared first in 1968, by J. P. Williams and J. G. Stampfli [20] for a bounded operator A
acting on a Hilbert space H as:

We(A) =
⋂

K∈K(H)

cl(W(A + K)),

where K(H) denotes the ideal of compact operators on H.
The essential numerical range of a bounded operator on a Hilbert space is a non-empty, closed, convex set.
This set is invariant under unitary equivalence and has some properties such as:

1. We(A + K) = We(A), for all K ∈ K(X).
2. We(A′) = We(A).
3. If a, b ∈ C, We(aA + bI) = aWe(A) + b.
4. If U is a bounded unitary operator on H, then We(UAU′) = We(A).
5. We(I) = {1}, in the case of infinite dimensional Hilbert space.
6. We(A) is contained in the close disk of radius ‖π(A)‖ centred around the origin, where π(A) : B(H)→

B(H)/K(H) is the canonical quotient map, and B(H) is the Banach space of all bounded linear operators
on H.

For more details on the essential numerical range on a Hilbert space, we may refer to [3, 12, 22]. An essential
version of the algebraic numerical range of a bounded operator on a Banach space has been started in [7]
and recently, using the concept of measure of non-compactness, M. Barraa and V. Müller [5] has succeeded
to characterize this set for bounded operators. However, in the works already done, the essential numerical
range of unbounded operators on a Banach space is not considered, also some properties are not covered
for an unbounded operator on a Banach space.

Our goal, in this paper, is to combine the numerical spectrum of an unbounded operator on a Banach
space and the essential numerical range to obtain a new notion, called the essential numerical spectrum
σen(A) of an unbounded operator A on a Banach space X. By this definition, we generalize the ones existing
in the literature and we cover some properties. More precisely, the essential numerical spectrum is a convex
set, contains the Schechter essential spectrum, isometric invariant and satisfies all the properties 1−5 similar
to the Hilbert space case.

We recall that a scalar λ belongs to the Schechter essential spectrum σe(A) of a closed operator A if A−λ
is not Fredholm with index 0. Also we have σe(A) =

⋂
K∈K(X)

σ(A + K). For more details, we refer the reader to

[19].
An obvious consequence is that the Schechter essential spectrum of a compact operator K on infinite
dimensional Banach space is reduced to {0}, the converse is not always true.
However, we have this equivalence in the case of Hilbert space for the essential numerical range. Using the
new concept of essential numerical spectrum, we prove that this equivalence remains valid in the case of
infinite dimensional Banach space. More precisely, we prove that, operators of the form A = λ+K, K ∈ K(X)
can be identified via σen(A) = {λ}.

Furthermore, we introduce a new notion of essential numerical growth bound and we give some prop-
erties.
If A is a bounded operator, we prove that the essential numerical spectral bound are related to the essential
numerical radius.

The paper is organized as follows. In Section 2, we introduce the new concept of essential numerical
spectrum and develop its properties. In Section 3, we study the essential numerical growth bound and
the essential numerical spectral bound. In the last Section, we give an example of the essential numerical
spectrum.
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2. Essential numerical spectrum

At the beginning of this section, we introduce some notation and preliminary results which will be used
throughout this paper.
For a closed and densely defined linear operator (A,D(A)) on a Banach space X, ρ(A) denotes the resolvent set
and σ(A) the spectrum of A. For some fixed θ ∈ [0, 2π) the rotated operator Aθ := e−iθA with D(Aθ) = D(A).
If Aθ generates a C0-semigroup, we denote it by (Tθ(t))t≥0.
The rotated half plane of Cω := {λ : Reλ > ω}, w ∈ R, by an angle θ will be denoted by

Hθ,ω := eiθCω = {eiθλ : Reλ > ω}.

We introduce the numerical resolvent set and the numerical spectrum of a given operator.

Definition 2.1. [1] Let (A,D(A)) be a closed and densely defined linear operator on a Banach space X.
Then z ∈ C belongs to the numerical resolvent set ρn(A) of A if there exists an open half plane Hθ,ω in C such that

z ∈ Hθ,ω ⊆ ρ(A) and ‖R(λ,A)‖ ≤
1

d(λ, ∂Hθ,ω)
, ∀λ ∈ H, where d(λ, ∂Hθ,ω) is the distance between λ and the

boundary of Hθ,ω.

The complementary set σn(A) := C\ρn(A) is called the numerical spectrum of A.

This definition of numerical spectrum is closely related to the numerical range W(A) of A. By this definition,
the authors in [1] and [10] proved that for a bounded operators A σn(A) = cl(W(A)) in the case of Hilbert
space and σn(A) = cl(co(W(A)) in the case of Banach space. Also they retrieved some properties of the
numerical range.
For the reader’s convenience we recall the following necessary properties:

Properties 2.2. [1, 10]
i) σn(A) is closed, convex set and it contains the spectrum σ(A).

ii) σn(αA + β) = ασn(A) + β for all complex numbers α and β.

iii) σn(A) = σn(U−1AU) for all isometric isomorphisms U on X.

iv) σn(A) = σn(A′), where A′ is the adjoint of A, acting on a reflexive Banach space.

The authors in [1] characterize the numerical spectrum by the notion of C0-semigroup.

Proposition 2.3. Let (A,D(A)) be a closed and densely defined linear operator on a Banach space X. For z ∈ C the
following assertions are equivalent.

1. z ∈ ρn(A).
2. There exists θ ∈ [0, 2π) and some ω ∈ R such that z ∈ Hθ,ω and Aθ := e−iθA generates a ω-contractive

C0-semigroup (Tθ(t))t≥0.

Now, we present a new concept, called the ”essential numerical spectrum” of a linear operator on a
Banach space.

Definition 2.4. Let (A,D(A)) be a closed and densely defined linear operator on a Banach space X. The essential
numerical spectrum σen(A) of A is defined as

σen(A) =
⋂

K∈K(X)

σn(A + K),

where K(X) is the ideal of all compact operators on X.
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Remark 2.5. 1. As a first observation, we note that σen(A) is an intersection of closed convex sets, hence it is
closed and convex.

2. Since σ(A) ⊂ σn(A), then σe(A) ⊂ σen(A).
3. If A is a bounded linear operator on a separable Hilbert space, then there exists a compact operator K ∈ K(X)

such that σen(A) = σn(A + K).
Indeed, since σn(A) = cl(W(A)) and there exists a compact operator K ∈ K(X) such that We(A) = cl(W(A +
K))(See [8]), we have

σen(A) = We(A) = cl(W(A + K)) = σn(A + K).

4. If A is a bounded linear operator on a Banach space X, we have σn(A) = cl(co(W(A))), then σen(A) coincides
with the essential algebraic numerical range

Ve(A) =
⋂

K∈K(X)

cl(co(W(A + K)))

introduced in [7].
In particular, in the case where X = lp, 1 ≤ p < ∞ and the essential algebraic numerical range of A has no
interior points, there exists K ∈ K(X) such that σen(A) = σn(A + K).
Indeed, since there exists K ∈ K(X) such that Ve(A) = cl(coW((A + K)) (See [2],[8] for 1 < p < ∞ and [16] for
p = 1)

σen(A) = co(We(A)) = cl(co(W(A + K))) = σn(A + K).

Using Properties 2.2, we can easily prove the following results.

Proposition 2.6. Let (A,D(A)) be a closed and densely defined linear operator on a Banach space X, we have the
following assertions.

1. σen(A + K) = σen(A), for all K ∈ K(X).
2. If X is a reflexive Banach space, then σen(A) = σen(A′).
3. σen(A) = σen(U−1AU) for all isometric isomorphisms U on X.
4. σen(αA + β) = ασen(A) + β for all complex numbers α and β.

In the sequel, we consider X an infinite-dimensional Banach space. We introduce the definition of the
set Ne(.) for an unbounded operator which is already studied by M. Barraa and V. Müller in [5] in the case
of a bounded linear operator on a Banach space.

Definition 2.7. Let (A,D(A)) be a linear operator acting on X, we denote by Ne(A) the set of all complex numbers λ
with the property that there are nets (xα) ⊂ D(A), (x′α) ⊂ X′ such that

‖xα‖ = ‖x′α‖ = 〈xα, x′α〉 = 1 for all α,

xα → 0 weakly and 〈Axα, x′α〉 → λ.

The following theorem relates our essential numerical spectrum σen(.) to the set Ne(.).

Theorem 2.8. Let (A,D(A)) be a closed and densely defined linear operator on a Banach space X. Then we have

cl(co{Ne(A)}) ⊂ σen(A).

Proof. For λ ∈ co{Ne(A)}, we write λ as

λ =

p∑
i=1

βiλi, where 0 ≤ βi ≤ 1; i = 1, ..., p;
p∑

i=1

βi = 1 and λi ∈ Ne(A).

For all i = 1, .., p, there exists nets (xiα ) ⊂ D(A), (x′iα ) ⊂ X′ such that
‖xiα‖ = ‖x′iα‖ = 〈xiα , x′iα〉 = 1, xiα → 0 weakly and 〈Axiα , x′iα〉 → λi.
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Let K ∈ K(X), we consider a half plan Hθ,ω such that σn(A + K) ⊂ C \Hθ,ω and e−iθ(A + K) is the generator of
a ω-contractive C0-semigroups. By the Hille-Yosida and Lummer-Phillips Theorems [11], we have

Re e−iθ
〈(A + K)x, x′〉 ≤ w

for all x ∈ D(A), x′ ∈ X′ such that ‖x‖ = ‖x′‖ = 〈x, x′〉 = 1.
Hence

Re e−iθλ = Re e−iθ
p∑

i=1

βiλi

= Re e−iθ
p∑

i=1

βi lim
α→+∞

〈Axiα , x
′

iα〉

=

p∑
i=1

βi( lim
α→+∞

Re e−iθ
〈(A + K)xiα , x

′

iα〉 − lim
α→+∞

Re e−iθ
〈Kxiα , x

′

iα〉).

Since K is compact and xiα → 0 weakly, then lim
α→+∞

〈Kxiα , x
′

iα〉 = 0. Therefore

Re e−iθλ ≤

p∑
i=1

βiω = ω.

This implies that λ ∈ σn(A + K), for all K ∈ K(X). Hence cl(co{Ne(A)}) ⊂ σen(A), since σen(A) is closed.

In the following result, we give a particular bound for the essential numerical spectrum of a bounded
operator.

Proposition 2.9. Let A be a bounded linear operator on a Banach space X. Then we have

σen(A) ⊂ {λ ∈ C : |λ| ≤ ‖A‖e}

where ‖A‖e = inf
K∈K(X)

‖A + K‖.

Proof. Let λ ∈ σen(A) =
⋂

K∈K(X)

σn(A + K), then it follows from Proposition 2.4 in [1] that for all K ∈ K(X),

|λ| ≤ ‖A + K‖. Hence
|λ| ≤ inf

K∈K(X)
‖A + K‖ = ‖A‖e.

It is well known that, if K is a compact operator on an infinite dimensional Banach space, then σe(K) = {0}.
But the converse is not true. In the following, we will use the notion of the essential numerical spectrum to
characterize a compact operator. For this, we introduce the measure of non-compactness (see [18], [15] or
[5]).

Definition 2.10. Let A be a bounded linear operator on a Banach space X. We define the seminorm ‖.‖µ in B(X),
called measure of non-compactness, as:

‖A‖µ = inf { ‖A|M‖ : M ⊂ X a subspace of finite codimension}.

We list some useful properties of the measure of non-compactness.

Lemma 2.11. Let A be a bounded linear operator on Banach space X, then we have

1. ‖A‖µ = 0 if and only if A is a compact.
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2. ‖A‖µ is an algebra seminorm in B(X), i.e., for all T,S ∈ B(X) and α ∈ C, we have

‖T + S‖µ ≤ ‖T‖µ + ‖S‖µ
‖TS‖µ ≤ ‖T‖µ.‖S‖µ
‖αT‖µ = |α|‖T‖µ.

In the next Theorem, by using the notion of essential numerical spectrum and the measure of non-
compactness, we give a characterization of compact operator. This result is a generalization of the result of
J. H. Anderson and J. G. Stampfli [3] in the case of Hilbert space and already proved in [7].

Theorem 2.12. Let K be a bounded linear operator on an infinite dimensional Banach space X, then σen(K) = {0} if
and only if K is compact.

Proof. Let K ∈ K(X), it follows from Proposition 2.9 that σen(K) ⊂ {0}. On the other hand, since the essential
spectrum of a compact operator in an infinite dimensional space is reduced to {0}, and σe(K) ⊂ σen(K), we
deduce that σen(K) = {0}.
For the converse, we consider K ∈ B(X) such that σen(K) = {0}, then by Theorem 2.8 we have cl(co{Ne(K)}) ⊂
{0}.
It follows from [5] that cl(co{Ne(K)}) , ∅ and e−1

‖K‖µ ≤ max{|λ| : λ ∈ co{Ne(K)}} ≤ ‖K‖µ. This implies
‖K‖µ = 0. Therefore K ∈ K(X).

Corollary 2.13. Let A be a bounded operator on a infinite dimensional Banach space X.
σen(A) = {λ} if and only if A = λI + K where K is compact.

Proof. The result follows immediately from Theorem 2.12 and Proposition 2.6.

3. Essential numerical growth bound, Essential numerical spectral bound

In this section, in analogy to the essential growth bound, the essential spectral bound and the essential
radius, we define the essential numerical growth boundωθn,e(.), the essential numerical spectral bound sθn,e(.)
and we discuss their properties.
It is well known that if A is generator of a C0-semigroup (T(t))t≥0, its essential growth bound ωe(.) is defined
as

ωe(A) = inf{ω ∈ R : ∃M such that ‖T(t)‖µ ≤Metω, for all t ≥ 0}.

In [1], the authors defined similar constants related to the numerical spectrum as follows: the numerical
growth bound of Aθ is

ωθn(A) := inf{ω ∈ R; ‖Tθ(t)‖ ≤ etω, f or all t ≥ 0}.

We combine the essential growth bound and the numerical growth bound to define the essential nu-
merical growth bound as follows:

Definition 3.1. Let (A,D(A)) be a closed and densely defined linear operator on a Banach space X. For θ ∈ [0, 2π[,
we consider Aθ := e−iθA and, in case it exists, the corresponding semigroup (Tθ(t))t≥0. Then we define the essential
numerical growth bound of Aθ as:

ωθn,e(A) := inf{ω ∈ R such that ‖Tθ(t)‖µ ≤ etω, for all t ≥ 0},

where we set inf ∅ = +∞.

With the above alternate definition of the essential growth bound, we obtain the following results:

Proposition 3.2. 1. In contrast to the essential growth bound, the essential numerical growth bound of a closed
densely defined linear operator A, if not +∞, is attained, i.e.

ωθn,e(A) = min{ω ∈ R such that ‖Tθ(t)‖µ ≤ etω, for all t ≥ 0}

and therefore ‖Tθ(t)‖µ ≤ etωθn,e(A), for all t ≥ 0.
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2. ωe(Aθ) ≤ ωθn,e(A), ∀θ ∈ [0, 2π).
3. ωθn,e(A + K) = ωθn,e(A), ∀K ∈ K(X), ∀θ ∈ [0, 2π)

Proof. 1. Let (ωp)p≥0 be a decreasing sequence with ωp → ωθn,e(A) as p→ +∞.
Then we have

‖Tθ(t)‖µ ≤ etωp , for all p ≥ 0, t ≥ 0.

Hence as p→ +∞, ‖Tθ(t)‖µ ≤ etωθn,e(A), ∀t ≥ 0.
2. The claim follows immediately from the following inclusion since

{ω ∈ R : ‖Tθ(t)‖µ ≤ etω, ∀ t ≥ 0} ⊂ {ω ∈ R : ∃Mω| ‖Tθ(t)‖µ ≤Mωetω, ∀ t ≥ 0}.

3. It is well known that if Aθ generates a C0-semigroup (Tθ(t))t≥0, then the perturbed operator (A + K)θ
generates a C0-semigroup given by:

TA+K,θ(t) = Tθ(t) +

∫ t

0
Tθ(s)KTA+K,θ(t − s)ds, t ≥ 0.

So, ‖Tθ(t)‖µ = ‖TA+K,θ(t)‖µ ≤ etω, this implies that ωθn,e(A + K) = ωθn,e(A).

We recall that the essential growth bound is also defined by

ωe(Aθ) = inf
t>0

1
t

log ‖Tθ(t)‖µ = lim
t→∞

1
t

log ‖Tθ(t)‖µ,

(see [4] or [9]). Analogously, we prove the following results for the essential numerical growth bound.

Proposition 3.3. Let (A,D(A)) be a closed and densely defined linear operator on a Banach space X and (Tθ(t))t≥0
be the semigroup generated by Aθ for θ ∈ [0, 2π). Then

ωθn,e(A) =(1) sup
t>0

1
t

log ‖Tθ(t)‖µ =(2) lim
t→0

1
t

log ‖Tθ(t)‖µ.

Proof. To show (1), we note that it follows from Proposition 3.2, that ‖Tθ(t)‖µ ≤ etωθn,e(A) for all t ≥ 0. Thus

sup
t>0

1
t

log ‖Tθ(t)‖µ ≤ ωθn,e(A), ∀ θ ∈ [0, 2π).

On the other hand, assume that ν = sup
t>0

1
t

log ‖Tθ(t)‖µ < ωθn,e(A) and take φ ∈ (ν, ωθn,e(A)), then, for all t ≥ 0,

we have

1
t

log ‖Tθ(t)‖µ ≤ φ. (1)

Since φ < ωθn,e(A), there exists t > 0 such that ‖Tθ(t)‖µ > etφ, therefore

1
t

log ‖Tθ(t)‖µ > φ,

and this contradicts inequality (1).
To prove equality (2), we will assume, without loss of generality, that ωθn,e(A) = 0, i.e., ‖Tθ(t)‖µ ≤ 1 for all
t ≥ 0. Since ‖.‖µ is an algebra seminorm, then the map t 7→ ‖Tθ(t)‖µ is decreasing. Hence,

sup
t>0

1
t

log ‖Tθ(t)‖µ = lim
t→0

1
t

log ‖Tθ(t)‖µ.
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Analogously to the essential spectral bound, we introduce the essential numerical spectral bound
associated to σen(.).

Definition 3.4. For a closed and densely defined linear operator (A,D(A)) on a Banach space X and θ ∈ [0, 2π), we
define the essential numerical spectral bound of A as

sθn,e(A) := sup{Reλ; eiθλ ∈ σen(A)}.

Note that sθn,e(A) can be any real number including −∞ and +∞.
In the case of bounded operator, we consider the essential numerical radius of A

rn,e(A) := sup{|λ|; λ ∈ σen(A)}.

Proposition 3.5. Let A be a bounded linear operator on a Banach space X. Then rn,e(A) = sup
θ∈[0,2π[

sθn,e(A)

Proof. ” ≤ ” Let λ ∈ σen(A), there exist θ0 ∈ [0, 2π[ and r > 0 such that λ = reiθ0 . We have r ∈ {Reλ; eiθ0λ ∈
σen(A)} and |λ| = r ≤ sθ0

n,e(A) ≤ sup
θ∈[0,2π[

sθn,e(A). Then rn,e(A) ≤ sup
θ∈[0,2π[

sθn,e(A).

” ≥ ” For all θ ∈ [0, 2π[ and for all λ such that eiθλ ∈ σen(A), we have
Reλ ≤ |λ| ≤ rn,e(A). Then for all θ ∈ [0, 2π[, sθn,e(A) ≤ rn,e(A). Hence

sup
θ∈[0,2π[

sθn,e(A) ≤ rn,e(A).

4. Example

Let Ω be a locally compact space, we consider the Banach space X = C0(Ω), where

C0(Ω) := { f ∈C(Ω) : ∀ε>0 there exists a compact Kε ⊂ Ω such that | f (s)|<ε,∀s ∈ Ω\Kε}.

Let ϕ : Ω→ C a continuous function verifying the following hypothesis

(H) : ϕ−1({λ}) is a countable set, ∀λ ∈ ϕ(Ω).

We consider the multiplication operator

Mϕ f = ϕ f , for all f ∈ D(Mϕ) = { f ∈ X : ϕ f ∈ X}.

It is well known that the operator (Mϕ,D(Mϕ)) is a closed and densely defined linear operator and σ(Mϕ) =
cl(ϕ(Ω)) (see [11]).
In the following proposition, we describe the essential numerical spectrum of Mϕ.

Proposition 4.1.
σen(Mϕ) = cl(co(σe(Mϕ)))

Proof.
As a first step, since σ(Mϕ) = σp(Mϕ) ∪ σe(Mϕ), we study the point spectrum.
Let λ ∈ σp(Mϕ) ⊂ σ(Mϕ) = cl(ϕ(Ω)), then there exists f ∈ X, f , 0̃ such that Mϕ f = λ f .
Hence (ϕ(x) − λ) f (x) = 0 for all x ∈ Ω.
Since ϕ satisfy (H) and f is a continuous function in Ω, we obtain f = 0̃, thus contradict the definition of f .
We at once deduce that σp(Mϕ) = ∅ and σe(Mϕ) = σ(Mϕ) = cl(ϕ(Ω)).
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In the second step, we characterize the essential numerical spectrum.
In [1], Adler et al. prove that σn(Mϕ) = cl(coϕ(Ω)), then we have the following inclusion

cl(ϕ(Ω)) = σe(Mϕ) ⊂ σen(Mϕ) ⊂ σn(Mϕ) = cl(coϕ(Ω)).

Since σen(Mϕ) is a convex set, then we have

σen(Mϕ) = cl(coϕ(Ω)) = σn(Mϕ).

Acknowledgements: The authors are grateful to Prof. R. Nagel and W. Dada for their precious support
and the given references.
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