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A Class of Constrained Inverse Eigenvalue Problem and Associated
Approximation Problem for Symmetrizable Matrices
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Abstract. The real symmetric matrix is widely applied in various fields, transforming non-symmetric
matrix to symmetric matrix becomes very important for solving the problems associated with the original
matrix. In this paper, we consider the constrained inverse eigenvalue problem for symmetrizable matrices,
and obtain the solvability conditions and the general expression of the solutions. Moreover, we consider the
corresponding optimal approximation problem, obtain the explicit expressions of the optimal approxima-
tion solution and the minimum norm solution, and give the algorithm and corresponding computational
example.

1. Introduction

Throughout the paper, let Rn denote the set of n-dimensional real vector, and Rn×m
r , SRn×n, SRn×n

+ , ASRn×n,
ORn×n denote the sets of real n×m matrices with rank r, real n×n symmetric matrices, real n×n symmetric
positive definite matrices, real n×n antisymmetric matrices, real n×n orthogonal matrices, respectively. Let
A−1 denote the inverse matrix of A ∈ Rn×n

n , and A+, AT, trA denote the Moore-Penrose generalized inverse,
the transpose, the trace of a matrix A, and I stands for an identity matrix. We define a vector inner product
〈x, y〉 = yTx for all x, y ∈ Rn. If A ∈ Rn×n and 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ Rn, then A is clled a symmetric
matrix. Also we define an inner product 〈A,B〉 = tr(BTA) for all A,B ∈ Rm×n. Then Rm×n is a Hilbert inner
product space and the norm generated by this inner product is Frobenius norm. Let ‖A‖F be the Frobenius
norm of a matrix A.

Definition 1.1[1] Given W1 ∈ Rn×n
n , A ∈ Rn×n, if 〈W1AW−1

1 x, y〉 = 〈x,W1AW−1
1 y〉 for all x, y ∈ Rn, that is,

W1AW−1
1 ∈ SRn×n, then A is called a symmetrizable matrix.

Lemma 1.1 Let A ∈ Rn×n be a given matrix. Then there exists a nonsingular matrix W1 such that
W1AW−1

1 ∈ SRn×n if and only if there exists a symmetric positive definite matrix W such that W2A ∈ SRn×n

and WAW−1
∈ SRn×n.

Proof. (Necessity) Since W1 is a nonsingular matrix, suppose that the singular value decomposition (SVD)
of W1 is

W1 = RΓQT, (1.1)
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where Q,R ∈ ORn×n,Γ = diag(γ1, γ2, . . . , γn), γ1 ≥ γ2 ≥ · · · ≥ γn > 0.
Because W1AW−1

1 ∈ SRn×n, so we have

W1AW−1
1 = (W1AW−1

1 )T, (1.2)

substituting (1.1) into (1.2), we have
QΓ2QTA = ATQΓ2QT.

Let W = QΓQT, then W is a symmetric positive definite matrix, and W2A = ATW2, this implies that
WAW−1 = W−1ATW, so we have W2A ∈ SRn×n and WAW−1

∈ SRn×n.
(Sufficiency) Because W is a symmetric positive definite matrix, and WAW−1

∈ SRn×n, let W1 = W, then
the conclusion obviously holds.

Based on Definition 1.1 and Lemma 1.1, the symmetrizable matrix can be defined as follows.
Definition 1.2 Given W ∈ SRn×n

+ , A ∈ Rn×n, if WAW−1
∈ SRn×n, then A is called a symmetrizable matrix.

We denote
SRn×n

W = {A|A ∈ Rn×n,WAW−1
∈ SRn×n

},

and
‖A‖W = ‖WAW−1

‖F.

Obviously, if A ∈ SRn×n
W , that is, B = WAW−1

∈ SRn×n, then B is similar to A, which means that the matrix
A have the same eigenvalues as B.

The real symmetric matrix is widely applied in various fields, transforming non-symmetric matrix to
symmetric matrix becomes very important for solving the problems associated with the original matrix.
For example, in 1922, Stenel[2] obtained a symmetric matrix by multiplying non-singular matrix and the
original matrix. In 1936, to solve some problems in probability theory, Kolmogorov obtained a symmetric
matrix by multiplying a positive symmetric matrix and the original matrix. And those methods are widely
used in later papers[3−5]. Also, in 2000, Sun[6] defined the sets of symmetrizable positive definite matrices.

The inverse eigenvaue problem has broad application background in theoretical physics, molecular
structure, vibration design, vibration control and so on[7−9]. The results on the unconstrained inverse
eigenvalue problem with several sets of matrices have been discussed[10−15]. Pan[7−8] and Peng[16] discussed
the constrained inverse eigenvalue problem and associated approximation problems of antisymmetric
matrices, skew symmetric and centrosymmetric matrices and normal matrices, respectively.

However, the constrained inverse eigenvalue problems on symmetrizable or anti-symmetrizable sets
have not been resolved yet. We will study these problems in this paper.

Given interval [a, b], real matrices W ∈ SRn×n
+ , X ∈ Rn×m, Λ = diag(λ1, λ2, . . . , λm) ∈ Rm×m. λ(Λ) and λ(A)

denote the sets of eigenvalues of Λ and A, respectively. λ(A)\λ(Λ) denotes the difference of λ(A) and λ(Λ).
And we denote SRn×n

W[a,b] = {A|A ∈ SRn×n
W , λ(A) ⊂ [a, b]}.

In this paper, we mainly consider the following two problems.
Problem I. Given interval [a, b], the matrices X,Λ,W, find A ∈ SRn×n

W such that

AX = XΛ, (1.3)

and all the remaining eigenvalues of any matrix A that satisfies (1.3) are located in interval [a, b], that is,
λ(A) \ λ(Λ) ⊂ [a, b].

Denote the solution set of Problem I by SE. If SE is nonempty, we consider the associated optimal
approximation problem.

Problem II. Given A∗ ∈ Rn×n, find an n × n matrix Â ∈ SE such that

‖Â − A∗‖W = min
A∈SE
‖A − A∗‖W . (1.4)

The paper is organized as follows. In Section 2, we establish the solvability conditions for Problem I and
give the expression of the general solution to Problem I. In Section 3, we prove the existence and uniqueness
of the solution for Problem II, and we give an algorithm and a corresponding computational example to
illustrate the theoretical results.
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2. The solution of Problem I

Given X ∈ Rn×m, W ∈ SRn×n
+ , Λ = diag(λ1, λ2, . . . , λm) ∈ Rm×m, find A ∈ SRn×n

W such that AX = XΛ,
then the i-th column of X is an eigenvector of A corresponding to the eigenvalue λi if and only if the i-th
column of WX is an eigenvector of WAW−1 corresponding to the eigenvalue λi, that is, WAW−1WX = WXΛ.
Suppose that the SVD of WX is

WX = U
(

Σ 0
0 0

)
VT, (2.1)

where Σ = diag(σ1, σ2, . . . , σr), σ1 > σ2 > · · · > σr > 0, U = (U1,U2),U1 ∈ ORn×r,U2 ∈ ORn×(n−r), V =
(V1,V2),V1 ∈ Rm×r,V2 ∈ Rm×(m−r).

Based on Lemma 1 in [10], we can obtain the following conclusion.
Lemma 2.1 Given X ∈ Rn×m

r , Λ = diag(λ1Im1 , λ2Im2 , . . . , λtImt ) ∈ Rm×m, λi , λ j(i , j), W ∈ SRn×n
+ ,

WX = (WX1,WX2, . . . ,WXt) ∈ Rn×m. Then there exists E ∈ SRn×n such that

EWX = WXΛ, (2.2)

if and only if
XT

i W2X j = 0, i , j, i, j = 1, 2, . . . , t.

Moreover, the solutions of Equation (2.2) can be expressed as

E = WXΛ(WX)+ + U2GUT
2 ,∀G ∈ SR(n−r)×(n−r),

where U2 ∈ Rn×(n−r), UT
2 U2 = In−r, N((WX)T) = R(U2), r(WXi) = ri(i = 1, 2, . . . , t), r =

t∑
i=1

ri, t ≤ r.

Theorem 2.1 Given X ∈ Rn×m
r , W ∈ Rn×n

+ , Λ = diag(λ1Im1 , λ2Im2 , . . . , λtImt ) ∈ Rm×m, λi , λ j(i , j),
X = (X1,X2, . . . ,Xt) ∈ Rn×m, then there exists A ∈ SRn×n

W[a,b] such that AX = XΛ if and only if

XT
i W2X j = 0, i , j, i, j = 1, 2, . . . , t. (2.3)

Moreover, the solutions of Equation (1.3) can be expressed as

A = XΛ(WX)+W + W−1U2GUT
2 W,∀G ∈ SR(n−r)×(n−r)

[a,b] , (2.4)

where U2 ∈ ORn×(n−r), UT
2 U2 = In−r, N((WX)T) = R(U2), r(Xi) = r(WXi) = ri(i = 1, 2, . . . , t), r =

t∑
i=1

ri, t ≤ r.

Proof. AX = XΛ is equivalent to
WAW−1WX = WXΛ.

According to WAW−1
∈ SRn×n and Lemma 2.1, the solution set of AX = XΛ is nonempty if and only if

XT
i W2X j = 0. The expression of solutions can be expressed as

A = XΛ(WX)+W + W−1U2GUT
2 W,∀G ∈ SR(n−r)×(n−r). (2.5)

Now we study the eigenvalues of A in (2.5). λ1, λ2, . . . , λt are eigenvalues of A. Assume that the
eigenvalues of G are µ1, µ2, . . . , µn−r, and corresponding eigenvectors are y1, y2, . . . , yn−r, respectively.

Let
µ = diag(µ1, µ2, . . . , µn−r),Y = (y1, y2, . . . , yn−r),

we have
GY = Yµ.
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Due to (WX)+U2 = 0 and UT
2 U2 = In−r, we get

AW−1U2Y = XΛ(WX)+U2Y + W−1U2GY = W−1U2GY = W−1U2Yµ.

It shows that µ1, µ2, . . . , µn−r are eigenvalues of A. Therefore, we only restrict µ1, µ2, . . . , µn−r ∈ [a, b], then
the general expression of the solutions of (1.3) is (2.4).

Denote the solution set of Problem I by SE. If SE is nonempty, we can obtain the following conclusion.
Corollary 2.1 If solution set SE of Problem I is nonempty, then SE is a closed convex set.

Proof. For matrix sequence {Ak},Ak ∈ SE satisfying lim
k→∞

Ak = A, we have

Ak = XΛ(WX)+W + W−1U2GkUT
2 W,Gk ∈ SR(n−r)×(n−r)

[a,b] ,

lim
k→∞

Gk = G,

A = XΛ(WX)+W + W−1U2GUT
2 W.

Because that the eigenvalues are continuous functions of matrix elements, so we can obtain G ∈
SR(n−r)×(n−r)

[a,b] , then A ∈ SE, that is, SE is a closed set.
Let

A1 = XΛ(WX)+W + W−1U2G1UT
2 W ∈ SE,

A2 = XΛ(WX)+W + W−1U2G2UT
2 W ∈ SE,

where ∀G1,G2 ∈ SR(n−r)×(n−r)
[a,b] .

Then we have c1G1 + c2G2 ∈ SR(n−r)×(n−r)
[a,b] , c1 ≥ 0, c2 ≥ 0, c1 + c2 = 1, (see [17]) and c1A1 + c2A2 ∈ SE. So SE

is a closed convex set.

3. The solution of Problem II

Given interval [a, b] and A∗ ∈ Rn×n, let A1 = WA∗W−1+W−1A∗TW
2 ∈ SRn×n and A2 = WA∗W−1

−W−1A∗TW
2 ∈ ASRn×n.

By the spectral decomposition theorem, A1 can be expressed as

A1 =

n∑
i=1

µiuiuT
i .

where µ1 ≥ µ2 ≥ · · · ≥ µk > b ≥ µk+1 ≥ · · · ≥ µk+l ≥ a > µk+l+1 ≥ · · · ≥ µn, ui is an eigenvector of matrix A1
corresponding to the eigenvalue µi satisfying ‖ui‖ = 1.

Denote

[A1][a,b] =

k∑
i=1

buiuT
i +

k+l∑
i=k+1

µiuiuT
i +

n∑
i=k+l+1

auiuT
i , (3.1)

and

[A∗]W
[a,b] = W−1[A1][a,b]W ∈ SRn×n

W[a,b]. (3.2)

Obviously, [A∗]W
[a,b] is only determined by a, b, W and A∗. Next, we give some properties of [A∗]W

[a,b] as
follows.

Property 3.1 If A∗ ∈ SRn×n
W[a,b], then [A∗]W

[a,b] = A∗.

Proof. If A∗ ∈ SRn×n
W[a,b], then WA∗W−1

∈ SRn×n, λ(A∗) ⊂ [a, b], by (3.2), we have [A∗]W
[a,b] = A∗.
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Property 3.2 If A∗ = 0, then

[A∗]W
[a,b] =


0, i f a ≤ 0 ≤ b,
aIn, i f a > 0,
bIn, i f b < 0.

Property 3.3 If A∗ ∈ ASRn×n
W , that is, WA∗W−1

∈ ASRn×n, then [A∗]W
[a,b] = [0]W

[a,b].

Lemma 3.1 Let WA∗W−1 = D be a diagonal matrix. If

‖Â − A∗‖W = min
A∈SRn×n

W[a,b]

‖A − A∗‖W

then Â = [A∗]W
[a,b] = W−1[D][a,b]W.

Lemma 3.2 Let A∗ ∈ Rn×n. If
‖Â − A∗‖W = min

A∈SRn×n
W[a,b]

‖A − A∗‖W ,

then Â = [A∗]W
[a,b] = W−1[A1][a,b]W.

Proof. Let A∗ ∈ Rn×n, WA∗W−1 can be uniquely decomposed into the sum of the symmetric matrices A1

and the antisymmetry matrix A2, that is, WA∗W−1 = A1 + A2,A1 = WA∗W−1+W−1A∗TW
2 ∈ SRn×n and A2 =

WA∗W−1
−W−1A∗TW
2 ∈ ASRn×n, then

‖Â − A∗‖2W = ‖WÂW−1
− A1 − A2‖

2
F = ‖WÂW−1

− A1‖
2
F + ‖A2‖

2
F.

Suppose that the spectral decomposition of A1 is

A1 = PTDP,

where P and D are orthogonal and diagonal matrices, respectively.
From the orthogonal invariance of the Frobenius norm, we have

‖WÂW−1
− A1‖

2
F = ‖PWÂW−1PT

−D‖2F,

by Lemma 3.1, we have PWÂW−1PT = [D][a,b] and WÂW−1 = PT[D][a,b]P = [A1][a,b], it follows that Â =
W−1[A1][a,b]W = [A∗]W

[a,b].

Theorem 3.1 Given A∗ ∈ Rn×n, if (2.3) holds, then there exists unique Â ∈ SE such that

‖Â − A∗‖W = min
A∈SE
‖A − A∗‖W .

Moreover, Â can be expressed as

Â = XΛ(WX)+W + W−1U2ĜUT
2 W,

where Ĝ = [UT
2 A1U2][a,b].

Proof. Let A∗ ∈ Rn×n, by Theorem 2.1, we have

WÂW−1 = U
(

ΣVT
1 ΛV1Σ

−1 0
0 Ĝ

)
UT,
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then
‖Â − A∗‖2W = ‖WÂW−1

−WA∗W−1
‖

2
F = ‖WÂW−1

− A1‖
2
F + ‖A2‖

2
F

=

∥∥∥∥∥∥
(

ΣVT
1 ΛV1Σ

−1 0
0 Ĝ

)
−UTA1U

∥∥∥∥∥∥2

F

+ ‖A2‖
2
F

=

∥∥∥∥∥∥
(

ΣVT
1 ΛV1Σ

−1 0
0 Ĝ

)
−

(
UT

1 A1U1 UT
1 A1U2

UT
2 A1U1 UT

2 A1U2

)∥∥∥∥∥∥2

F

+ ‖A2‖
2
F

=

∥∥∥∥∥∥
(

UT
1 A1U1 − ΣVT

1 ΛV1Σ
−1 UT

1 A1U2

UT
2 A1U1 UT

2 A1U2 − Ĝ

)∥∥∥∥∥∥2

F

+ ‖A2‖
2
F

= ‖UT
1 A1U1 − ΣVT

1 ΛV1Σ
−1
‖

2
F + ‖UT

1 A1U2‖
2
F + ‖UT

2 A1U1‖
2
F

+‖UT
2 A1U2 − Ĝ‖2F + ‖A2‖

2
F,

clearly,
‖Â − A∗‖W = min

A∈SE
‖A − A∗‖W

is equivalent to
‖UT

2 A1U2 − Ĝ‖F = min
G∈SRn×n

[a,b]

‖UT
2 A1U2 − G‖F,

then we have
Ĝ = [UT

2 A1U2][a,b],

where A1 = WA∗W−1+W−1A∗TW
2 ∈ SRn×n.

Corollary 3.1(Minimum norm solution) If solution set SE of Problem I is nonempty, then problem

‖Â‖W = min
A∈SRn×n

W[a,b]

‖A‖W

has unique solution

Â =


XΛ(WX)+W, i f a ≤ 0 ≤ b,
XΛ(WX)+W + a(In − X(WX)+W), i f a > 0,
XΛ(WX)+W + b(In − X(WX)+W), i f b < 0.

(3.3)

Proof. Suppose that the SVD of WX is (2.1), then U2UT
2 = In −WX(WX)+. By A∗ = 0 and Property 3.2 and

Theorem 3.1, we get (3.3).

Corollary 3.2 If solution set SE of Problem I is nonempty, and A∗ ∈ ASRn×n
W , then problem II has unique

solution (3.2).

Algorithm 3.1
step 1. Input real a, b, A∗ ∈ Rn×n, X ∈ Rn×m, Λ = diag(λ1, λ2, . . . , λm) ∈ Rm×m, W ∈ SRn×n

+ ;
step 2. Calculate W−1, WX, and U2, (WX)+ by (2.1);
step 3. If (2.3) holds, then go to step 4, else go to step 8;
step 4. Calculate A1, and UT

2 A1U2;
step 5. Calculate the spectral decomposition of UT

2 A1U2;
step 6. Calculate [UT

2 A1U2][a,b];
step 7. Calculate Â by Theorem 3.1;
step 8. Stop.
According to Theorem 3.1, the above algorithm shows that Â is the solution of problem II. Next, we give

a corresponding computational example to illustrate our theoretical results.
Example 3.1 Consider the constrained inverse eigenvalue problem and associated approximation prob-

lem
AX = XΛ, s.t. A ∈ SRn×n

W
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with

X =



−7 −7 0 0
3 3 0 0

13 0 13 7
−4 0 −4 −2
−1 1 −2 0

3 −2 5 0


, Λ =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −1

 ,W =



1 2 0 0 0 0
2 5 0 0 0 0
0 0 1 3 0 0
0 0 3 10 0 0
0 0 0 0 5 2
0 0 0 0 2 1


,

A∗ =



11.0619 20.8073 −6.4230 −22.4805 −7.7881 −4.3998
−4.0594 −7.4180 2.5407 8.8923 4.2723 2.2171
10.5755 22.0783 −23.2170 −77.7595 72.5335 32.3700
−3.2540 −6.7933 6.8360 22.9260 −22.3180 −9.9600

6.3703 14.2401 3.9650 13.8775 19.2891 7.7086
−14.3676 −31.8768 −10.5120 −36.7920 −45.7372 −18.3973


,

and a = 1, b = 3.
By Algorithm 3.1, then the optimal approximation solution Â of Problem II is

Â =



7.7674 13.7790 −5.4165 −18.9578 −15.6592 −7.3470
−3.0727 −5.3995 2.1296 7.4537 7.7079 3.5091

9.9261 21.0541 −22.5582 −75.4535 66.4853 30.0825
−3.0542 −6.4782 6.6333 22.2165 −20.4570 −9.2562

6.5048 14.8976 4.3944 15.3803 14.9925 6.0759
−14.5367 −33.0343 −11.4721 −40.1523 −36.2135 −14.7798


.
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