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A Class of Constrained Inverse Eigenvalue Problem and Associated
Approximation Problem for Symmetrizable Matrices
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Abstract. The real symmetric matrix is widely applied in various fields, transforming non-symmetric
matrix to symmetric matrix becomes very important for solving the problems associated with the original
matrix. In this paper, we consider the constrained inverse eigenvalue problem for symmetrizable matrices,
and obtain the solvability conditions and the general expression of the solutions. Moreover, we consider the
corresponding optimal approximation problem, obtain the explicit expressions of the optimal approxima-
tion solution and the minimum norm solution, and give the algorithm and corresponding computational
example.

1. Introduction

Throughout the paper, let R” denote the set of n-dimensional real vector, and R}*™, SR™", SR'’", ASR™*",
OR™" denote the sets of real nn X m matrices with rank r, real 7 X n symmetric matrices, real n X n symmetric
positive definite matrices, real n X n antisymmetric matrices, real n X orthogonal matrices, respectively. Let
A~! denote the inverse matrix of A € R, and A*, AT, trA denote the Moore-Penrose generalized inverse,
the transpose, the trace of a matrix A, and I stands for an identity matrix. We define a vector inner product
(x,y) = yTxforall x,y € R". If A € R™" and (Ax, y) = (x, Ay) for all x, y € R", then A is clled a symmetric
matrix. Also we define an inner product (A, B) = tr(BA) for all A, B € R"™". Then R™" is a Hilbert inner
product space and the norm generated by this inner product is Frobenius norm. Let ||A||r be the Frobenius
norm of a matrix A.

Definition 1.1!] Given W; € R, A € R™, if (W1 AW, 'x, y) = (x, WiAW,y) for all x,y € R", that is,
W1AWT 1€ SR™" then A is called a symmetrizable matrix.

Lemma 1.1 Let A € R™" be a given matrix. Then there exists a nonsingular matrix Wy such that
WiAW;! € SR™" if and only if there exists a symmetric positive definite matrix W such that W?A € SR™"
and WAW™! € SR,

Proof. (Necessity) Since Wi is a nonsingular matrix, suppose that the singular value decomposition (SVD)
of Wy is
Wi = RTQ7, (1.1)
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where Q,R € OR™", T = diag(y1,y2, .-, Yn), Y12 Y22+ 2y > 0.
Because W1 AW, 1 e SR™" 5o we have

Wi AW = (W, AWHT, (1.2)

substituting (1.1) into (1.2), we have
Qr’Q'A = ATQr’Q".
Let W = QI'Q’, then W is a symmetric positive definite matrix, and W?A = ATW?, this implies that
WAW™! = WTATW so we have W2A € SR™™ and WAW~™1 € SR™".
(Sufficiency) Because W is a symmetric positive definite matrix, and WAW™! € SR™" let Wy = W, then
the conclusion obviously holds. [

Based on Definition 1.1 and Lemma 1.1, the symmetrizable matrix can be defined as follows.
Definition 1.2 Given W € SR'™", A € R, if WAW~! € SR™", then A is called a symmetrizable matrix.
We denote

SR = {AJA € R™", WAW™! € SR™"},

and
IAllw = IWAW |

Obviously, if A € SR’;;”, thatis, B = WAW™! € SR™" then B is similar to A, which means that the matrix
A have the same eigenvalues as B.

The real symmetric matrix is widely applied in various fields, transforming non-symmetric matrix to
symmetric matrix becomes very important for solving the problems associated with the original matrix.
For example, in 1922, Stenel obtained a symmetric matrix by multiplying non-singular matrix and the
original matrix. In 1936, to solve some problems in probability theory, Kolmogorov obtained a symmetric
matrix by multiplying a positive symmetric matrix and the original matrix. And those methods are widely
used in later papers3=l. Also, in 2000, Sun!®! defined the sets of symmetrizable positive definite matrices.

The inverse eigenvaue problem has broad application background in theoretical physics, molecular
structure, vibration design, vibration control and so on”?. The results on the unconstrained inverse
eigenvalue problem with several sets of matrices have been discussed'’-'. Panl’-8l and Peng!'®! discussed
the constrained inverse eigenvalue problem and associated approximation problems of antisymmetric
matrices, skew symmetric and centrosymmetric matrices and normal matrices, respectively.

However, the constrained inverse eigenvalue problems on symmetrizable or anti-symmetrizable sets
have not been resolved yet. We will study these problems in this paper.

Given interval [g, b], real matrices W € SR, X € R™", A = diag(A1, Ay, ..., Am) € R™™. A(A) and A(A)
denote the sets of eigenvalues of A and A, respectively. A(A)\A(A) denotes the difference of A(A) and A(A).
And we denote SR'V';([ZM = {A|A € SR, A(A) C [a, b]}.

In this paper, we mainly consider the following two problems.

Problem I. Given interval [a, b], the matrices X, A, W, find A € SR} such that

AX = XA, (1.3)

and all the remaining eigenvalues of any matrix A that satisfies (1.3) are located in interval [g, b], that is,
A(A) \ A(A) C [a,b].

Denote the solution set of Problem I by Sg. If Sg is nonempty, we consider the associated optimal
approximation problem.

Problem II. Given A* € R™" find an n X n matrix A € Sg such that

IA = A"llw = min lA - Al (1.4)
A€Sg

The paper is organized as follows. In Section 2, we establish the solvability conditions for Problem I and
give the expression of the general solution to Problem I. In Section 3, we prove the existence and uniqueness
of the solution for Problem II, and we give an algorithm and a corresponding computational example to
illustrate the theoretical results.
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2. The solution of Problem I

Given X € R™™, W € SR, A = diag(A1,Az,...,Ay) € R™™, find A € SR such that AX = XA,
then the i-th column of X is an eigenvector of A corresponding to the eigenvalue A; if and only if the i-th
column of WX is an eigenvector of WAW™! corresponding to the eigenvalue A;, thatis, WAW WX = WXA.
Suppose that the SVD of WX is

WX = u( % 8 )VT, (2.1)

where ¥ = diag(o1,02,...,0,),01 > 02 > -+ > 0, > 0, U = (Uy,Up),U; € OR™, U, € OR™", V =
(V1, Vo), Vi € R™", V, € R™Xm=1),

Based on Lemma 1 in [10], we can obtain the following conclusion.

Lemma 2.1 Given X € R, A = diag(A1lu,, Aaluy, ..., Atl,) € R™™, Ai # Aj(i # j), W € SR,
WX = WXy, WXy, ..., WX;) € R™™, Then there exists E € SR™" such that

EWX = WXA, 2.2)

if and only if
XTW2X;=0,i#ji,j=12,... ¢t

Moreover, the solutions of Equation (2.2) can be expressed as

E = WXA(WX)* + U,GUL, VG e SRI=x(n=n),

t
where U, € R0, UTU, = 1, N(WX)T) = R(Up), (WXi) = ri(i = 1,2,...,t),r= Y. rit <.
i=1
Theorem 2.1 Given X € R, W € R, A = diag(A1ln,, Aol ..., Adly,) € R™™, A # Aj(i # )),
X =(X1,Xs,...,X;) € R™™ then there exists A € SR"Z}Z ] such that AX = XA if and only if

XIW*X;=0,i#j,i,j=12,...,t (2.3)
Moreover, the solutions of Equation (1.3) can be expressed as

A= XAWX)*W + W UL,GUIW, VG e SREZ;]V)X(””), (2.4)

t
where U, € OR™0™), UTU, = I, N(WX)T) = R(Up), n(Xi) = r(WX;) = ri(i = 1,2,...,t),r= Y rit <.
i=1

Proof. AX = XA is equivalent to
WAW™'WX = WXA.

According to WAW-1 € SR™" and Lemma 2.1, the solution set of AX = XA is nonempty if and only if
XTW2X; = 0. The expression of solutions can be expressed as

A = XAWX)*W + WHLGUIW, VG € SR, (2.5)

Now we study the eigenvalues of A in (2.5). Ay, A,,...,A; are eigenvalues of A. Assume that the
eigenvalues of G are u, iy, . .., in-, and corresponding eigenvectors are y1, i, . . ., Yn—r, respectively.
Let
[U. = diag(["lll MZ/ sty Hn—r)/ Y = (]/1/ ]/2/ cecy ]/n—r)/
we have
GY =Yu.
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Due to (WX)*U, = 0 and Ul U, = I, we get
AWTHLY = XAWX)'ULY + WULGY = W IULGY = WL Y.

It shows that 1, o, .. ., n—r are eigenvalues of A. Therefore, we only restrict ui, ta, ..., pn—r € [4,b], then
the general expression of the solutions of (1.3) is (2.4). O

Denote the solution set of Problem I by Sg. If Sg is nonempty, we can obtain the following conclusion.
Corollary 2.1 If solution set Sg of Problem I is nonempty, then St is a closed convex set.

Proof. For matrix sequence {Ai}, Ax € S satisfying I}im Ar = A, we have

A = XAWX)*W + WHLGUIW, Gy € SREZ;]’)X(””),

lim Gy = G,

k—oco
A = XAWX)*W + W LLGUL W.

Because that the eigenvalues are continuous functions of matrix elements, so we can obtain G €
SREZ b]r X170 then A € Sk, that is, Sk is a closed set.
Let

A = XAWX)*W + WG UL W € S,
Ay = XAWX)*W + WHLLGUIW € S,
where YG;, G, € SR(” r)x(” i

Then we have ¢; 61 + G, € SR
is a closed convex set. [J

(n—r)x(n-r)

(a,6] ,0120,c020,c1+¢c =1, (see [17]) and c1 A1 + c2A; € Sg. So Sk

3. The solution of Problem II

. . . “TA7-1 —1 AT -1 _TA—1 AT
Given interval [4,b] and A* € R™" let Ay = WAW W AW o GRixn qnd A, = WAW W ATW o AGRmxn,
2 2

By the spectral decomposition theorem, A; can be expressed as

n

— E T

A1 = Uitkil; .
i=1

where p1 > tp > -+ 2 [ > 02> e 2 000 2 U 20 > Hggisl = 000 2 Uy, Ui is an eigenvector of matrix A
corresponding to the eigenvalue y; satisfying |[u;]| = 1.

Denote iy
+ n
[A1]ljap = Zbuu + Z y,uu + Z auiuiT, (3.1
i=k+1 i=k+I+1
and
(A1, = W Ar ]y W € SR . (3.2)

Obviously, [A*]E’/b] is only determined by a,b, W and A*. Next, we give some properties of [A*]E/a‘/,b] as
follows.
* X W — *
Property 3.1 If A* € SR’I;V[” b7 then [A ][a,b] = A"

Proof. If A* € SR”X" then WA*W~! € SR"™", A\(A*) C [a, b], by (3.2), we have [A* ][a b= O

[a,b)



X. Y. Peng et al. / Filomat 33:7 (2019), 19031909 1907

Property 3.2 If A* =0, then
0, ifa<0<y,
[A*]{;"/h] =1 al, if a>0,
bl,, if b<0.

Property 3.3 If A" € ASR}j", that is, WA W1 € ASR™", then [A*]E’uvb] = [O]Kl"b].

Lemma 3.1 Let WA*W~! = D be a diagonal matrix. If

IA-Allw= min [|A-A"llw
AESR"‘NXI’;M

then A = [A"]{Y, = WDl nW.
Lemma 3.2 Let A* € R™". If

IA-Allw= min |lA-A"llw,
AESRYIXYI

Wia,b]

then A = [A*]m] = WA ] W.

Proof. Let A* € R™", WA*W~! can be uniquely decomposed into the sum of the symmetric matrices A;
and the antisymmetry matrix A,, that is, WAW™ = A + Ay, Ay = w € SR™" and A, =
WA*W’l—ZW’lA*TW € ASR™" then

IA = A", = IWAW™! = Ay = Al = IWAW™ = AyllE + Aol
Suppose that the spectral decomposition of A; is
Ay =P'DP,

where P and D are orthogonal and diagonal matrices, respectively.
From the orthogonal invariance of the Frobenius norm, we have

IWAW™ — Ay |2 = [IPWAW™'P" - DI,

by Lemma 3.1, we have PWAW™'PT = [D],;; and WAW™ = PT[D]j,,P = [A1ljap), it follows that A =
W AW = [A']) . O

Theorem 3.1 Given A* € R™", if (2.3) holds, then there exists unique A € Sg such that

A = A%llw = min [|A — A"[|w.
A€SE

Moreover, A can be expressed as

A = XAWX)*W + WLLGUIW,
where G = [UT A Uz ] -
Proof. Let A* € R™", by Theorem 2.1, we have

ZVIAV,Z

A 0
-1 _ Vo T
WAW —U( 0 & u,
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then
A=A, = IIWAW™ - WA'WZ = [WAW ! — A4 17 + [|AalI7
LVIAVIZTT 0
= VT A |- uTAU|| + 1A
0 G
F 2
_ ZVIAVlz‘l Q 3 U;Al u,; U§A1U2 +IA “2
- 0 G UlAt,  UiAU, 2l
_ U{A1 u, - ZV{AVlzfl U{Al u, . + ”A2“2
urA; U Ui, -G |, F
= U A Uy - ZleAvlz—lHI% +[|UT AU |7 + (IU; A UL 17
+HIUJ AUy = GlI% + [1A2]1F,
clearly,

lA = A%llw = min ||A — A%{lw
A€eSg

is equivalent to
IUF AUz = Gl = _min IUZAU: = Gll,

[a,b]

then we have
G = [U; A1Un] i),

A1 =1 AT
where Ay = WAW W AW ¢ gRwxn, - ]

Corollary 3.1(Minimum norm solution) If solution set Sg of Problem I is nonempty, then problem

IAlw = min [|Allw
Wla,b]

has unique solution
XAWX)*W, if a<0<b,
A= XAWX)*W +a(l, - X(WX)*W), if a>0, (3.3)
XAWX)*W + b(I, - X(WX)*W), if b<O0.

Proof. Suppose that the SVD of WX is (2.1), then UoU] = I, - WX(WX)*. By A* = 0 and Property 3.2 and
Theorem 3.1, we get (3.3). O

Corollary 3.2 If solution set Sg of Problem I is nonempty, and A* € ASR}", then problem II has unique
solution (3.2).

Algorithm 3.1

step 1. Inputreala, b, A* € R™", X € R™", A = diag(A1, Az, ..., Ay) € R™™, W € SRP;

step 2. Calculate W1, WX, and Uy, (WX)* by (2.1);

step 3. If (2.3) holds, then go to step 4, else go to step §;

step 4. Calculate Ay, and U] Ay Up;

step 5. Calculate the spectral decomposition of LIZT A1U;

step 6. Calculate [U] A1 Uz

step 7. Calculate A by Theorem 3.1;

step 8. Stop.

According to Theorem 3.1, the above algorithm shows that A is the solution of problem II. Next, we give
a corresponding computational example to illustrate our theoretical results.

Example 3.1 Consider the constrained inverse eigenvalue problem and associated approximation prob-
lem

AX =XA, s.t. AeSRy"
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with
7 =7 0 0 120 000
3 3 0 0 200 0 250 00 0
13 0 13 7 020 0 001 300
X=1'24 0 -4 2% loo0o2 o|"™loo03 1000}/
101 =2 0 00 0 -1 000 05 2
3 2 5 0 000 02 1
11.0619  20.8073 —6.4230 —-22.4805 —7.7881 —4.3998
_40594 -74180  2.5407 88923 42723 22171
Lo | 105755 :078 232170 777595 725335 323700
=| 32540 -67933 68360 229260 -22.3180 —9.9600 |’
63703 142401 39650 138775 192891  7.7086
143676 -31.8768 —10.5120 —36.7920 —45.7372 —18.3973
anda=1, b=3.

By Algorithm 3.1, then the optimal approximation solution A of Problem II is

77674 137790 -5.4165 -18.9578 -15.6592 —7.3470
-3.0727  -5.3995 2.1296 7.4537 7.7079 3.5091
9.9261  21.0541 -22.5582 -75.4535  66.4853  30.0825
-3.0542 -6.4782 6.6333 222165 -20.4570 —9.2562
6.5048  14.8976 43944 153803  14.9925 6.0759
—-14.5367 -33.0343 -11.4721 -40.1523 -36.2135 -14.7798

A=
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