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Abstract. For an analytic function f on the unit disk D = {z : |z| < 1} satisfying f(0) = 0 = f'(0) — 1,
we obtain sufficient conditions so that f satisfies |(zf"(z)/f(z))*> — 1| < 1. The technique of differential
subordination of first and second order is used. The admissibility conditions for lemniscate of Bernoulli
are derived and employed in order to prove the main results.

1. Introduction

The set of analytic functions f on the unit disk ID = {z : |z| < 1} normalized as f(0) = 0 and f’(0) = 1
will be denoted by A and S be the subclass of A consisting of univalent functions. A function f € SL if
zf'(z)/ f(z) lies in the region bounded by the right half of lemniscate of Bernoulli given by {w : [w? — 1| = 1}
and such a function will be called lemniscate starlike. Evidently, the functions in class S.L are univalent and
starlike i.e. Re(zf’(z)/f(z)) > 0 in ID. The set H[a, n] consists of analytic functions f having Taylor series
expansion of the form f(z) = a + a,z" + a,+12"" + ... with H; := H[1,1]. For two analytic functions f and
g on D, the function f is said to be subordinate to the function g, written as f(z) < g(z) (or f < g), if there
is a Schwarz function w with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). If g is a univalent function,
then f(z) < g(z) if and only if f(0) = g(0) and f(ID) C g(ID). In terms of subordination, a function f € A is
lemniscate starlike if zf"(z)/ f(z) < V1 + z. The class S.L was introduced by Sokél and Stankiewicz [15].

The class S*(¢) of Ma-Minda starlike functions [6] is defined by

S'(p) = {f es: 2O (p<z>},

where ¢ is analytic and univalent on ID such that ¢(ID) is starlike with respect to ¢(0) = 1 and is symmetric
about the real axis with ¢’(0) > 0. For particular choices of ¢, we have well known subclasses of starlike
functions like for ¢(z) := V1 +2z, S*(¢) := SL. If p(z) := (1 + Az)/(1 + Bz), where -1 < B < A <1, the class
S*[A, B] := 8*((1+ Az)/(1 + Bz)) is called the class of Janowski starlike functions [2]. Iffor0 <a <1, A=1-2a
and B = —1, then we obtain §*(a) := S*[1-2a, —1], the class of starlike functions of order .. The class S*(«r) was
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introduced by Robertson [11]. The class $* := §*(0) is simply the class of starlike functions. If the function
@par : ID — Cis given by

2
2 1+ 4z
(PPAR(Z) =1+ ; (log m) , Im \/E >0
then @par(D) := {w = u +iv:v*> <2u—1} = {w : Rew > |[w — 1|}. Then the class Sp := S*(ppar) of parabolic
functions, introduced by Renning [12], consists of the functions f € A satisfying
Re (Zf'(z)) NEL
f@ f@

Sharma et al. [13] introduced the set S¢. := S*(1 +4z/3 + 222 /3) which consists of functions f € A such that
z2f'(z)/ f(z) lies in the region bounded by the cardioid

-1

,zeD.

Qc = {w=u+iv:(9u®+9v* — 18u + 5) — 16(9u* + 9v* — 6u + 1) = 0}.

Theclass S; := §*(¢%), introduced by Mendiratta et al. [8], contains functions f € Athatsatisfy |log(zf'(z)/ f(z)| <
1.

For b > 1/2 and a > 1, Paprocki and Sokél [10] introduced a more general class S*[a, b] for the functions
f € A satistying |(zf'(z)/ f(z))* — bl < b. Evidently, the class SL := §'[2,1]. Kanas [3] used the method of
differential subordination to find conditions for the functions to map the unit disk onto region bounded by
parabolas and hyperbolas. Ali et al. [1] studied the class S.L with the help of differential subordination and
obtained some lower bound on f such that p(z) < V1 + z whenever 1 + fzp’(z)/p"(z) < V1+z (n =0,1,2),
where p is analytic on ID with p(0) = 1. Kumar et al. [5] proved that whenever > 0, p(z) + fzp’(z)/p"(z) <
V1+2z(n=0,1,2)implies p(z) < V1 + z for p as mentioned above.

Motivated by work in [1, 3-5, 8, 12-14], the method of differential subordination of first and second
order has been used to obtain sufficient conditions for the function f € A to belong to class SL. Let p be an
analytic function in ID with p(0) = 1. In Section 3, using the first order differential subordination, conditions
on complex number f3 are determined so that p(z) < V1 + z whenever p(z) + fzp’(z)/p"(z) < V1 +z (n =3,4)
or whenever p?(z) + Bzp’(z)/p"(z) < 1 +z (n = —=1,0,1,2) and alike. Also, conditions on  and y are obtained
that enable p?(z) + zp’(z)/(Bp(z) + ) < 1 + z imply p(z) < V1 + z. Section 4 deals with obtaining sufficient
conditions on f and y, using the method of differential subordination which implies p(z) < V1 +z if
yzp' (z) + 220" (2) < z/(8 V2) and others. Section 5 admits alternate proofs for the results proved in [1] and
[5]. The proofs are based on properties of admissible functions formulated by Miller and Mocano [9]. The
admissibility condition is used in [7] for investigating generalized Bessel functions.

2. The admissibility condition

Let Q be the set of functions g that are analytic and injective on D \ E(g), where

E(g) = {C edD: lirrclq(z) = oo}

and are such that q’(C) # 0 for C € JD \ E(g).

Definition 2.1. Let Q) be a set in C,q € Q and n be a positive integer. The class of admissible functions W,[C3, q],
consists of those functions ¢ : C> X ID — C that satisfy the admissiblity condition (r,s, t;z) & Q whenever r = q(C)

gl ) o
W1[Q, g] will be denoted by W[Q, q].

+ 1),for zelD,C e D\ E(g) and m = n > 1. The class
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Theorem 2.2. [9, Theorem 2.3b, p. 28] Let ¢ € W,,[Q, q] with q(0) = a. Thus for p € Hla, n] such that

U(p(2),zp’(2), zzp”(z);z) €eQ = p(z) <q(2). (1)

If Q) is a simply connected region which is not the whole complex plane, then there is a conformal
mapping h from D onto Q satisfying 1(0) = ¢(a,0,0;0). Thus, for p € H][a, n], (1) can be written as

211

Y(p(2),2p'(2), 29" (2);2) < (z) = p(2) < q(2). ()

The univalent function q is said to be the dominant of the solutions of the second order differential equation
(2). The dominant 4 that satisfies § < g for all the dominants of (2) is said to be the best dominant of (2).

Consider the function g : D — C defined by g(z) = V1 +z, z € D. Clearly, the function g is univalent
in D\ {-1}. Thus, g € Q with E(g) = {-1} and g(D) = {w : |w? — 1| < 1}. We now define the admissibility
conditions for the function V1 + z. Denote W,[Q), V1 + z] by W,[Q), L]. Further, the case when Q = A = {w :
lw? =1 <1,Rew > 0}, W,[Q, V1 +z] is denoted by ¥,[L].

If || = 1, then

4(0) € g(OD) = (D) = (w: [w? — 1] = 1) = {«/2cos29ef9 T <0< %}

Then, for { = 2 cos20¢%? — 1, we have

1 . 1 3t -1
Q) = —(\/ZCOSZQe’G - ‘ ): and ¢'(0)= ——————
g 2 V2cos20e®) 2+2cos26 1 4(2 cos 20¢2i0)3/2
and hence
Cq"”"(0) e 20 1 3
e( q'(0) € 4cos20 2 4
Thus, the condition of admissibility reduces to (1, s, t; z) ¢ Q) whenever (7, s, t;z) € Dom 1) and
, me3i0 t 3m
r= V2cos20¢?, s= —o, Re(— + 1) > — (3)
2V2cos20 5 4

where 0 € (-t/4,t/4)and m > n > 1.
As a particular case of Theorem 2.2, we have

Theorem 2.3. Let p € H[1,n] withp(z) # 1and n > 1. Let Q c Cand ¢ : C* x D — C with domain D satisfy
Y(r,s,t;z) & Q whenever z € D,

forr = V2cos20¢%, s = me9 /(2 V2 cos 20) and Re(t/s + 1) > 3m/4 wherem > n > 1 and —1/4 < O < 7t/4. For
z € D, if (p(z),zp'(2), 2%p" (z); z) € D, and Y(p(z), zp' (2), 22" (2); z) € Q, then p(z) < V1 + z.

The case when 1 € W,[L] with domain D, the above theorem reduces to the case: For z € D, if
(p(2),2p' (2), 22" (2);z) € D and Y(p(z), zp' (2), 22p"" (2);2) < V1 + z, then p(z) < V1 + z.

We now illustrate the above result for certain (). Throughout, the values of 7, s, t are as mentioned in (3).

Example 2.4. Let Q = {w : [w — 1| < 1/(2 V2)} and define  : C> x D — C by ¢(a,b,c;z) = 1+ b. For ¢ to be in
WI[Q, L], we must have Y(r,s, t;z) & Q for z € ID. Then, (1, s, t; z) is given by

me3i9

(r,s,t;2) =1+ ——
v 2V2cos26
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and therefore we have that
1

me3i0 m m
[Y(r,s, t;z) = 1] = = > > .
2V2c0s20| 2V2c0s20  2V2 22
Thus, ¢ € W[Q, L]. Hence, whenever p € H; such that |zp’(z)| < 1/(2 V2), then p(z) < V1+z.

Example 2.5. Let Q = {w : Rew < 1/4} and define ¢ : (C\ {0}) x C> XD — C by (a, b, c;z) = b/a. For y to be in
WI[Q, L], we must have Y(r,s, t;z) & Q for z € ID. Now, consider (r, s, t;z) given by

meZi@

s
s tiz) = r 4cos20°

Then, we have

N m 2i0 _ﬂ>1
Ret,b(r,s,i‘,z)—4COSZ6 Re(e””) = 127
%

That is (1, s, t; z) & Q. Hence, we see that 1p € V[Q, L]. Therefore, for p(z) € H if

Zp’(z)) 1
Re < -,
( piz) ) 4

then p(z) < V1 + z. Moreover, the result is sharp as for p(z) = V1 + z, we have

zp’(2) 3 z 1
Re( ) )_ (2(1+Z))—>4asz—>1.
That is V1 + z is the best dominant.

Example 2.6. Let Q = {w : |w — 1| < 1/(4 V2)} and define 1 : (C \ {0}) x C2 x D — C by ¥(a,b,c;z) = 1 + b/a>.
For 1 to be in W[Q), L], we must have Y(r,s,t;z) & Q for z € ID. Then, (1, s, t; z) is given by

mei@

7 /t/ = 1 V=
s £:2) 2(2 cos 20)372

and so
m 1

i0 m
= > > :
4V2(cos20)32 42 42

me
797 t/ -1 =
Wirs,52) =1l ‘2(2 cos 260)32

Thus, ¢ € W[Q, L]. Hence, whenever p € H, such that

A
P22) | 42’

then p(z) < V1 +z.

3. First Order Differential Subordination

In case of first order differential subordination, Theorem 2.3 reduces to:
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Theorem 3.1. Let p € H[1,n] withp(z) # Landn > 1. Let Q c C and ¢ : C*> X D — C with domain D satisfy

Y(r,s;z) ¢ Q whenever z € D,

for r = V2c0s20e® and s = me*°/(2V2cos20) where m > n > 1 and —n/4 < 0 < m/4. Forz € D, if
(p(2),2p'(2);2) € D and Y(p(2), zp’ (2); z) € Q, then p(z) < V1 +z.

Likewise for an analytic function , if QO = h(ID), then the above theorem becomes

Y(p(z),zp'(2);2) < h(z) = p(z) < V1 +z.

Using the above theorem, now some sufficient conditions are determined for p € H; to satisfy p(z) <
V1 + z and hence sufficient conditions are obtained for function f € A to belong to the class S.L.

Kumar et al. [5] proved that for g > 0 if p(z) + Bzp’(2)/p"(z) < V1+z (n = 0,1,2), then p(z) < V1+z.
Extending this, we obtain lower bound for  so thatp(z) < V1 + zwhenever p(z)+pzp’(z)/p"(z) < V1 +z(n =
3,4).

Lemma 3.2. Let p be analytic in D and p(0) = 1 and By = 1.1874. Let

o)+ D < VTH2 6 > ),

then
p(z) < V1+z.

Proof. Let p > 0. Let A = {w : [w* — 1] < 1,Rew > 0}. Let ¢ : (C\ {0}) x C x D — C be defined by
Y(a,b;z) = a + pb/a’. For ¢ to be in W[L], we must have i(r,s;z) ¢ A for z € D. Then, ¢, s; z) is given by

Y(r,s;2) = V2 cos 2606 + prm

8cos220’
so that
pm Zm?
[Y(r,s; z)? =1 =1+ —sec*?26 cos 30 + (4sec®26 + 2sec® 20 — sec* 20)
V2 32
3,13 4,4
+ 6‘[1— sec''/226 cos 0 + io% sec® 20 =: g(0)

Observe that g(0) = g(—0) for all 6 € (—nt/4, 1/4) and the second derivative test shows that the minimum of
g occurs at 0 = 0 for fm > 1.1874. For § > 1.1874, we have m > 1.1874. Thus, g(0) attains its minimum at
0 = 0 for B > Po. For iy € W[ L], we must have g(0) > 1 for every 0 € (—t/4, /4) and since
) ‘Bl’l’l 5ﬁ2m2 ﬁ?)m?) ‘B4m4 ﬁ 5ﬁ2 ﬁS ﬁ4
0)=1+— 21+ —+ — 1.
min g(0) +\/§+ o +64\/§+4096_ +\/§+32+64\/§+4096>

Hence for g > o, ¥ € W[L] and therefore, for p(z) € Hy, if

p(z) + ﬁ;f(g) < V1+z(B>Ppo)

wehavep(z) < V1+z O
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Lemma 3.3. Let p be analytic in ID and p(0) = 1 and By = 3.58095. Let

o)+ R < VT2 5> o)

then

p(z) < V1+z.

Proof. Let p > 0. Let A = {w : |[w? — 1] < 1,Rew > 0}. Let ¢ : (C\ {0}) x C Xx D — C be defined by
Y(a,b;z) =a+ ﬁb/a4. For ¢ to be in W[ L], we must have i(r,s;z) € A for z € ID. Then, (1, s; z) is given by

—i0

. me™
Y(r,s;z) = V2cos 2060 + P

8052260 V20520
so that
2 12 1.5 pm* 2
[Y(r,s;2)" = 11" =1+ pm(1 - 5 sec 20) + o (sec™ 20 + 4 sec” 20)
3413 444
+ ﬁ256 sec®20 + % sec'?20 =: g(0)

Observe that g(0) = g(-0) for all 0 € (-n/4,7/4) and the second derivative test shows that g attains its
minimum at 6 = 0 if fm > 3.58095. For g > 3.58095, we have pm > 3.58095. Thus, g(0) attains its minimum
at 0 = 0 for g > fy. For ¢ € W[L], we must have g(0) > 1 for every 0 € (—7t/4, n/4) and since

582m2  Bm®  Bmt 542 3 4
pm Sgw?  pwd pmt g5 g g

ing(0) =1+ Lt >14+24 22
min g(0) 2 T Tea "6 T T2t e Tome T 1282

Hence for g > o, ¥ € W[L] and therefore, for p(z) € H, if

p(z) + ﬁ;f(g) < V1+z(B>Ppo)

we have p(z) < V1+z. O

On the similar lines, one can find lower bound for 8, such that p(z) + 8,zp’(z)/p"(z) < V1 +z, n € N implies
p(z) < V1+z.
Now, the conditions on f and y are discussed so that p?(z) +zp’(z)/(Bp(z) +y) < 1+zimplies p(z) < V1 + z.

Lemma 3.4. Let §,y > 0and p be analytic in ID such that p(0) = 1. If

zp'(z)

2
pa) s Br(z) +y

1+2z,

then
p(z) < V1+z.

Proof. Let h be the analytic function defined on D by h(z) =1+ z and let Q = i(D) = {w : [w — 1| < 1}. Let
P (C\ {-y/B}) x Cx DD — C be defined by

Y(a,b;z) = a® +

pa+y
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For 1 to be in W[Q, L], we must have (1, s;z) ¢ Q for z € ID. Then, {(r, s; z) is given by
me3i0
(2 V2cos 20)(B V2 cos 20¢? + y) ’

P(r,s;z) = 2cos 2060 +

and so

[Y(r,s;2) — 11> = |cos 6 +

mp V2 cos 20 cos 0 + ym : +lsine mpB V2 cos20sin 0 :
sin 0 — ,
2V2cos20d(0) 2 V2 cos26d(6)

where d(6) = |B V2 cos20¢' + y|*> = cos 20(2p* + y* sec 20 + 2By Vsec 26 + 1).

Hence on solving, we get that

) p?m? sec? 20 y2m? sec® 20
lp(r,s;2) = 11" =1+ +
4282 + y?sec20 + 2By Vsec20 + 1)2  8(2p% + y? sec 26 + 2By Vsec 26 + 1)
. Bym?* Vsec26 + 1sec? 260 s pm
4(2p% + y?sec20 + 2By Vsec20 +1)2 282 + y?sec20 + 2By Vsec20 + 1
ym Vsec20 + 1sec20 )

+
2(28% + y?sec20 + 2By Vsec20 + 1)

Using the second derivative test, we get that minimum of g occurs at 6 = 0. For ¢ € W[Q, L], we must have
g(0) = 1 for every 0 € (-n/4, 1/4) and since

. B prm? y2m? Bym? pm ym
O S VT T BV r ) INRGVRAY) | GV R | NBGNZA )
1+ ﬁz + 7/2 + Pr + P
T ABV2HYE B(BVZHY 2V2(BVZ+Y)t (BV2Z+y)
Y

+—">1.
V2(6V2+ )
Hence, for 8,y > 0, ¢ € Y[Q, L] and therefore, for p € Hj, if

zp'(z)

2
pM+W®+V

<1+z

thenp(z) < Vi+z O
Now, conditions on  are derived so that p?(z) + Bzp’(2)/p"(z) < 1 +z (n = =1,0,1,2) implies p(z) < V1+z.
Lemma 3.5. Let p be analytic in ID with p(0) = 1. Let  be a complex number such that Re p > 0. If
P*(z) + Bzp’ (2)p(z) < 1 + 2,
then

p(z) < V1+z.
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Proof. Let h be the analytic function defined on D by h(z) =1+ z and let Q = i(D) = {w : [w — 1| < 1}. Let
Y : C2 XD — C be defined by 1(a, b;z) = a> + fab. For ¢ to be in W[Q, L], we must have (r,s;z) ¢ Q for
z € D. Then, (1, s; z) is given by
ﬁmellie

2

Y(r,s;2) = 208 20e*0 +

and we see that

mRe Re
>1+ ﬁ>1+ P

> 1.
- 2 2

lY(r,s;2) — 1| = ‘1 + T%ﬁ‘

Hence, for  such that Re § > 0, ¢ € W[Q, L] and therefore, for such complex number § and for p € Hj, if
PA(2) + Bzp)p’(2) < 1 +z,
thenp(z) < Vi+z 0O
Lemma 3.6. Let > 0 and p be analytic in ID with p(0) = 1. If
P2 +pzp'(2) <1+z,
then
p(z) < Vi+z
Proof. Let h be the analytic function defined on D by h(z) =1+ z and let Q = i(D) = {w : [w — 1| < 1}. Let
Y : C2x D — C be defined by y(a, b;z) = a> + Bb. For 1 to be in W[Q, L], we must have y(r,s;z) ¢ Q for
z € D. Then, (1, s; ) is given by

ﬁm63i6

2 V2 cos ZGI

Y(r,s;z) = 2cos 20679 +

and so

2,2 2,2 2
ﬁmsec26+ﬁ—m\/sec29+121+ﬁm+ﬁ—m21+ﬁ—+£>1,
B 2 R Y

Hence, for g > 0, ¢ € W[Q, L] and therefore, for p(z) € H;, if

[W(r,s;2) = 1P =1+

Pi(2) +pap'(2) < 1+2,
thenp(z) < V1+z. O
Lemma 3.7. Let § > 0 and p be analytic in ID with p(0) = 1. If

Bzp'(2)
p(z)

pZ(z) + <1l+z,

then

p(z) < V1+z.
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Proof. Let h be the analytic function defined on ID by h(z) = 1 +zand let Q = k(D) = {w : |[w - 1] < 1}.
Let ¥ : (C\ {0})) X C X ID — C be defined by ¥(a,b;z) = a* + pb/a. For ¢ to be in W[Q, L], we must have
Y(r,s;z) ¢ Q for z € D. Then, (1, s; z) is given by

2i6)
Co) 2ig , Pme
P(r,s;z) = 2cos20e™ + 1cos20’
and so
prm? pm prm* B B> B
) -1P=1+——— + 5 >1+ s+ By B
R e T R B T S A e
Hence for g > 0, ¢ € W[Q, L] and therefore, for p(z) € H;, if
'(2)
2(z) + Pap <1+z,
7 p(2)

thenp(z) < V1+z. O
Lemma 3.8. Let By = 2 V2. Let p be analytic in D with p(0) = 1. If

Bzp'(2)
p2(2)

pz(z) + <14z (B> po),

then
p(z) < V1+z.

Proof. Let h be the analytic function defined on ID by h(z) = 1 +zand let Q = (D) = {w : |[w - 1] < 1}.
Let ¥ : (C\ {0}) Xx C XD — C be defined by 1(a,b;z) = a* + gb/a®. For ¢ to be in W[Q, L], we must have
Y(r,s;z) ¢ Q for z € D. Then, (1, s; z) is given by

, mel®
P(r,s;z) = 2cos 206%9 4 ﬁ—,
42 cos’220
and so
prm? Bm cos 30

[p(r,s;2) = 1P =1+ - 9(9)

—+ =
32c0s320  24/2 cos3/2260

It is clear using the second derivative test that for fm > 22, minimum of g occurs at 6 = 0. For § >
22, pm > 2 V2 which implies that minimum of g(0) is attained at 6 = 0 for § > fy. Hence

prm? - pm g B
+—21+=+—>1
32 242 32 242
Hence for B > o, ¥ € Y[Q, L] and therefore, for p(z) € H, if
pzpr'(2)
P*(2)

thenp(z) < V1+z. O

ming(0) =1+

pi2) + <1+z (B> po),

Next result depicts sufficient conditions so that p(z) < V1 + z whenever p*(z) + zp’ (2)p(z) < 2 +2)/(2 - 2).
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Lemma 3.9. Let By = 2 and p be analytic in ID with p(0) = 1. If

PE) + fp @pe) < S (82 fo)
then

p(z) < V1+z.

The lower bound By is best possible.

Proof. Let B > 0. Let h be the analytic function defined on ID by h(z) = (2 +z)/(2 —z) and let Q = i(D) = {w :
2(w —1)/(w + 1)| < 1}. Let ¢ : C*> X D — C be defined by y(a, b;z) = a> + pab. For ¥ to be in W[Q, L], we
must have (1, s;z) € Q for z € D. Then, y(r, s; z) is given by

4i0
U(r,5;z) = 2 cos 20e*7 + ﬁ%
then
2 A1+ mp/2)?

= Wvpmj2r+a+a( + pmj2cosdo — IO

2(Y(r,s;2) — 1)
‘ Y(r,s;2) +1

Using the second derivative test, one can verify that minimum of g occurs at 6 = 0. Thus

4(1 + Bm/2)?
1+ pm/2)2 +4(1 + Bm/2) +4

min g(0) =

Now, the inequality

41 + /2y N
(1+B/22>+41+pB/2)+4 —

holds if

2
3(1+§) —4—4(1+§)20

or equivalently if § > 2.
Since, m > 1, fm > 2 implies that

4(1 + pm/2)? 1
(1+Bm/2)> +4(1 +Pm/2)+4 —

2

2(Y(r,s;2) = 1)
U(r,sz)+1

and therefore > 1. Hence, for B = o, ¥ € V[Q, L] and for p € H;, if

PE) + b ) < S (82 o),

thenp(z) < Vi+z. O

Remark 3.10. All of the above lemmas give a sufficient condition for f in A to be lemniscate starlike. This can be
seen by defining a function p : ID — C by p(z) = zf'(2)/ f(2).
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4. Second Order Differential Subordinations

This section deals with the case that if there is an analytic function p such that p(0) = 1 satisfying a
second order differential subordination then p(z) is subordinate to V1 + z. Now, for r,s, t as in (3), we have

Re(g + 1) > BTm for m > n > 1. On simplyfying,

Re(te ) > m(3m — 4)

S ). )
8 V2cos26
If m > 2, then

1 1
> .
2v2cos20 22

Lemma 4.1. Let p be analytic in ID such that p(0) = 1. If

Re(te™3) >

3z
zp'(2) + 2% (2) < —,
p p 8v2
then

p(z) < V1+z.

Proof. Let h(z) = 3z/(8 V2), then Q = (D) = {w : [w| < 3/(8 V2)} and let Y : C x DD — C be defined by
Y(a,b,c;z) = b+ c. For ¢ to be in W[Q), L], we must have (r,s, t;z) ¢ Q for z € ID. Then, (7,5, t;z) is given
by

me3i0
(r,s,t2) = ———— +1.
v 2V2cos26
So, we have that
m j 3m?
[W(r,s,t;2)] = |——= + te 30| > ———.
2V2c0s20 8 V2020
Since m > 1, so
3 3
Y(r,s,t;2)| > > 2
v 8VZcos20 812

Therefore, € W[Q, L]. Hence, for p € H; if

3z
zp'(2) + 229" (2) < —,
P P 82
thenp(z) < V1+z. O

We obtain the following theorem by taking p(z) = zf’'(z)/ f(z) in Lemma 4.1, where p is analytic in ID and
p(0) = 1.
Theorem 4.2. Let f be a function in A. If f satisfies the subordination

zf'(2) (1 Ve Zf’(Z)) g ’(Z)(sz "(z)  322f"(2)

f@ f@  f@ f@\ f@ f@)
22f"(2) 2@\ sz’(z)) 3z
T +2(f(2>) @ ) sva

then f € SL.
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Lemma 4.3. Let p be analytic in D such that p(0) = 1 and let p € H[1,2]. If
3
2 ’ 217
(2)+zp'(2) + z (z)<1+(1+—)z,
g g b 2V2

then
p(z) < V1+z.

Proof. Leth(z) = 1+ (1+3/Q2V2)zthen Q = h(z) = {w : [w—1] < 1+3/Q2V2)}. Let ¢ : €3 xID — C be
defined by y(a,b,c;z) = a%> +b+c. For Y to be in W[Q, L], we must have (r,s,t;z) ¢ Q for z € ID. Then,
Y(r,s,t;z) is given by

P05, 62) = 20520620 + — 1
7,5,t;z) = 2cos20e”” + ———— +t.
2V2cos26
So, we have
[Y(r,s, t2) — 1| = e+ ——— 11739 > Re (e’9 4+ te730
2V2cos260 2V2cos26

3m?
= cos 0 + —— sec'/?26 =: g(0)
82 g

The second derivative test shows that minimum of g occurs at 6 = 0 if m > 2. Therefore, ¢ € W[Q, L].
Hence, for p € H[1,2] if

2 / 2.1 1 (1 i),
(@) +zp'(2)+z°p"(z) <1 + +2\/§z

thenp(z) < V1+z. O
The following theorem holds by taking p(z) = zf’(z)/ f(z) in Lemma 4.3, where p is analyticin ID and p(0) = 1.

Theorem 4.4. Let f bea function in Asuch that zf'(z)/ f (z) has Taylor series expansion of the form 1+a,z> +azz>+. . ..
If f satisfies the subordination

(£ ) A SO _SE), Zf’(z)(zzf”’(z) 3@

@) " f@ @ f@) o\ f@  f@
22f"@) (2 (2) 2_2zf'<z>) ( 3 )
e +2(f(z)) @ ) G

then f € SL.

The next result admits some conditions on g and y for p(z) < V1 +z whenever yzp'(z) + pz*p" (z) <

z/(8V2).
Lemma 4.5. Let y > > 0 be such that 4y — B > 1. Let p be analytic in ID such that p(0) = 1 and

z
20’ (2) + B2y (z) < —=fory > B> 0and 4y - > 1,
yzp' (@) + pzp 8\/Ef yzp y =B

then

p(z) < V1+z.
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Proof. Let h(z) = z/(8V2) forz € D and Q = W(D) = {w : [w| < 1/(8 V2)}. Let ¢ : C> x D — C be defined
by (a,b,c;z) = yb + Bc. For ¢ to be in W[Q, L], we must have (r,s,t;z) ¢ Q for z € D. Then, ¢(r,s,t;z) is
given by

ymew

(r/ S/ t/ Z) = + t
v 2V2cos26 p
Hence, we see that
ym —3i6 ym -3i0
[Y(r,s,t;2)| = | ——= + fte > ———— + fRe(te™").
2V2cos20 2V2cos20
Using (4),

4m(y — B) + 3pm?
8V2cos20

[Y(r,s,t;2)| >

Since m > 1, so

sy-p+3p_ dy-p
8V2cos20 SVZCOSZQ‘

Given that4y - >1,

[Y(r,s,t;2)| =

1 1
> .
8V2cos260 82

Therefore, y € W[Q, L]. Hence for p € H; satisfying

[Y(r,s,t;2)| >

b4
2p’ (2) + B22p"'(z) < —=fory > B >0and 4y —f > 1,
vzp pz°p avs Y p Y =P

wehavep(z) < V1+z O

By taking p(z) = zf’(z)/f(z) in Lemma 4.5, where p is analytic in ID and p(0) = 1, the following theorem
holds.

Theorem 4.6. Let f be a function in A. Let y, B be as stated in Lemma 4.5. If f satisfies the subordination

zf'(2) (1 LY@ Zf’(Z)) N Zf’(Z)(ZZf"'(Z) 322" (2)

"Fo TP T e ) TP\ e T fe
2zf"(2) zf’(z))2 ~ 22f’(z)) z
e *2( @) " o ) sve
then f e SL.

5. Further results

Now, we discuss alternate proofs to the results proven in [1] where lower bounds for f are determined

for the cases where 1 + pzp’(z)/p"(z) < V1+2z (n = 0,1,2) imply p(z) < V1 + z. The method of admissible
functions provides an improvement over the results proven in [1].
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Lemma 5.1. Let p be analytic function on 1D and p(0) = 1. Let fo = 2V2(V2 —1) ~ 1.17. If
1+pzp'(2) < VI+z (B2 fo),
then
p(z) < Vi+z

Proof. Let > 0. Let A = {w : |w? — 1| < 1,Rew > 0}. Let us define ¢ : C> X D — C by ¢/(a, b;z) = 1 + b. For
Y to be in W[ L], we must have (1, s;z) € A for z € ID. Then, y(r,s; z) is given by

m .
Y(r,s;z) =1+ __pm e3if
2V2cos26
and so
4404 3413 212
[Y(r,s;2)* — 1P = ﬁ64 sec?20 + —— ﬁ sec®?26 cos 36 + P sec20 =: g(0)

Observe that g(0) = g(—0) for all 6 € (—nt/4,7/4) and the second derivative shows that the minimum of g
occurs at 6 = 0 when > 2 V2(¥2 - 1). For Y € Y[L], we must have g(0) > 1 for every 0 € (—nt/4,/4) and
since

ﬁ ﬁ?) 3 ﬁZ 2 54 ﬁS 52
min g(0) = 4\/_ 3 64 4\/_ +

The last term is greater than or equal to 1 if

(B+2V2)2(B-4+2V2)(B+4+2V2) >0

or equivalently if

B>4-2V2=2V2(V2-1)=p,

Hence, for g > By, ¢ € W[L] and therefore for p(z) € Hs, if

1+ Bzp'(z) < V1+2z (B = po),
then, we have p(z) < Vi+z O
Asin [1, Theorem 2.2], using above lemma, we deduce the following.
Theorem 5.2. Let fo =2V2(V2-1) ~ 1.17 and f € A.

1. If f satisfies the subordination

1R, O _FO
ER )

then f € SL.
2. If1+pzf"(z) < N1 +2z (B = o), then f'(z) < V1 +z.

<Vl+z (ﬁzﬁo)/
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Lemma 5.3. Let p be analytic function on D and p(0) = 1. Let By = 4(V2 — 1) ~ 1.65. If

) N7z o),

then
p(z) < V1+z.

Proof. Let B > 0. Let A = {w : [w? =1 < 1,Rew > 0}. Lety : (C\{0) xCxD — C be defined by
Y(a,b;z) =1+ Bb/a. For ¢ to be in W[ L], we must have y(r,s;z) ¢ A for z € ID. Then, (r,s; z) is given by

m e2i0
. =1 1 - —
yirs2) thy ( ZCOSZQ)

so that
444 272 3413
2 g Bm pm” Bm
[Y(r,s;2)" = 1|° = 3 sec 29+( 1 1% )sec 20
4,4 2.2 3,3 4 2 3
S LAY | U P S
256 4 16 256 4 16

The last term is greater than or equal to 1 if

(B+4PB+4+4V2)(B+4-4V2) >0,

which is same is > 4 V2 — 4 = .
Therefore, for p(z) € H;, if

Pg(? <VITz(B=p)

we have p(z) < V1 +z.

As in [1], Theorem 2.4, we get the following.

Theorem 5.4. Let fy = 4(V2—1) ~ 1.65 and f € A.
1. If f satisfies the subordination
2f"(@)  zf'(2) I
1+ﬁ(1+f/7 f(Z)) 1+z (ﬁZﬁO)/

then f e SL.
2. If 1+ Bzf"(z)/ f(z) < N1 +z (B = Po), then f'(z) < V1 +z.
3. If f satisfies the subordination

" 2 ’
(LR - ZEE) T3z 52 o)

then 22 f'(z)/ f3(z) < V1 +z.
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Lemma 5.5. Let p be analytic function on 1D and p(0) = 1. Let fo = 4V2(V2 — 1) ~ 2.34. If

ﬁzi((z) Viez (B2 po),

then
p(z) < V1+z.

Proof. Let p > 0. Let A = {w : lw? -1 < 1,Rew > 0}. Let ¢ : (C\{0}) x CxID — C be defined by
W(a,b;z) =1+ Bb/a>. For i to be in W[ L], we must have {(r,s;z) ¢ A for z € D. Then, (1, s; z) is given by

i0

me
(rsz)=1+pfp——m—
v ﬁ4\/§cos3/226
so that
4,4 3.3 2,2
2 _qp_Bm prm 4 prm 3
[Y(r,s,t;2)" = 1" = 1024sec 620 + —— a sec 20 Vsec20 + 1 + 3 sec” 20

>ﬁ4 4+ﬁ3m3+ﬁ2 2>‘B4+ ﬁ3 ﬁZ
- 1024 342 8 1024 32\/-

The last term is greater than or equal to 1 if
(B+4V22(B-4V2(V2-1))(B+4V2(V2+1)) 20

equivalently

B=4V2(V2-1)=
Thus, for g > By, we have ¢ € W[L]. Therefore, for p(z) € H;, if

pP() 776 fo),

we have p(z) < V1 +z.

2f'(2)
f@@)

Theorem 5.6. Let fo = 4 V2(V2 — 1) ~ 2.34 and f € A. If f satisfies the subordination

1+2zf"(z)/ f'(2) —
1_ﬁ+‘B( Zf/(Z)/f(Z) )< 1+Z(ﬁ2ﬁ0)/

By taking p(z) =

as in [1], we obtain the following.

then f € S.L.

Kumar et al. [5] introduced that for every > 0, p(z) < V1 + zwhenever p(z)+pzp’(z)/p"(z) < V1+z(n =
0,1,2). Using admissibility conditions (3), alternate proofs to the mentioned results are discussed below.

Lemma 5.7. Let > 0 and p be analytic in ID and p(0) = 1 such that

p(z) +pzp’(z) < V1+z,
then

p(z) < V1+z.
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Proof. Let p>0. Let A ={w: [w* -1 <1,Rew > 0}. Let ¢ : C*> x D — C be defined by ¢(a, b;z) = a + pb.
For i to be in W[L], we must have {(r,s;z) ¢ A for z € D. Then, (r,s; z) is given by

me3io
(r,5;2) = V2082060 + f——x
v '82 V2 cos 26
so that
582m2 3,3 4,4
[W(r,s;2)* =17 = 1+ 2m + 54 +ﬁ4 +ﬁ64 sec?26
5‘827112 ﬁSH”lB ﬁ4m4
>
>1+2pm+ 1 + n + a
ﬁz g B
>1+2 — > 1.
+20+— + +64

Thus p € W[L]. Therefore, for p(z) € H,, if
p@) +pzp’(z) < V1+z (8> 0),
we havep(z) < V1+z. 0O
Taking p(z) = zf"(2)/ f(z) and p(z) = f'(z), we get the following.
Theorem 5.8. Let f > 0and f be a function in A.
1. If f satisfies the subordination
z2f'(x) 2@ (2@ z2f(2)
+ 1+ - <
@ P e e
then f € SL.
2. If f'(2) + Bzf"(z) < V1 +z then f'(z) < V1 +z.
Lemma 5.9. Let > 0 and p be analytic in ID and p(0) = 1 such that

por+ D T

1+z,

then
p(z) < V1+z.

Proof. Let p > 0. Let A = {w : [w* — 1] < 1,Rew > 0}. Lety : (C\{0}) x Cx D — C be defined by
Y(a,b;z) = a + pb/a. For ¢ to be in W[L], we must have y(r,s;z) ¢ A for z € D. Then, y(r,s; z) is given by

11020
Y(r,s;z) = V2cos 266 + ﬁ o520
so that
4,4 2,2 2,2
[W(r,s, ;2 — 1P =1+ — pm sec*20 + —— pm sec?20 + P sec26
256 8 2
3.3

m
Vsec26 + 1sec® 0

522 3,73 4.4

e
8 82

2 3 4

>1+ \/_‘B+—+—\/_+ﬁ

+ pm Vsec20 +1 +

>1+ \/E,Bm+
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Thus, ¢ € W[L]. Therefore, for p(z) € H;, if
@)+ D Tz (>0,
p(2)
wehavep(z) < V1+z O
For p(z) = zf'(z)/ f(z) and p(z) = z2f'(z)/ f*(z), we have
Theorem 5.10. Let 5 > 0and f be a function in A.
1. If f satisfies the subordination

2f(2) Q) 2fQ)
@) +5@+'fc> f@>)<'1+L

then f € SL.
2. If f satisfies the subordination

2f) (@) 2Zf”(2))

o oG T )< T
then z*f'(z)/ f(z) < V1 +z.

Lemma 5.11. Let f > 0 and p be analytic in ID and p(0) = 1 such that

p(z) + F ;ZS) < \/m,

then
p(z) < V1+z.

Proof. Let p > 0. Let A = {w : [w* — 1] < 1,Rew > 0}. Lety : (C\{0}) x Cx D — C be defined by
Y(a,b;z) = a + pb/a®. For ¢ to be in W[ L], we must have 1(r,s;z) ¢ A for z € D. Then, ¢(r,s;z) is given by

A i0
U(r,5;2) = V2cos20e + ‘BL,
42 cos?/226
so that
5ﬁ2m2 ﬁ3m3 ﬁ4m4
e ) \ )
; -1 =1 2 ) ’
l(r,s;2)" =1 +pm + sec? 20 + 3 S€C 0+ To0a 5 0

58 B B
IR R R

5ﬁ2m2 ﬁ3m3 ﬁ4m4
>
%6 T 32 Tiom TPt
Thus, ¢ € W[L]. Therefore, for p(z) € H;, if

>1+pm+

p(z) +ﬁzp’(z) < V1+z(>0),

p*(z)
we havep(z) < V1+z. O
. z2f'(z . .
Taking p(z) = , we obtain the following.

fz
Theorem 5.12. Let > 0 and f be a function in A. If f satisfies the subordination

zf'(z) _ 1+zf"(2)/f'(2)
@ “4 w@mw)<””’
then f € SL.
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