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Biderivations and Bihomomorphisms in Banach Algebras
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Abstract. In this paper, we solve the following bi-additive s-functional inequalities
Ifx+yz+w)+ fx+y,z-w)+ fx—y,z+w)+ f(x —y,z —w) —4f(x,2)l|
<ls@f G+ yz=w) +2f (x =,z + ) = 4f(x,2) + 4 (v, w)) | )
and
HZf(x +y,z—w)+2f(x—y,z+w)—4f(x,z) + 4f(y,w)“ ()
< ||s(f(x +yz+w)+ fx+yz-w+ fx—y,z+w) + fix—y,z—-w) —4f(x,z)

’

where s is a fixed nonzero complex number with |s| < 1.
Moreover, we prove the Hyers-Ulam stability of biderivations and bihomomorphismsions in Banach
algebras and unital C*-algebras, associated with the bi-additive s-functional inequalities (1) and (2).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [23] concerning the
stability of group homomorphisms. Hyers [12] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias
[21] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias
theorem was obtained by Gavruta [9] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.

Gilanyi [10] showed that if f satisfies the functional inequality

12f(x) +2f(y) — flx = Il < NI f(x + I 3)

then f satisfies the Jordan-von Neumann functional equation

2f(0) +2f(y) = flx +y) + flx = y).
See also [22]. Fechner [8] and Gildnyi [11] proved the Hyers-Ulam stability of the functional inequality (3).
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Park [18-20] defined additive p-functional inequalities and proved the Hyers-Ulam stability of the
additive p-functional inequalities in Banach spaces and non-Archimedean Banach spaces. The stability
problems of various functional equations and functional inequalities have been extensively investigated by
a number of authors (see [2, 4-7, 16, 25]).

Maksa [14, 15] introduced and investigated biderivations and symmetric biderivations on rings. Oztiirk
and Sapanci [17], Vukman [24] and Yazarli [26] investigated some properties of symmetric biderivations on
rings.

Definition 1.1. [14, 15] Let A be a ring. A bi-additive mapping D : A x A — A is called a symmetric biderivation
on A if D satisfies

D(xy, z) D(x,z)y + xD(y, z),
D(x,y) = D(y,x)

forallx,y,z € A.

In this paper, we introduce biderivations and bihomomorphisms in a Banach algebra.

Definition 1.2. Let A be a complex Banach algebra. A C-bilinear mapping D : A X A — A is called a biderivation
on A if D satisfies

D(xy,z) D(x,z)y + xD(y, z),
D(x,zw) = D(x,z)w + zD(x,w)

forallx,y,z,w € A.
It is easy to show that if D is a biderivation, then
D(xy, zw) = D(x, z)wy + zD(x, w)y + xD(y, z)w + xzD(y, w)
forall x,y,z,w € A.

Definition 1.3. Let A and B be complex Banach algebras. A C-bilinear mapping H : AX A — B is called a
bihomomorphism if H satisfies

H(xy,z%) H(x,2)H(y, 2),
HG?,zw) = H(x,z)H(x, w)

forallx,y,z,w € A.

This paper is organized as follows: In Sections 2 and 3, we solve the bi-additive s-functional inequalities
(1) and (2) and prove the Hyers-Ulam stability of the bi-additive s-functional inequalities (1) and (2) in
complex Banach spaces. In Section 4, we investigate biderivations on Banach algebras and unital C*-
algebras associated with the bi-additive s-functional inequalities (1) and (2). In Section 5, we investigate
bihomomorphisms in Banach algebras and unital C*-algebras associated with the bi-additive s-functional
inequalities (1) and (2).

Throughout this paper, let X be a complex normed space and Y a complex Banach space. Let A and B
be complex Banach algebras. Assume that s is a fixed nonzero complex number with |s| < 1.

2. Bi-additive s-functional inequality (1)

We solve and investigate the bi-additive s-functional inequality (1) in complex normed spaces.
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Lemma 2.1. Ifa mapping f : X*> — Y satisfies f(0,z) = f(x,0) = 0 and

Ifx+yz+w)+ fx+y,z—w) + f(x—y,z+w) + f(x —y,z—w) —4f(x,2)|l
S||s(2f(x+y,z—w)+2f(x—y,z+w)—4f(x,z)+4f(y,w))|| 4)

forall x,y,z,w € X, then f : X*> — Y is bi-additive.

Proof. Assume that f : X> — Y satisfies (4).

Letting x = y and w = 0 in (4), we get f(2x,z) = 2f(x,z) forall x,z € X.

Letting w = 0 in (4), we get f(x + ¥,2) + f(x — y,2) = 2f(x,z) and so f(x1,z) + f(y1,2) = 2f("1+-‘7’l ) =
flxg +y1,2) forallx; :=x+y,y1 :=x—y,z € X, since |s| < 1and f(0,z) =0 forallze€ X. So f: X*> - Yis
additive in the first variable.

Similarly, one can show that f : X?> — Y is additive in the second variable. Hence f : X> — Y is
bi-additive. O

We prove the Hyers-Ulam stability of the bi-additive s-functional inequality (4) in complex Banach
spaces.

Theorem 2.2. Let r > 1 and 6 be nonnegative real numbers and let f : X> — Y be a mapping satisfying f(x,0) =
f(0,z) =0and
Ifx+yz+w)+ fx+y,z—w) + f(x—y,z+w) + f(x —y,z—w) —4f(x,2)|l

< ||s Cfx+yz-—w)+2f(x—y,z+w)—4f(x,z) + 4f(y,w))|| (5)
+O(lxl” + N A" + llwll”)

forall x,y,z,w € X. Then there exists a unique bi-additive mapping A : X*> — Y such that

I1f(x,2) = Alx, 2)l| < el "1z1l" (6)

0
(1-Ish(@" -2)
forallx,z € X.

Proof. Letting w = 0 and y = x in (5), we get

21~ IsDIIf(2x,2) — 2£(x, )] < 26l =1 7)
for all x,z € X. So
fa-2f (5.2)) < ufwenanznf
for all x,z € X. Hence
m—1 4 x
SRR B YRR
< o i Ol I
e | )27

for all nonnegative integers m and [/ with m > [ and all x,z € X. It follows from (8) that the sequence
{2¥f(%,2)} is Cauchy for all x,z € X. Since Y is a Banach space, the sequence {2°f(%;, z)} converges. So one
can define the mapping A : X*> — Y by

Ax,z) = hmZkf(zk, )
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for all x,z € X. Moreover, letting I = 0 and passing the limit m — oo in (8), we get (6).
It follows from (5) that

lAx+y,z+w)+ Alx + y,z—w) +A(x —-y,z+w)+A(x—y,z—w) —4A(x, 2)|l

2 (1S e ()4 s (e )
of (gt u) -4 (5
ns(zf(H )+2f( y“w) 4f(2n’ )+4f(2"’ ))”

2"
+ Lim SO + I’ + lloll’)

< ||s RAx+yz-w)+A(x—y,z+w)—4A(x,z) +4A(y,w))||

n—oo

n—oo

forall x,y,z,w € X. So

JAx+y,z+w)+ Alx+y,z—w) + Alx —y,z+ w) + A(x — y,z — w) — 4A(x, 2)|
< Hs RAx+y,z-w)+2A(x—y,z+w) —4A(x,2) +4A(y,w))||

forall x,y,z,w € X. By Lemma 2.1, the mapping A : X? - Y is bi-additive.
Now, let T : X? — Y be another bi-additive mapping satisfying (6). Then we have

X
ia(= aT(=
2A(2q,z) 2 T(zfi z)

2ot )-2r(2

20 2,
A-K)@-227

1A(x, 2) = T(x, 2)ll

IA

2r(s)-2r(5

which tends to zero as g — oo for all x,z € X. So we can conclude that A(x,z) = T(x, z) for all x,z € X. This
proves the uniqueness of A, as desired. [

Theorem 2.3. Let r < 1 and 6 be nonnegative real numbers and let f : X> — Y be a mapping satisfying (5) and
f(x,0) = £(0,z) = 0 for all x,z € X. Then there exists a unique bi-additive mapping A : X* — Y such that

0

x,z) — A, 2)|| £ ——————|IxlI"llzlI" 9
1£052) = A, 2 < gy el ©)
forallx,z € X.
Proof. It follows from (7) that
|22 - 3 r202) < sl
’ ~2(1-1sl)
for all x,z € X. Hence
1(2’ )—i(zm ) <m_1—(1 )—1 (27*1x,2) 10
Zlf X,z 2mf X,z = — 2]f X,z 2j+1f X,z ( )
]:
m—1 r]'
< Ollx"llzIl"

= (1 - [sh2/*!
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for all nonnegative integers m and [ with m > [ and all x,z € X. It follows from (10) that the sequence
{% f(2"x,z)} is a Cauchy sequence for all x,z € X. Since Y is complete, the sequence {zln f(2"x,z)} converges.
So one can define the mapping A : X*> — Y by

A(x,z) = ’}1_{510 zl—nf(Z”x, z)

for all x,z € X. Moreover, letting I = 0 and passing the limit m — oo in (10), we get (9).
The rest of the proof is similar to the proof of Theorem 2.2. [

3. Bi-additive s-functional inequality (2)
We solve and investigate the bi-additive s-functional inequality (2) in complex normed spaces.
Lemma 3.1. Ifa mapping f : X*> — Y satisfies f(0,z) = f(x,0) = 0 and
[2f (e + v,z —w) + 2f (x = v,z + w) — 4 (x, 2) + 4f (y, w)|| (11)
< ||s (fx+yz+w+ fx+yz-w+ fx—y,z+w) + f(x—y,z—w) - 4f(x,z))||
forall x,y,z,w € X, then f : X* — Y is bi-additive.

Proof. Assume that f : X2 — Y satisfies (11).

Letting y = x and w = 0 in (11), we get 2f (2x,z) = 4f(x,z) forall x,z € X.

Letting w = 0 in (4), we get f(x + y,2) + f(x — y,2) = 2f(x,z) and so f(x1,2) + f(y1,2) = 2 f(&,}l,z) =
fx1 +y1,z) forallx; :=x+y,y1 :=x—y,z € X, since |s| < 1and f(0,z) =0forallze€ X. So f: X* - Yis
additive in the first variable.

Similarly, one can show that f : X> — Y is additive in the second variable. Hence f : X* — Y is
bi-additive. O

We prove the Hyers-Ulam stability of the bi-additive s-functional inequality (11) in complex Banach
spaces.

Theorem 3.2. Let r > 1 and 6 be nonnegative real numbers and let f : X> — Y be a mapping satisfying f(x,0) =
f(0,z) =0and

[2f (e + v,z —w) + 2f (x — v,z + w) — 4 (x, 2) + 4f (y, w)|| (12)

< Hs(f(x +yz+w)+ fx+yz-—w+ fx—yz+w) + f(x—y,z—-w) —4f(x,z))”
+O(IIXI" + [Ty Al + llell")

forall x,y,z,w € X. Then there exists a unique bi-additive mapping A : X* — Y such that
I1f(x,2) = Alx, 2)l| <

forallx,z € X.

6 r r
m”xﬂ Izl (13)

Proof. Letting y = x and w = 0in (12), we get
2(1 - bl [|f @x,2) - 2f(x, 2)|| < 201F 1l (14)

forall x,z € X. So

-1

3

X

JLERVES

(15)

. x . x
j >~ _nj+l
zf(zf’z) 2 f(21‘+1’z)

2/6
(1 —Ish277*

—.

3
-

IA

el 11"

J=
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for all nonnegative integers m and [ with m > [ and all x,z € X. It follows from (15) that the sequence
{2k f (2"7, z) is Cauchy for all x,z € X. Since Y is a Banach space, the sequence {2* f (2k, )} converges. So one
can define the mapping A : X> > Y by

Alx,2) == 11m2kf(2x z)

for all x,z € X. Moreover, letting I = 0 and passing the limit m — oo in (15), we get (13).
The rest of the proof is similar to the proof of Theorem 2.2. [

Theorem 3.3. Let r < 1 and O be nonnegative real numbers and let f : X> — Y be a mapping satisfying (12) and
f(x,0) = £(0,z) = 0 for all x,z € X. Then there exists a unique bi-additive mapping A : X* — Y such that

e r r
If(x,2) — Alx, 2)ll < m”x“ Izl (16)

forallx,z € X.

Proof. It follows from (14) that

s Izl

5,2 - 5£2%,9)| < 372

for all x,z € X. Hence

1 1 1 .
Ef(le, z) — Z—mf(me,z) 2 X, z ﬁf (21+1x,z)

IN

(17)

74

— Ish2/+

IA

OllxIl"llzIl"

Zi

for all nonnegative integers m and [ with m > [ and all x,z € X. It follows from (17) that the sequence
{3 f(2"x,2)} is a Cauchy sequence for all x,z € X. Since Y is complete, the sequence {5 f(2"x, z)} converges.
So one can define the mapping A : X> — Y by

A(x,z) := lim Zl—nf(z”x, z)

for all x,z € X. Moreover, letting I = 0 and passing the limit m — oo in (17), we get (16).
The rest of the proof is similar to the proof of Theorem 2.2. [

4. Biderivations on Banach algebras

Now, we investigate biderivations on complex Banach algebras and unital C*-algebras associated with
the bi-additive s-functional inequalities (1) and (2).

Lemma 4.1. [3, Lemma 2.1] Let f : X> — Y be a bi-additive mapping such that f(Ax, uz) = Auf(x,z) for all
x,z€ Xand A, yeTl {veC : |v|=1}. Then f is C-bilinear.

Theorem 4.2. Let A be a complex Banach algebra. Let r > 2 and 6 be nonnegative real numbers, and let f : A2 — A
be a mapping satisfying f(x,0) = f(0,z) = 0 and
If(A(x +y), u(z + w)) + f(Ax + y), p(z — w)) + fF(Ax — y), u(z + w))
+f(Ax — ), u(z — w)) — 4Apf(x, 2)|l (18)
< Hs Qfx+yz-w)+2f(x—y,z+w)—4f(x,2) + 4f(y,w))||
+O(IIx" + [y Alll" + [l
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forall A,y e T' :={v € C : |v| =1} and all x,y,z,w € A. Then there exists a unique C-bilinear mapping
D: A% — A such that

If(x,2) = D(x, 2)Il < el 1l (19)

0
(1-1sh@ -2)

forallx,z € A.
If, in addition, the mapping f : A — A satisfies f(2x,z) = 2f(x,z) and

I1f(xy, 2) = f(x, 2)y = xf(y, 2l < OIxI" + [lylDllzIl", (20)

I1f(x, zw) = f(x, 2)w — zf (x, w)|| < Ollx"(llzIl" + llzwll") (21)

orall x,v,z,w € A, then the mapping f : A> — A is a biderivation.
f y pping

Proof. Let A = u = 1in (18). By Theorem 2.2, there is a unique bi-additive mapping D : A> — A satisfying
(19) defined by

D(x,z) := gijgoz”f(zin,z)

forall x,z € A.

Letting y = w = 0in (18), we get f(Ax, uz) = Auf(x,z) forall x,z € Aand all A, u € T'. By Lemma 4.1,
the bi-additive mapping D : A — A is C-bilinear.

If f(2x,z) = 2f(x,z) for all x, z € A, then we can easily show that D(x,z) = f(x,z) forall x,z € A.

It follows from (20) that

o x x x
DGy, ) - D2y - 3D = Jim & | (52052) - £ (52 & - 2o (L2
: 4”9 r r ro_
< lim T2 + Nl =0

forallx,y,z € A. Thus
D(xy, z) = D(x,z)y + xD(y, z)

forallx,y,z € A.
Similarly, one can show that

D(x, zw) = D(x, z)w + zD(x, w)

for all x,z,w € A. Hence the mapping f : A> — A is a biderivation. [

Theorem 4.3. Let r < 1 and 6 be nonnegative real numbers, and let f : A2 — A be a mapping satisfying (18) and
f(x,0) = £(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping D : A> — A such that

6 r r
If(x,2) — D(x, 2)ll < WHXH Izl (22)

forallx,z € A.

If, in addition, the mapping f : A> — A satisfies (20), (21) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A2 — A is a biderivation.
Proof. The proof is similar to the proof of Theorem 4.2. [

Similarly, we can obtain the following results.
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Theorem 4.4. Let r > 2 and O be nonnegative real numbers, and let f : A> — A be a mapping satisfying
f(x,0) = f(0,2) =0and

2 (Ax + ), pz = w)) +2f (Ax = ), p(z + w)) — 4Auf(x,2) + 4Auf(y, w)|| (23)

< ||s(f(x+ yzrw)+ fx+yz-w+ fx—yz+w) + f(x—yz-w) - 4f(x,z))||
+O([IxlI" + Iyl lzll" + llwll")

forall A, € T and all x,y,z,w € A. Then there exists a unique C-bilinear mapping D : A% — A such that

6 r r
If(x,2) = D(x, 2)ll < WHXH Izl (24)

forallx,z € A.

If, in addition, the mapping f : A> — A satisfies (20), (21) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A2 — A is a biderivation.
Theorem 4.5. Let r < 1 and 6 be nonnegative real numbers, and let f : A2 — A be a mapping satisfying (23) and
f(x,0) = £(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping D : A> — A such that

6 r r
I1f(x,2) — D(x, 2)l| < m“xﬂ Izl (25)
forallx,z € A.

If, in addition, the mapping f : A2 — A satisfies (20), (21) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — A is a biderivation.

From now on, assume that A is a unital C*-algebra with unit ¢ and unitary group U(A).

Theorem 4.6. Let r > 2 and 6 be nonnegative real numbers, and let f : A2 — A be a mapping satisfying (18) and
f(x,0) = £(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping D : A> — A satisfying (19).
If, in addition, the mapping f : A> — A satisfies (21), f(2x,z) = 2f(x,z) and

If(uy,2) = f(u, 2)y — uf(y, 2)Il < O+ [lyl)llzIl", (26)

I1f(x, z0) = f(x, 2)v = zf (x, V)l < O(1 + [lyl)llzll (27)
forall u,v € U(A) and all x, v,z € A, then the mapping f : A> — A is a biderivation.

Proof. By the same reasoning as in the proof of Theorem 4.2, there is a unique C-bilinear mapping D : A2 — A
satisfying (19) defined by

D(x,z) := hm 2"f(2n )

forall x,z € A.

If f(2x,z) = 2f(x,z) for all x, z € A, then we can easily show that D(x,z) = f(x,z) forall x,z € A.

By the same reasoning as in the proof of Theorem 4.2, D(uy,z) = D(u,z)y + uD(y, z) for all u,v € U(A)
and all y,z € A.

Since D is C-linear in the first variable and each x € A is a finite linear combination of unitary elements
(see [13]), ie.,x = 271:1 /\]‘Mj (/\j S C, Uuj € U(A)),

D(xy,2) = D(Y Ajmjy,2) =Y AiD(ujy,2) = Y A{Du;, 2)y +u;D(y, 2))
j=1 j=1 j=1

m m
() ADD(w;, 2)y + (), Aju)D(y,2) = D(x,2)y + xD(y, 2)
j=1 =1
forall x,y,z € A.
Similarly, one can show that D(x,zw) = D(x,z)w + zD(x,w) for all x,z,w € A. Thus f : A> > Ais a
biderivation. O
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Theorem 4.7. Let r < 1 and 6 be nonnegative real numbers, and let f : A> — A be a mapping satisfying (18) and
f(x,0) = £(0,2) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping D : A> — A satisfying (22).

If, in addition, the mapping f : A> — A satisfies (26), (27) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — A is a biderivation.

Proof. The proof is similar to the proof of Theorem 4.6. [J

Similarly, we can obtain the following results.

Theorem 4.8. Let r > 2 and 6 be nonnegative real numbers, and let f : A> — A be a mapping satisfying (23) and
f(x,0) = £(0,2) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping D : A> — A satisfying (24).

If, in addition, the mapping f : A2 — A satisfies (26), (27) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — A is a biderivation.

Theorem 4.9. Let r < 1 and 6 be nonnegative real numbers, and let f : A> — A be a mapping satisfying (23) and
f(x,0) = £(0,2) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping D : A — A satisfying (25).

If, in addition, the mapping f : A®> — A satisfies (26), (27) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A2 — A is a biderivation.

5. Bihomomorphisms in Banach algebras

Now, we investigate bihomomorphisms in complex Banach algebras and unital C*-algebras associated
with the bi-additive s-functional inequalities (1) and (2).

Theorem 5.1. Let r > 2 and 6 be nonnegative real numbers, and let f : A2 — B be a mapping satisfying
f(x,0) = £(0,z) = 0 and (18). Then there exists a unique C-bilinear mapping H : A> — B satisfying (19), where D
is replaced by H in (19).

If, in addition, the mapping f : A*> — B satisfies f(2x,z) = 2f(x,z) and

If(xy, 2%) = fx,2) f(y, 2l < O+ Iy, (28)

If (2, zw0) = f(x, 2) f(x, w)ll < Ol l2Il” + llell") (29)
forall x,y,z,w € A, then the mapping f : A> — B is a bihomomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.2, there is a unique C-bilinear mapping H : A> — B,
which is defined by

H(x,z) = lim Z”f(%,z)

forall x,z € A.
If f(2x,z) = 2f(x,z) for all x, z € A, then we can easily show that H(x, z) = f(x,z) for all x,z € A.

f( 1 an f an f 2,112

4"0
<l + 1yl = 0

lim 4"

n—oo

IH(xy, z*) = H(x, 2)H(y, 2

IA

forall x,y,z € A. Thus
H(xy,z%) = H(x,2)H(y, 2)

forallx,y,z € A.
Similarly, one can show that
H(x?, zw) = H(x, z)H(x, w)

for all x,z, w € A. Hence the mapping f : A> — B is a bihomomorphism. [J
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Theorem 5.2. Let r < 1 and 6 be nonnegative real numbers, and let f : A*> — B be a mapping satisfying (18) and
f(x,0) = f(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping H : A% — B satisfying (22),
where D is replaced by H in (22).

If, in addition, the mapping f : A> — B satisfies (28), (29) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — B is a bihomomorphism.

Proof. The proof is similar to the proof of Theorem 5.1. [J
Similarly, we can obtain the following results.

Theorem 5.3. Let r > 2 and 6 be nonnegative real numbers, and let f : A2 — B be a mapping satisfying
f(x,0) = £(0,z) = 0 and (23). Then there exists a unique C-bilinear mapping H : A> — B satisfying (24), where D
is replaced by H in (24).

If, in addition, the mapping f : A> — B satisfies (28), (29) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — B is a bihomomorphism.

Theorem 5.4. Let r < 1 and 6 be nonnegative real numbers, and let f : A> — B be a mapping satisfying (23) and
f(x,0) = f(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping H : A2 — B satisfying (25),
where D is replaced by H in (25).

If, in addition, the mapping f : A> — B satisfies (28), (29) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — B is a bihomomorphism.

From now on, assume that A is a unital C*-algebra with unit e and unitary group U(A).

Theorem 5.5. Let r > 2 and 6 be nonnegative real numbers, and let f : A2 — B be a mapping satisfying (18) and
f(x,0) = f(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping H : A?> — B satisfying (19),
where D is replaced by H in (19).

If, in addition, the mapping f : A*> — B satisfies f(2x,z) = 2f(x,z) and

lIf(uy, 2%) = f(u,2) f(y, 2l < O + llyIIIzII", (30)

If (%, z0) = f(x,2) f(x, 0)ll < O + Iy, (31)
forall u,v € U(A) and all x,y,z € A, then the mapping f : A*> — B is a bihomomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.2, there is a unique C-bilinear mapping H : A> — B
satisfying (19) defined by

H(x,z) := hm 2”f(2”, )

forall x,z € A.

If f(2x,z) = 2f(x,z) for all x, z € A, then we can easily show that H(x, z) = f(x,z) for all x,z € A.

By the same reasoning as in the proof of Theorem 4.2, H(uy,z*) = H(u,z)H(y, z) for all u,v € U(A) and
ally,z € A.

Since H is C-linear in the first variable and each x € A is a finite linear combination of unitary elements
(see [13]), i.e., x = 23”21 Ajuj (Aj € C,uj € U(A)),

H(xy,zz) = H(Z Ajujy,z 2) = Z AiH(ujy,z 7%) = Z Aj(H(uj, z)H(y, 2))

j=1 =1

(Z ADH(u;,2)H(y,2) = H(x, 2)H(y, 2)
=1
forall x,y,z € A.
Similarly, one can show that H(x,zw) = H(x,z)H(x,w) for all x,z,w € A. Thus f : A> > Bis a
bihomomorphism. [
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Theorem 5.6. Let r < 1 and 6 be nonnegative real numbers, and let f : A*> — B be a mapping satisfying (18) and
f(x,0) = f(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping H : A% — B satisfying (22),
where D is replaced by H in (22).

If, in addition, the mapping f : A> — B satisfies (30), (31) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — B is a bihomomorphism.

Proof. The proof is similar to the proof of Theorem 5.7. [J

Similarly, we can obtain the following results.

Theorem 5.7. Let r > 2 and 6 be nonnegative real numbers, and let f : A> — B be a mapping satisfying (23) and
f(x,0) = f(0,z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping H : A> — B satisfying (24),
where D is replaced by H in (24).

If, in addition, the mapping f : A> — B satisfies (30), (31) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A% — B is a bihomomorphism.

Theorem 5.8. Let r < 1 and 6 be nonnegative real numbers, and let f : A2 — B be a mapping satisfying (23) and
f(x,0) = f(0,2z) = 0 for all x,z € A. Then there exists a unique C-bilinear mapping H : A> — B satisfying (25),
where D is replaced by H in (25).

If, in addition, the mapping f : A> — B satisfies (30), (31) and f(2x,z) = 2f(x,z) for all x,z € A, then the
mapping f : A2 — B is a bihomomorphism.
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