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Some Results on Dual Third-Order Jacobsthal Quaternions
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Abstract. Dual Fibonacci and dual Lucas numbers are defined with dual Fibonacci and Lucas quaternions
in Nurkan and Güven [14]. In this study, we define the dual third-order Jacobsthal quaternion and the dual
third-order Jacobsthal-Lucas quaternion. We derive the relations between the dual third-order Jacobsthal
quaternion and dual third-order Jacobsthal-Lucas quaternion which connected the third-order Jacobsthal
and third-order Jacobsthal-Lucas numbers. In addition, we give the generating functions, the Binet and
Cassini formulas for these new types of quaternions.

1. Introduction

A. F. Horadam [11] defined the Jacobsthal numbers Jn by the recurrence relation

J0 = 0, J1 = 1, Jn+1 = Jn + 2Jn−1, n ≥ 1. (1)

Another important sequence is the Jacobsthal-Lucas sequence. This sequence is defined by the recur-
rence relation

j0 = 2, j1 = 1, jn+1 = jn + 2 jn−1, n ≥ 1. (2)

The Jacobsthal numbers have many interesting properties and applications in many fields of science
(see, e.g., [1]). In [5] the Jacobsthal recurrence relation is extended to higher order recurrence relations and
the basic list of identities provided by A. F. Horadam [11] is expanded and extended to several identities
for some of the higher order cases. In particular, the third-order Jacobsthal numbers J(3)

n and the third-order
Jacobsthal-Lucas numbers j(3)

n are defined by

J(3)
n+3 = J(3)

n+2 + J(3)
n+1 + 2J(3)

n , J(3)
0 = 0, J(3)

1 = J(3)
2 = 1, n ≥ 0, (3)

and

j(3)
n+3 = j(3)

n+2 + j(3)
n+1 + 2 j(3)

n , j(3)
0 = 2, j(3)

1 = 1, j(3)
2 = 5, n ≥ 0, (4)
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respectively. Using standard techniques for solving recurrence relations, the auxiliary equation, and its
roots are given by

x3
− x2
− x − 2 = 0; x = 2, and x =

−1 ± i
√

3
2

.

Note that the latter two are the complex conjugate cube roots of unity. Call them ω1 and ω2, respectively.
Thus the Binet formulas can be written as

J(3)
n =

2
7
· 2n
−

(
3 + 2i

√
3

21

)
ωn

1 −

(
3 − 2i

√
3

21

)
ωn

2 (5)

and

j(3)
n =

8
7
· 2n +

(
3 + 2i

√
3

7

)
ωn

1 +

(
3 − 2i

√
3

7

)
ωn

2 , (6)

respectively.
On the other hand, Horadam [9] introduced the n-th Fibonacci and the n-th Lucas quaternion as follow:

Qn = Fn + iFn+1 + jFn+2 + kFn+3, (7)

Kn = Ln + iLn+1 + jLn+2 + kLn+3, (8)

respectively. Here Fn and Ln are the n-th Fibonacci and Lucas numbers, respectively. Furthermore, the basis
i, j, k satisface the following rules:

i2 = j2 = k2 = −1, i jk = −1. (9)

Note that the rules (9) imply i j = − ji = k, jk = −kj = i and ki = −ik = j. In general, a quaternion is a
hyper-complex number and is defined by q = q0 + iq1 + jq2 + kq3, where i, j, k are as in (9). Note that we can
write q = q0 + u where u = iq1 + jq2 + kq3. The conjugate of the quaternion q is denoted by q = q0 − u. The
norm of a quaternion q is defined by Nr(q) = qq = q2

0 + q2
1 + q2

2 + q2
3.

Many interesting properties of Fibonacci and Lucas quaternions can be found in [7, 10]. In [8], Halici
investigated complex Fibonacci quaternions. In [10] Horadam mentioned the possibility of introducing Pell
quaternions and generalized Pell quaternions. In [15], the authors defined the Jacobsthal quaternions and
the Jacobsthal-Lucas quaternions. In [3], we defined the third-order Jacobsthal quaternion and third-order
Jacobsthal-Lucas quaternion. Furthermore, we investigated some of their identities. In this paper we need
some of them.

1
3

( jQ(3)
n − 4 jQ(3)

n−2) =


2 − i − j + 2k if n ≡ 0 (mod 3)
−1 − i + 2 j − k if n ≡ 1 (mod 3)
−1 + 2i − j − k if n ≡ 2 (mod 3)

, (10)

3JQ(3)
n + jQ(3)

n = 2n+1(1 + 2i + 4 j + 8k), (11)

jQ(3)
n − JQ(3)

n+2 =


1 − i + k if n ≡ 0 (mod 3)
−1 + j − k if n ≡ 1 (mod 3)

i − j if n ≡ 2 (mod 3)
, (12)

n∑
s=0

jQ(3)
s =


jQ(3)

n+1 + (1 − 4i − 5 j − 7k) if n ≡ 0 (mod 3)
jQ(3)

n+1 − 2(1 + 2i + j + 5k) if n ≡ 1 (mod 3)
jQ(3)

n+1 − (2 + i + 5 j + 10k) if n ≡ 2 (mod 3)
, (13)

jQ(3)
n − 4JQ(3)

n =


2 − 3i + j + 2k if n ≡ 0 (mod 3)
−3 + i + 2 j − 3k if n ≡ 1 (mod 3)
1 + 2i − 3 j + k if n ≡ 2 (mod 3)

, (14)
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jQ(3)
n+1 + jQ(3)

n = 3JQ(3)
n+2 (15)

and

N(JQ(3)
n ) =

1
49


340 · 22n

− 64 · 2n + 18 if n ≡ 0 (mod 3)
340 · 22n + 68 · 2n + 23 if n ≡ 1 (mod 3)
340 · 22n

− 4 · 2n + 15 if n ≡ 2 (mod 3)
. (16)

Here JQ(3)
n and jQ(3)

n are the n-th third-order Jacobsthal quaternion and the n-th third-order Jacobsthal-Lucas
quaternion, respectively.

Our main purpose in this paper is on the dual third-order Jacobsthal quaternions as an applied algebra. It
is arranged as follows. In the next section we introduce dual third-order Jacobsthal quaternions and we give
a brief survey of the basic properties of these quaternions. In the final section we give our results, making
some comments on the application of dual quaternions to the dual third-order Jacobsthal quaternions in
general quaternion algebra.

2. Dual Third-Order Jacobsthal Quaternions

The dual number invented by Clifford [4] is of the form D = a + εb, where a, b ∈ R and ε is known as the
dual unit and it has the following properties:

ε , 0, 0ε = ε0 = 0, 1ε = ε1 = ε, ε2 = 0.

The real numbers a and b are called the real and dual parts of the number D, respectively. We notice that
the dual numbers are extension of the real numbers. The set of dual numbers can be denoted byD orR[ε].
The set of dual numbers is a commutative ring having the εb as divisors of zero, is not a field.

LetH = R[i, j, k] the algebra of quaternions. A dual quaternion h can be defined in a similar way to the
dual numbers, that is h = p + εq, where p, q ∈ H. The addition, multiplication and product with a scalar α
can be defined as

h1 + h2 = (p1 + εq1) + (p2 + εq2) = (p1 + p2) + ε(q1 + q2),

h1h2 = (p1 + εq1)(p2 + εq2) = p1p2 + ε(p1q2 + q1p2)

and
αh1 = α(p1 + εq1) = αp1 + εαq1,

respectively, where ps, qs ∈ H (s = 1, 2). Thus, the set of dual quaternions forms noncommutative but
associative algebra over the real numbers. Therefore it can be called as algebra of dual quaternions.
Furthermore, we can write

h = D0 + D1i + D2 j + D3k, Ds ∈ D (s = 0, 1, 2, 3),

where Ds = as + εbs. Hence any dual quaternion h is constructed from eight real parameters. The dual
quaternion h consist of a scalar part Sh = D0 and a vector part Vh = D1i + D2 j + D3k.

In [14], the authors we defined the dual Fibonacci quaternions and dual Lucas quaternions, they derived
the relations between the dual Fibonacci and the classic fibonacci numbers. Motivated by this work, we
can define the following type of numbers.

Definition 2.1. The n-th dual third-order Jacobsthal quaternion and n-th dual third-order Jacobsthal-Lucas quater-
nions are defined as

JD(3)
n = JQ(3)

n + εJQ(3)
n+1, n ≥ 0, (17)

and

jD(3)
n = jQ(3)

n + ε jQ(3)
n+1, n ≥ 0, (18)

respectively. Here JQ(3)
n = J(3)

n + iJ(3)
n+1 + jJ(3)

n+2 + kJ(3)
n+3 is the n-th third-order Jacobsthal quaternion and jQ(3)

n =

j(3)
n + i j(3)

n+1 + j j(3)
n+2 + kj(3)

n+3 is the n-th third-order Jacobsthal-Lucas quaternion.
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In this sense, if we denote the n-th dual third-order Jacobsthal number Ĵ(3)
n = J(3)

n + εJ(3)
n+1, the dual

third-order Jacobsthal quaternion JD(3)
n can be represented as

JD(3)
n = Ĵ(3)

n + îJ(3)
n+1 + ĵJ(3)

n+2 + k̂J(3)
n+3. (19)

The conjugate of the dual third-order Jacobsthal quaternion JD(3)
n , or briefly JD

(3)
n , is defined by

JD
(3)
n = SJD(3)

n
− VJD(3)

n
= Ĵ(3)

n − îJ(3)
n+1 − ĵJ(3)

n+2 − k̂J(3)
n+3, (20)

where
(
SJD(3)

n
,VJD(3)

n

)
=

(̂
J(3)
n , îJ

(3)
n+1 + ĵJ(3)

n+2 + k̂J(3)
n+3

)
.

Also the norm of JD(3)
n can be given as Nr(JD(3)

n ) = JD(3)
n · JD

(3)
n . Then, we get

Nr(JD(3)
n ) =

3∑
s=0

(
(J(3)

n+s)
2 + 2εJ(3)

n+s J(3)
n+s+1

)
. (21)

Dual third-order Jacobsthal quaternion JD(3)
n with norm unity can be called the unit dual third-order

Jacobsthal quaternion. Now, let Nr(JD(3)
n ) , 0, then the inverse of a dual third-order Jacobsthal quaternion

JD(3)
n is also a dual third-order Jacobsthal quaternion, and it can be defined as (JD(3)

n )−1 =
JD

(3)
n

Nr(JD(3)
n )

.

Now, we use the notation

Hn(a, b) =
Aωn

1 − Bωn
2

ω1 − ω2
=


a if n ≡ 0 (mod 3)
b if n ≡ 1 (mod 3)

−(a + b) if n ≡ 2 (mod 3)
, (22)

where A = b − aω2 and B = b − aω1, in which ω1 and ω2 are the complex conjugate cube roots of unity (i.e.
ω3

1 = ω3
2 = 1). Furthermore, note that for all n ≥ 0 we have

Hn+2(a, b) = −Hn+1(a, b) −Hn(a, b), (23)

where H0(a, b) = a and H1(a, b) = b.
From the Binet formulas (5), (6) and Eq. (22), we have

J(3)
n =

1
7

(
2n+1
− V(3)

n

)
and j(3)

n =
1
7

(
2n+3 + 3V(3)

n

)
, (24)

where V(3)
n = Hn(2,−3).

Lemma 2.2. For n ≥ 0,

49
(
J(3)
n · J

(3)
n+1

)
=


22n+3

− 2n+1
− 6 if n ≡ 0 (mod 3)

22n+3 + 5 · 2n+1
− 3 if n ≡ 1 (mod 3)

22n+3
− 4 · 2n+1 + 2 if n ≡ 2 (mod 3)

. (25)

Proof. To obtain formula (25), it suffices to take the Binet’s formula of J(3)
n . Let a = 1 + 2i

√
3

3 and b = 1 − 2i
√

3
3 ,

then

49
(
J(3)
n · J

(3)
n+1

)
= (2n+1

− V(3)
n )(2n+2

− V(3)
n+1)

= 22n+3
− (V(3)

n+1 + 2V(3)
n )2n+1 + V(3)

n V(3)
n+1,
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where V(3)
n = aωn

1 + bωn
2 . It is easy to see that

V(3)
n =


2 if n ≡ 0 (mod 3)
−3 if n ≡ 1 (mod 3)
1 if n ≡ 2 (mod 3)

, (26)

since ω1 and ω2 are the complex conjugate cube roots of unity. Then, if n ≡ 0(mod 3) we can write
V(3)

n+1 + 2V(3)
n = 1 and V(3)

n V(3)
n+1 = −6. The other identities are clear from equation (26). Thus, the proof is

completed.

Theorem 2.3. Let n ≥ 0 integer. Then,

49 ·Nr(JD(3)
n ) =


tε,n + (18 − 26ε) − (32 + 30ε)2n+1 if n ≡ 0 (mod 3)
tε,n + (23 − 20ε) + (34 + 66ε)2n+1 if n ≡ 1 (mod 3)
tε,n + (15 − 10ε) − (2 + 36ε)2n+1 if n ≡ 2 (mod 3)

,

where tε,n = 85(1 + 4ε)22(n+1).

Proof. To prove the above equation, we can use the definition

Nr(JD(3)
n ) = Nr(JQ(3)

n ) + 2ε

 3∑
s=0

J(3)
n+s J(3)

n+s+1

 , (27)

where JQ(3)
n is the n-th third-order Jacobsthal quaternion. Moreover, if n ≡ 0 (mod 3), by the lemma 2.2 we

have J(3)
n · J

(3)
n+1 = 1

49 (22n+3
− 2n+1

− 6), J(3)
n+1 · J

(3)
n+2 = 22n+5 + 5 · 2n+2

− 3 and J(3)
n+2 · J

(3)
n+3 = 22n+7

− 4 · 2n+3 + 2, then

3∑
s=0

J(3)
n+s J(3)

n+s+1 =
1

49
(22n+3

− 2n+1
− 6) +

1
49

(22n+5 + 5 · 2n+2
− 3)

+
1

49
(22n+7

− 4 · 2n+3 + 2) +
1

49
(22n+9

− 2n+4
− 6)

=
1

49
(85 · 22n+3

− 15 · 2n+1
− 13).

Furthermore, Nr(JD(3)
n ) can be write as

Nr(JD(3)
n ) =

1
49

[
(85 · 22n+2

− 64 · 2n + 18) + 2ε(85 · 22n+3
− 15 · 2n+1

− 13)
]

=
1

49

[
(85 + 340ε)22n+2

− (32 + 30ε)2n+1 + (18 − 26ε)
]
.

The other identities are clear from equation (25).

By using the equations (17) and (20), we can compute

JD(3)
n + JD

(3)
n = 2(J(3)

n + εJ(3)
n+1) = 2̂J(3)

n .

Then, we obtain the result by using the equation given in Theorem 2.3 as

(JD(3)
n )2 = JD(3)

n (2̂J(3)
n − JD

(3)
n )

= 2JD(3)
n · Ĵ

(3)
n − JD(3)

n JD
(3)
n

= 2JD(3)
n · Ĵ

(3)
n −Nr(JD(3)

n ).
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Theorem 2.4. Let n ≥ 0 integer. Then,

3JD(3)
n + jD(3)

n = 2n+1(1 + 2ε)(1 + 2i + 4 j + 8k). (28)

Proof. Let JD(3)
n = JQ(3)

n + εJQ(3)
n+1 and jD(3)

n = jQ(3)
n + ε jQ(3)

n+1. Then, we have

3JD(3)
n + jD(3)

n = 3(JQ(3)
n + εJQ(3)

n+1) + ( jQ(3)
n + ε jQ(3)

n+1)

= (3JQ(3)
n + jQ(3)

n ) + ε(3JQ(3)
n+1 + jQ(3)

n+1)

Using Eq. (11), we obtain that

3JD(3)
n + jD(3)

n = (2n+1(1 + 2i + 4 j + 8k)) + ε(2n+2(1 + 2i + 4 j + 8k))

= 2n+1(1 + 2ε)(1 + 2i + 4 j + 8k).

Thus, the proof is completed.

Theorem 2.5. Let n ≥ 2 integer. Then, we have

1
3

( jD(3)
n − 4 jD(3)

n−2) =


(2 − ε) − (1 + ε)i − (1 − 2ε) j + (2 − ε)k if n ≡ 0 (mod 3)
−(1 + ε) − (1 − 2ε)i + (2 − ε) j − (1 + ε)k if n ≡ 1 (mod 3)

(−1 + 2ε) + (2 − ε)i − (1 + ε) j − (1 − 2ε)k if n ≡ 2 (mod 3)
. (29)

Proof. To prove this theorem, we need the Eq. (10). For definition, we have jD(3)
n = jQ(3)

n + ε jQ(3)
n+1 and

jD(3)
n−2 = jQ(3)

n−2 + ε jQ(3)
n−1. Then,

jD(3)
n − 4 jD(3)

n−2 = jQ(3)
n + ε jQ(3)

n+1 − 4( jQ(3)
n−2 + ε jQ(3)

n−1)

= ( jQ(3)
n − 4 jQ(3)

n−2) + ε( jQ(3)
n+1 − 4 jQ(3)

n−1).

Using the equation

1
3

( jQ(3)
n − 4 jQ(3)

n−2) =


2 − i − j + 2k if n ≡ 0 (mod 3)
−1 − i + 2 j − k if n ≡ 1 (mod 3)
−1 + 2i − j − k if n ≡ 2 (mod 3)

,

if n ≡ 0 (mod 3) we obtain

jD(3)
n − 4 jD(3)

n−2 = 3[(2 − i − j + 2k) + ε(−1 − i + 2 j − k)]

= 3[(2 − ε) − (1 + ε)i − (1 − 2ε) j + (2 − ε)k].

In a similar way, the other cases.

Using the Eqs. (12), (14) and (15) one can easily prove the Theorems 2.6 and 2.7.

Theorem 2.6. Let n ≥ 0 integer. Then,

jD(3)
n − 4JD(3)

n =


(2 − 3ε) − (3 − ε)i + (1 + 2ε) j + (2 − 3ε)k if n ≡ 0 (mod 3)
(−3 + ε) + (1 + 2ε)i + (2 − 3ε) j − (3 − ε)k if n ≡ 1 (mod 3)
(1 + 2ε) + (2 − 3ε)i − (3 − ε) j + (1 + 2ε)k if n ≡ 2 (mod 3)

, (30)

and

jD(3)
n+1 + jD(3)

n = 3JD(3)
n+2. (31)
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Theorem 2.7. Let n ≥ 0 integer. Then,

jD(3)
n − JD(3)

n+2 =


(1 − ε) − i + ε j + (1 − ε)k if n ≡ 0 (mod 3)
−1 + εi + (1 − ε) j − k if n ≡ 1 (mod 3)
ε + (1 − ε)i − j + εk if n ≡ 2 (mod 3)

. (32)

The following is a result for the sum of dual third-order Jacobsthal-Lucas quaternions.

Theorem 2.8. Let n ≥ 0 integer. Then,

n∑
s=0

jD(3)
s =


aε,n + bε(1 − 4i − 5 j − 7k) if n ≡ 0 (mod 3)
aε,n − 2bε(1 + 2i + j + 5k) if n ≡ 1 (mod 3)
aε,n − bε(2 + i + 5 j + 10k) if n ≡ 2 (mod 3)

, (33)

where aε,n = (1 + 2ε) jQ(3)
n+1 − ε jQ(3)

0 and bε = 1 + ε.

Proof. Using the equation (13), we have

n∑
s=0

jQ(3)
s =


jQ(3)

n+1 + (1 − 4i − 5 j − 7k) if n ≡ 0 (mod 3)
jQ(3)

n+1 − 2(1 + 2i + j + 5k) if n ≡ 1 (mod 3)
jQ(3)

n+1 − (2 + i + 5 j + 10k) if n ≡ 2 (mod 3)
.

Furthermore, if n ≡ 0 (mod 3), we can write

n∑
s=0

jD(3)
s =

n∑
s=0

jQ(3)
s + ε

n∑
s=0

jQ(3)
s+1

= (1 + ε)
n∑

s=0

jQ(3)
s + ε( jQ(3)

n+1 − jQ(3)
0 )

= (1 + ε)
(
jQ(3)

n+1 + (1 − 4i − 5 j − 7k)
)

+ ε( jQ(3)
n+1 − jQ(3)

0 )

= (1 + 2ε) jQ(3)
n+1 − ε jQ(3)

0 + (1 + ε)(1 − 4i − 5 j − 7k).

If n ≡ 1 (mod 3), we have
∑n

s=0 jQ(3)
s = jQ(3)

n+1 − 2(1 + 2i + j + 5k), then

n∑
s=0

jD(3)
s = (1 + 2ε) jQ(3)

n+1 − ε jQ(3)
0 − 2(1 + ε)(1 + 2i + j + 5k).

The proof is similar to case n ≡ 2 (mod 3). Thus, the proof is completed.

3. Generating Function for Dual Third-Order Jacobsthal Quaternions

Let JD(3)
n = JQ(3)

n + εJQ(3)
n+1 be the n-th dual third-order Jacobsthal quaternion. Then, the function

G(t) =
∑
∞

n=0 JD(3)
n tn is called the generating function for the sequence {JD(3)

n }n≥0. In [3], the author found a
generating function for third-order Jacobsthal quaternions. In the following theorem, we established the
generating function for dual third-order Jacobsthal quaternions.

Theorem 3.1. The generating function for the dual third-order Jacobsthal quaternion {JD(3)
n }n≥0 is

∞∑
n=0

JD(3)
n tn =

1
1 − t − t2 − 2t3

(
ε + (1 + ε)i + (1 + 2ε) j + (2 + 5ε)k + t(1 + εi + (1 + 3ε) j + (3 + 4ε)k)

+2t2(εi + (1 + ε) j + (1 + 2ε)k)

)
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Proof. Assuming that the generating function of the quaternion {JD(3)
n }n≥0 has the form G(t) =

∑
∞

n=0 JD(3)
n tn,

we obtain that

(1 − t − t2
− 2t3)G(t)

= (JD(3)
0 + JD(3)

1 t + · · · ) − (JD(3)
0 t + JD(3)

1 t2 + · · · ) − · · ·

= JD(3)
0 + t(JD(3)

1 − JD(3)
0 ) + t2(JD(3)

2 − JD(3)
1 − JD(3)

0 ),

since JD(3)
n = JD(3)

n−1 + JD(3)
n−2 + 2JD(3)

n−3, n ≥ 3 and the coefficients of tn for n ≥ 3 are equal to zero. In equivalent
form is

(1 − t − t2
− 2t3)

∞∑
n=0

JD(3)
n tn = JD(3)

0 + t(JD(3)
1 − JD(3)

0 ) + t2(JD(3)
2 − JD(3)

1 − JD(3)
0 )

= (JQ(3)
0 + εJQ(3)

1 ) + t(εJQ(3)
2 + (1 − ε)JQ(3)

1 − JQ(3)
0 )

+ t2(εJQ(3)
3 + (1 − ε)JQ(3)

2 − (1 + ε)JQ(3)
1 − JQ(3)

0 ).

Then,
∞∑

n=0

JD(3)
n tn =

1
1 − t − t2 − 2t3

(
JQ(3)

0 + εJQ(3)
1 + t(εJQ(3)

2 + (1 − ε)JQ(3)
1 − JQ(3)

0 )
+t2(εJQ(3)

3 + (1 − ε)JQ(3)
2 − (1 + ε)JQ(3)

1 − JQ(3)
0 )

)
.

Thus, the proof is completed.

The Binet formula for JD(3)
n can be given in the following theorem.

Theorem 3.2. If JD(3)
n = JQ(3)

n + εJQ(3)
n+1 be the n-th dual third-order Jacobsthal quaternion, then

JD(3)
n =

1
7

[
2n+1α −

(
1 +

2i
√

3
3

)
ωn

1β −

(
1 −

2i
√

3
3

)
ωn

2γ

]
=

1
7

[
2n+1α − VD(3)

n

]
, (34)

where ω1, ω2 are the solutions of the equation t2 + t + 1 = 0, and

α = (1 + 2i + 4 j + 8k)(1 + 2ε),

β = (1 + ω1i + ω2
1 j + k)(1 + ω1ε),

γ = (1 + ω2i + ω2
2 j + k)(1 + ω2ε)

and
VD(3)

n = VQ(3)
n + εVQ(3)

n+1, VQ(3)
n = V(3)

n + V(3)
n+1i + V(3)

n+2 j + V(3)
n+3k.

Proof. In [3], the author gave the Binet formula for third-order Jacobsthal quaternion by

JQ(3)
n =

1
7

[
2n+1α −

(
1 +

2i
√

3
3

)
ωn

1β −

(
1 −

2i
√

3
3

)
ωn

2γ

]
, (35)

where ω1, ω2 are the solutions of t2 + t + 1 = 0, and α = 1 + 2i + 4 j + 8k, β = 1 + ω1i + ω2
1 j + k and

γ = 1 + ω2i + ω2
2 j + k. Thus it can be written

7 · JD(3)
n = 7(JQ(3)

n + εJQ(3)
n+1)

=
[
2n+1α − (aωn

1β + bωn
2γ)

]
+ ε

[
2n+2α − (aωn+1

1 β + bωn+1
2 γ)

]
= 2n+1α(1 + 2ε) − aωn

1β(1 + ω1ε) − bωn
2γ(1 + ω2ε),

where a = 1 + 2i
√

3
3 and b = 1− 2i

√
3

3 . Taking α = α(1 + 2ε), β = β(1 +ω1ε) and γ = γ(1 +ω2ε) in last equation,
then the proof is completed.



G. Cerda-Morales / Filomat 33:7 (2019), 1865–1876 1873

Theorem 3.3. If jD(3)
n = jQ(3)

n + ε jQ(3)
n+1 be the n-th dual third-order Jacobsthal-Lucas quaternion, then we have

jD(3)
n =

1
7

[
2n+3α + (3 + 2i

√

3)ωn
1β + (3 − 2i

√

3)ωn
2γ

]
=

1
7

[
2n+3α + 3VD(3)

n

]
, (36)

where ω1, ω2 are the solutions of the equation t2 + t + 1 = 0; α, β and γ as before.

Based on the Binet’s formulas given in (34) and (36) for the dual third-order Jacobsthal and dual third-
order Jacobsthal-Lucas quaternions, now we give some quadratic identities for these quaternions.

Theorem 3.4. For every nonnegative integer number n we get(
jD(3)

n

)2
+ 3JD(3)

n+3 · jD(3)
n+3 = 4n+3α2 +

3
7

(
2n+3(α · VD(3)

n − VD(3)
n · α)

)
, (37)

where α = α(1 + 2ε), α = 1 + 2i + 4 j + 8k and

VD(3)
n =


(2 − 3ε) + (−3 + ε)i + (1 + 2ε) j + (2 − 3ε)k if n ≡ 0 (mod 3)
(−3 + ε) + (1 + 2ε)i + (2 − 3ε) j + (−3 + ε)k if n ≡ 1 (mod 3)
(1 + 2ε) + (2 − 3ε)i + (−3 + ε) j + (1 + 2ε)k if n ≡ 2 (mod 3)

.

Proof. Let α = α(1 + 2ε). Using the relation in (34) and (36) for the dual third-order Jacobsthal and dual
third-order Jacobsthal-Lucas quaternions, the left side of equality (37) can be written as(

jD(3)
n

)2
+ 3JD(3)

n+3 · jD(3)
n+3 =

(1
7

(
2n+3α + 3VD(3)

n

))2

+ 3
(1

7

(
2n+4α − VD(3)

n+3

))
·

(1
7

(
2n+6α + 3VD(3)

n+3

))
=

1
49

(
22n+6α2 + 3 · 2n+3(α · VD(3)

n + VD(3)
n · α) + 9

(
VD(3)

n

)2
)

+
3
49

(
22n+10α2 + 2n+4(3α · VD(3)

n+3 − 4VD(3)
n+3 · α) − 3

(
VD(3)

n+3

)2
)
,

where

VD(3)
n =

(
1 +

2i
√

3
3

)
ωn

1β +

(
1 −

2i
√

3
3

)
ωn

2γ

=


(2 − 3ε) + (−3 + ε)i + (1 + 2ε) j + (2 − 3ε)k if n ≡ 0 (mod 3)
(−3 + ε) + (1 + 2ε)i + (2 − 3ε) j + (−3 + ε)k if n ≡ 1 (mod 3)
(1 + 2ε) + (2 − 3ε)i + (−3 + ε) j + (1 + 2ε)k if n ≡ 2 (mod 3)

.

(38)

Note that VD(3)
n = VD(3)

n+3 for all n ≥ 0, which can be simplified as(
jD(3)

n

)2
+ 3JD(3)

n+3 · jD(3)
n+3 = 22n+6α2 +

3
7

(
2n+3(α · VD(3)

n − VD(3)
n · α)

)
.

Thus, we get the required result in (37).

Theorem 3.5. For every nonnegative integer number n we get(
jD(3)

n

)2
− 9

(
JD(3)

n

)2
=

2n+1

7
(2α2 + 3(α · VD(3)

n + VD(3)
n · α)), (39)

where α = α(1 + 2ε) and VD(3)
n as in (38).

The proofs of quadratic identities for the dual third-order Jacobsthal and dual third-order Jacobsthal-
Lucas quaternions in this theorem are similar to the proof of the identity (37) of Theorem 3.4, and are
omitted here.

Using the notation in Eq. (34), we investigated a type of identities for the dual third-order Jacobsthal
quaternions.
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Theorem 3.6. For m ≥ n ≥ 0 integers:

JD(3)
m JD(3)

n+1 − JD(3)
m+1 JD(3)

n =
1
7

(
2m+1UD(3)

n+1 − 2n+1UD(3)
m+1 + WD(3)

m−n

)
(40)

and (
JD(3)

n+1

)2
− JD(3)

n+2 JD(3)
n =

1
7

(
2n+1(2αUD(3)

n+1 −UD(3)
n+2α) + WD(3)

1

)
, (41)

where UD(3)
n = UQ(3)

n + εUQ(3)
n+1, UQ(3)

n = U(3)
n + U(3)

n+1i + U(3)
n+2 j + U(3)

n+3k and U(3)
n = Hn(0, 1).

Proof. For m ≥ n:

JD(3)
m JD(3)

n+1 − JD(3)
m+1 JD(3)

n =
1
49

(
(2m+1α − VD(3)

m )(2n+2α − VD(3)
n+1)

−(2m+2α − VD(3)
m+1)(2n+1α − VD(3)

n )

)
=

1
49

(
−2m+1αVD(3)

n+1 − 2n+2VD(3)
m α + 2m+2αVD(3)

n + 2n+1VD(3)
m+1α

+VD(3)
m VD(3)

n+1 − VD(3)
m+1VD(3)

n

)
=

1
7

(
2m+1αUD(3)

n+1 − 2n+1UD(3)
m+1α + WD(3)

m−n

)
,

(42)

where UD(3)
n+1 = 1

7

(
2VD(3)

n − VD(3)
n+1

)
, UD(3)

n = UQ(3)
n + εUQ(3)

n+1 and (ω1 − ω2)WD(3)
m−n = 7(ωm−n

1 βγ − ωm−n
2 γβ).

Furthermore, if m = n + 1 in Eq. (42), we obtain for n ≥ 0,(
JD(3)

n+1

)2
− JD(3)

n+2 JD(3)
n =

1
7

(
2n+1(2αUD(3)

n+1 −UD(3)
n+2α) + WD(3)

1

)
. (43)

4. Matrix Representation of Dual Third-Order Jacobsthal Quaternions

The matrix method is very useful method in order to obtain some identities for special sequences. For
example, using matrix methods, the authors obtained some identities for various special sequences (see
[2, 13]). In this case, the generating matrix of the sequence {JD(3)

n }n≥0 is given by

Mn =

 1 1 2
1 0 0
0 1 0


n

=


J(3)
n+1 J(3)

n + 2J(3)
n−1 2J(3)

n

J(3)
n J(3)

n−1 + 2J(3)
n−2 2J(3)

n−1
J(3)
n−1 J(3)

n−2 + 2J(3)
n−3 2J(3)

n−2

 , (44)

for all n ≥ 0. We define for convenience J(3)
−1 = 0, J(3)

−2 = 1
2 and J(3)

−3 = − 1
4 .

Now, let us define the following matrix as

R =


JQ(3)

4 JQ(3)
3 + 2JQ(3)

2 2JQ(3)
3

JQ(3)
3 JQ(3)

2 + 2JQ(3)
1 2JQ(3)

2
JQ(3)

2 JQ(3)
1 + 2JQ(3)

0 2JQ(3)
1

 . (45)

This matrix can be called the third-order Jacobsthal quaternion matrix. Then, we can give the next theorem by
the dual third-order Jacobsthal quaternions.

Theorem 4.1. If JD(3)
n be the n-th dual third-order Jacobsthal quaternion. Then, for n ≥ 0:

R ·Mn
· Sε =


JD(3)

n+4 JD(3)
n+3 + 2JD(3)

n+2 2JD(3)
n+3

JD(3)
n+3 JD(3)

n+2 + 2JD(3)
n+1 2JD(3)

n+2
JD(3)

n+2 JD(3)
n+1 + 2JD(3)

n 2JD(3)
n+1

 , (46)
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where Sε =

 1 + ε ε 2ε
ε 1 0
0 ε 1

.
Proof. (By induction on n) If n = 0, then the result is obvious. Now, we suppose it is true for n = t, that is

R ·Mt
· Sε =


JD(3)

t+4 JD(3)
t+3 + 2JD(3)

t+2 2JD(3)
t+3

JD(3)
t+3 JD(3)

t+2 + 2JD(3)
t+1 2JD(3)

t+2
JD(3)

t+2 JD(3)
t+1 + 2JD(3)

t 2JD(3)
t+1

 .
Using the definition (3), for t ≥ 0, we have JD(3)

t+3 = JD(3)
t+2 + JD(3)

t+1 + 2JD(3)
t . Then, by induction hypothesis

and MSε = SεM we get

R·Mt+1
· Sε =

((
R ·Mt

)
· Sε

)
·M

=


JD(3)

t+4 JD(3)
t+3 + 2JD(3)

t+2 2JD(3)
t+3

JD(3)
t+3 JD(3)

t+2 + 2JD(3)
t+1 2JD(3)

t+2
JD(3)

t+2 JD(3)
t+1 + 2JD(3)

t 2JD(3)
t+1


 1 1 2

1 0 0
0 1 0


=


JD(3)

t+4 + JD(3)
t+3 + 2JD(3)

t+2 JD(3)
t+4 + 2JD(3)

t+3 2JD(3)
t+4

JD(3)
t+3 + JD(3)

t+2 + 2JD(3)
t+1 JD(3)

t+3 + 2JD(3)
t+2 2JD(3)

t+3
JD(3)

t+2 + JD(3)
t+1 + 2JD(3)

t JD(3)
t+2 + 2JD(3)

t+1 2JD(3)
t+2


=


JD(3)

t+5 JD(3)
t+4 + 2JD(3)

t+3 2JD(3)
t+4

JD(3)
t+4 JD(3)

t+3 + 2JD(3)
t+2 2JD(3)

t+3
JD(3)

t+3 JD(3)
t+2 + 2JD(3)

t+1 2JD(3)
t+2

 .
Hence, the equation (46) holds for all n ≥ 0.

Corollary 4.2. For n ≥ 0,

JD(3)
n+2 = (1 + ε)JQ(3)

n+2 + εJQ(3)
n+1 + 2εJQ(3)

n . (47)

Proof. The proof can be easily seen by the coefficient in the third row and first column of the matrix (R·Mn)·Sε
and the equation (44).

Corollary 4.3. For n ≥ 0,

JD(3)
n+2 = JQ(3)

2 Ĵ(3)
n+1 + (JQ(3)

1 + JQ(3)
0 )̂J(3)

n + 2JQ(3)
1 Ĵ(3)

n−1. (48)

Proof. The proof can be easily seen by the coefficient in the third row and first column of the matrix R·(Mn
·Sε)

and the equations (44) and (45).
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