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Abstract. In this paper, we solve the following bi-additive s-functional inequalities

‖ f (x + y, z + w) + f (x + y, z − w) + f (x − y, z + w) + f (x − y, z − w) − 4 f (x, z)‖

≤

∥∥∥s
(
2 f

(
x + y, z − w

)
+ 2 f

(
x − y, z + w

)
− 4 f (x, z) + 4 f (y,w)

)∥∥∥ (1)

and ∥∥∥2 f
(
x + y, z − w

)
+ 2 f

(
x − y, z + w

)
− 4 f (x, z) + 4 f (y,w)

∥∥∥ (2)

≤

∥∥∥s
(

f (x + y, z + w) + f (x + y, z − w) + f (x − y, z + w) + f (x − y, z − w) − 4 f (x, z)
)∥∥∥ ,

where s is a fixed nonzero complex number with |s| < 1.
Moreover, we prove the Hyers-Ulam stability of biderivations and bihomomorphismsions in Banach

algebras and unital C∗-algebras, associated with the bi-additive s-functional inequalities (1) and (2).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [23] concerning the
stability of group homomorphisms. Hyers [12] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias
[21] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias
theorem was obtained by Găvruta [9] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.

Gilányi [10] showed that if f satisfies the functional inequality

‖2 f (x) + 2 f (y) − f (x − y)‖ ≤ ‖ f (x + y)‖ (3)

then f satisfies the Jordan-von Neumann functional equation

2 f (x) + 2 f (y) = f (x + y) + f (x − y).

See also [22]. Fechner [8] and Gilányi [11] proved the Hyers-Ulam stability of the functional inequality (3).
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Park [18–20] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of the
additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces. The stability
problems of various functional equations and functional inequalities have been extensively investigated by
a number of authors (see [2, 4–7, 16, 25]).

Maksa [14, 15] introduced and investigated biderivations and symmetric biderivations on rings. Öztürk
and Sapanci [17], Vukman [24] and Yazarli [26] investigated some properties of symmetric biderivations on
rings.

Definition 1.1. [14, 15] Let A be a ring. A bi-additive mapping D : A × A→ A is called a symmetric biderivation
on A if D satisfies

D(xy, z) = D(x, z)y + xD(y, z),
D(x, y) = D(y, x)

for all x, y, z ∈ A.

In this paper, we introduce biderivations and bihomomorphisms in a Banach algebra.

Definition 1.2. Let A be a complex Banach algebra. A C-bilinear mapping D : A × A → A is called a biderivation
on A if D satisfies

D(xy, z) = D(x, z)y + xD(y, z),
D(x, zw) = D(x, z)w + zD(x,w)

for all x, y, z,w ∈ A.

It is easy to show that if D is a biderivation, then

D(xy, zw) = D(x, z)wy + zD(x,w)y + xD(y, z)w + xzD(y,w)

for all x, y, z,w ∈ A.

Definition 1.3. Let A and B be complex Banach algebras. A C-bilinear mapping H : A × A → B is called a
bihomomorphism if H satisfies

H(xy, z2) = H(x, z)H(y, z),
H(x2, zw) = H(x, z)H(x,w)

for all x, y, z,w ∈ A.

This paper is organized as follows: In Sections 2 and 3, we solve the bi-additive s-functional inequalities
(1) and (2) and prove the Hyers-Ulam stability of the bi-additive s-functional inequalities (1) and (2) in
complex Banach spaces. In Section 4, we investigate biderivations on Banach algebras and unital C∗-
algebras associated with the bi-additive s-functional inequalities (1) and (2). In Section 5, we investigate
bihomomorphisms in Banach algebras and unital C∗-algebras associated with the bi-additive s-functional
inequalities (1) and (2).

Throughout this paper, let X be a complex normed space and Y a complex Banach space. Let A and B
be complex Banach algebras. Assume that s is a fixed nonzero complex number with |s| < 1.

2. Bi-additive s-functional inequality (1)

We solve and investigate the bi-additive s-functional inequality (1) in complex normed spaces.
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Lemma 2.1. If a mapping f : X2
→ Y satisfies f (0, z) = f (x, 0) = 0 and

‖ f (x + y, z + w) + f (x + y, z − w) + f (x − y, z + w) + f (x − y, z − w) − 4 f (x, z)‖

≤

∥∥∥s
(
2 f

(
x + y, z − w

)
+ 2 f

(
x − y, z + w

)
− 4 f (x, z) + 4 f (y,w)

)∥∥∥ (4)

for all x, y, z,w ∈ X, then f : X2
→ Y is bi-additive.

Proof. Assume that f : X2
→ Y satisfies (4).

Letting x = y and w = 0 in (4), we get f (2x, z) = 2 f (x, z) for all x, z ∈ X.
Letting w = 0 in (4), we get f (x + y, z) + f (x − y, z) = 2 f (x, z) and so f (x1, z) + f (y1, z) = 2 f

( x1+y1

2 , z
)

=

f (x1 + y1, z) for all x1 := x + y, y1 := x − y, z ∈ X, since |s| < 1 and f (0, z) = 0 for all z ∈ X. So f : X2
→ Y is

additive in the first variable.
Similarly, one can show that f : X2

→ Y is additive in the second variable. Hence f : X2
→ Y is

bi-additive.

We prove the Hyers-Ulam stability of the bi-additive s-functional inequality (4) in complex Banach
spaces.

Theorem 2.2. Let r > 1 and θ be nonnegative real numbers and let f : X2
→ Y be a mapping satisfying f (x, 0) =

f (0, z) = 0 and

‖ f (x + y, z + w) + f (x + y, z − w) + f (x − y, z + w) + f (x − y, z − w) − 4 f (x, z)‖

≤

∥∥∥s
(
2 f

(
x + y, z − w

)
+ 2 f

(
x − y, z + w

)
− 4 f (x, z) + 4 f (y,w)

)∥∥∥ (5)
+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping A : X2
→ Y such that

‖ f (x, z) − A(x, z)‖ ≤
θ

(1 − |s|)(2r − 2)
‖x‖r‖z‖r (6)

for all x, z ∈ X.

Proof. Letting w = 0 and y = x in (5), we get

2(1 − |s|)‖ f (2x, z) − 2 f (x, z)‖ ≤ 2θ‖x‖r‖z‖r (7)

for all x, z ∈ X. So∥∥∥∥∥ f (x, z) − 2 f
(x

2
, z

)∥∥∥∥∥ ≤ 1
(1 − |s|)2rθ‖x‖

r
‖z‖r

for all x, z ∈ X. Hence∥∥∥∥∥2l f
( x

2l
, z

)
− 2m f

( x
2m , z

)∥∥∥∥∥ ≤

m−1∑
j=l

∥∥∥∥∥2 j f
( x

2 j , z
)
− 2 j+1 f

( x
2 j+1

, z
)∥∥∥∥∥ (8)

≤
1
2r

m−1∑
j=l

2 j

(1 − |s|)2rjθ‖x‖
r
‖z‖r

for all nonnegative integers m and l with m > l and all x, z ∈ X. It follows from (8) that the sequence
{2k f ( x

2k , z)} is Cauchy for all x, z ∈ X. Since Y is a Banach space, the sequence {2k f ( x
2k , z)} converges. So one

can define the mapping A : X2
→ Y by

A(x, z) := lim
k→∞

2k f
( x

2k
, z

)
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for all x, z ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (8), we get (6).
It follows from (5) that

‖A(x + y, z + w) + A(x + y, z − w) + A(x − y, z + w) + A(x − y, z − w) − 4A(x, z)‖

= lim
n→∞

∥∥∥∥∥2n
(

f
(x + y

2n , z + w
)

+ f
(x + y

2n , z − w
)

+ f
(x − y

2n , z + w
)

+ f
(x − y

2n , z − w
)
− 4 f

( x
2n , z

))∥∥∥∥∥
≤ lim

n→∞

∥∥∥∥∥2ns
(
2 f

(x + y
2n , z − w

)
+ 2 f

(x − y
2n , z + w

)
− 4 f

( x
2n , z

)
+ 4 f

( y
2n ,w

))∥∥∥∥∥
+ lim

n→∞

2n

2rnθ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

≤

∥∥∥s
(
2A

(
x + y, z − w

)
+ A

(
x − y, z + w

)
− 4A(x, z) + 4A(y,w)

)∥∥∥
for all x, y, z,w ∈ X. So

‖A(x + y, z + w) + A(x + y, z − w) + A(x − y, z + w) + A(x − y, z − w) − 4A(x, z)‖

≤

∥∥∥s
(
2A

(
x + y, z − w

)
+ 2A

(
x − y, z + w

)
− 4A(x, z) + 4A(y,w)

)∥∥∥
for all x, y, z,w ∈ X. By Lemma 2.1, the mapping A : X2

→ Y is bi-additive.
Now, let T : X2

→ Y be another bi-additive mapping satisfying (6). Then we have

‖A(x, z) − T(x, z)‖ =

∥∥∥∥∥2qA
( x

2q , z
)
− 2qT

( x
2q , z

)∥∥∥∥∥
≤

∥∥∥∥∥2qA
( x

2q , z
)
− 2q f

( x
2q , z

)∥∥∥∥∥ +

∥∥∥∥∥2qT
( x

2q , z
)
− 2q f

( x
2q , z

)∥∥∥∥∥
≤

2θ
(1 − |s|)(2r − 2)

2q

2qr ‖x‖
r
‖z‖r,

which tends to zero as q→ ∞ for all x, z ∈ X. So we can conclude that A(x, z) = T(x, z) for all x, z ∈ X. This
proves the uniqueness of A, as desired.

Theorem 2.3. Let r < 1 and θ be nonnegative real numbers and let f : X2
→ Y be a mapping satisfying (5) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive mapping A : X2
→ Y such that

‖ f (x, z) − A(x, z)‖ ≤
θ

(1 − |s|)(2 − 2r)
‖x‖r‖z‖r (9)

for all x, z ∈ X.

Proof. It follows from (7) that∥∥∥∥∥ f (x, z) −
1
2

f (2x, z)
∥∥∥∥∥ ≤ θ

2(1 − |s|)
‖x‖r‖z‖r

for all x, z ∈ X. Hence∥∥∥∥∥ 1
2l

f (2lx, z) −
1

2m f (2mx, z)
∥∥∥∥∥ ≤

m−1∑
j=l

∥∥∥∥∥ 1
2 j f

(
2 jx, z

)
−

1
2 j+1

f
(
2 j+1x, z

)∥∥∥∥∥ (10)

≤

m−1∑
j=l

2rj

(1 − |s|)2 j+1
θ‖x‖r‖z‖r
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for all nonnegative integers m and l with m > l and all x, z ∈ X. It follows from (10) that the sequence
{

1
2n f (2nx, z)} is a Cauchy sequence for all x, z ∈ X. Since Y is complete, the sequence { 1

2n f (2nx, z)} converges.
So one can define the mapping A : X2

→ Y by

A(x, z) := lim
n→∞

1
2n f (2nx, z)

for all x, z ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (10), we get (9).
The rest of the proof is similar to the proof of Theorem 2.2.

3. Bi-additive s-functional inequality (2)

We solve and investigate the bi-additive s-functional inequality (2) in complex normed spaces.

Lemma 3.1. If a mapping f : X2
→ Y satisfies f (0, z) = f (x, 0) = 0 and∥∥∥2 f

(
x + y, z − w

)
+ 2 f

(
x − y, z + w

)
− 4 f (x, z) + 4 f (y,w)

∥∥∥ (11)

≤

∥∥∥s
(

f (x + y, z + w) + f (x + y, z − w) + f (x − y, z + w) + f (x − y, z − w) − 4 f (x, z)
)∥∥∥

for all x, y, z,w ∈ X, then f : X2
→ Y is bi-additive.

Proof. Assume that f : X2
→ Y satisfies (11).

Letting y = x and w = 0 in (11), we get 2 f (2x, z) = 4 f (x, z) for all x, z ∈ X.
Letting w = 0 in (4), we get f (x + y, z) + f (x − y, z) = 2 f (x, z) and so f (x1, z) + f (y1, z) = 2 f

( x1+y1

2 , z
)

=

f (x1 + y1, z) for all x1 := x + y, y1 := x − y, z ∈ X, since |s| ≤ 1 and f (0, z) = 0 for all z ∈ X. So f : X2
→ Y is

additive in the first variable.
Similarly, one can show that f : X2

→ Y is additive in the second variable. Hence f : X2
→ Y is

bi-additive.

We prove the Hyers-Ulam stability of the bi-additive s-functional inequality (11) in complex Banach
spaces.

Theorem 3.2. Let r > 1 and θ be nonnegative real numbers and let f : X2
→ Y be a mapping satisfying f (x, 0) =

f (0, z) = 0 and∥∥∥2 f
(
x + y, z − w

)
+ 2 f

(
x − y, z + w

)
− 4 f (x, z) + 4 f (y,w)

∥∥∥ (12)

≤

∥∥∥s
(

f (x + y, z + w) + f (x + y, z − w) + f (x − y, z + w) + f (x − y, z − w) − 4 f (x, z)
)∥∥∥

+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping A : X2
→ Y such that

‖ f (x, z) − A(x, z)‖ ≤
θ

(1 − |s|)(2r − 2)
‖x‖r‖z‖r (13)

for all x, z ∈ X.

Proof. Letting y = x and w = 0 in (12), we get

2(1 − |s|)
∥∥∥ f (2x, z) − 2 f (x, z)

∥∥∥ ≤ 2θ‖x‖r‖z‖r (14)

for all x, z ∈ X. So∥∥∥∥∥2l f
( x

2l
, z

)
− 2m f

( x
2m , z

)∥∥∥∥∥ ≤

m−1∑
j=l

∥∥∥∥∥2 j f
( x

2 j , z
)
− 2 j+1 f

( x
2 j+1

, z
)∥∥∥∥∥ (15)

≤

m−1∑
j=l

2 jθ

(1 − |s|)2rj+r ‖x‖
r
‖z‖r
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for all nonnegative integers m and l with m > l and all x, z ∈ X. It follows from (15) that the sequence
{2k f

(
x
2k , z

)
} is Cauchy for all x, z ∈ X. Since Y is a Banach space, the sequence {2k f

(
x
2k , z

)
} converges. So one

can define the mapping A : X2
→ Y by

A(x, z) := lim
k→∞

2k f
( x

2k
, z

)
for all x, z ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (15), we get (13).

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 3.3. Let r < 1 and θ be nonnegative real numbers and let f : X2
→ Y be a mapping satisfying (12) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive mapping A : X2
→ Y such that

‖ f (x, z) − A(x, z)‖ ≤
θ

(1 − |s|)(2 − 2r)
‖x‖r‖z‖r (16)

for all x, z ∈ X.

Proof. It follows from (14) that∥∥∥∥∥ f (x, z) −
1
2

f (2x, z)
∥∥∥∥∥ ≤ θ

2(1 − |s|)
‖x‖r‖z‖r

for all x, z ∈ X. Hence∥∥∥∥∥ 1
2l

f (2lx, z) −
1

2m f (2mx, z)
∥∥∥∥∥ ≤

m−1∑
j=l

∥∥∥∥∥ 1
2 j f

(
2 jx, z

)
−

1
2 j+1

f
(
2 j+1x, z

)∥∥∥∥∥ (17)

≤

m−1∑
j=l

2rj

(1 − |s|)2 j+1
θ‖x‖r‖z‖r

for all nonnegative integers m and l with m > l and all x, z ∈ X. It follows from (17) that the sequence
{

1
2n f (2nx, z)} is a Cauchy sequence for all x, z ∈ X. Since Y is complete, the sequence { 1

2n f (2nx, z)} converges.
So one can define the mapping A : X2

→ Y by

A(x, z) := lim
n→∞

1
2n f (2nx, z)

for all x, z ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (17), we get (16).
The rest of the proof is similar to the proof of Theorem 2.2.

4. Biderivations on Banach algebras

Now, we investigate biderivations on complex Banach algebras and unital C∗-algebras associated with
the bi-additive s-functional inequalities (1) and (2).

Lemma 4.1. [3, Lemma 2.1] Let f : X2
→ Y be a bi-additive mapping such that f (λx, µz) = λµ f (x, z) for all

x, z ∈ X and λ, µ ∈ T1 := {ν ∈ C : |ν| = 1}. Then f is C-bilinear.

Theorem 4.2. Let A be a complex Banach algebra. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ A

be a mapping satisfying f (x, 0) = f (0, z) = 0 and

‖ f (λ(x + y), µ(z + w)) + f (λ(x + y), µ(z − w)) + f (λ(x − y), µ(z + w))
+ f (λ(x − y), µ(z − w)) − 4λµ f (x, z)‖ (18)

≤

∥∥∥s
(
2 f

(
x + y, z − w

)
+ 2 f

(
x − y, z + w

)
− 4 f (x, z) + 4 f (y,w)

)∥∥∥
+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)
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for all λ, µ ∈ T1 := {ν ∈ C : |ν| = 1} and all x, y, z,w ∈ A. Then there exists a unique C-bilinear mapping
D : A2

→ A such that

‖ f (x, z) −D(x, z)‖ ≤
θ

(1 − |s|)(2r − 2)
‖x‖r‖z‖r (19)

for all x, z ∈ A.
If, in addition, the mapping f : A2

→ A satisfies f (2x, z) = 2 f (x, z) and

‖ f (xy, z) − f (x, z)y − x f (y, z)‖ ≤ θ(‖x‖r + ‖y‖r)‖z‖r, (20)

‖ f (x, zw) − f (x, z)w − z f (x,w)‖ ≤ θ‖x‖r(‖z‖r + ‖w‖r) (21)

for all x, y, z,w ∈ A, then the mapping f : A2
→ A is a biderivation.

Proof. Let λ = µ = 1 in (18). By Theorem 2.2, there is a unique bi-additive mapping D : A2
→ A satisfying

(19) defined by

D(x, z) := lim
n→∞

2n f
( x

2n , z
)

for all x, z ∈ A.
Letting y = w = 0 in (18), we get f (λx, µz) = λµ f (x, z) for all x, z ∈ A and all λ, µ ∈ T1. By Lemma 4.1,

the bi-additive mapping D : A2
→ A is C-bilinear.

If f (2x, z) = 2 f (x, z) for all x, z ∈ A, then we can easily show that D(x, z) = f (x, z) for all x, z ∈ A.
It follows from (20) that

‖D(xy, z) −D(x, z)y − xD(y, z)‖ = lim
n→∞

4n
∥∥∥∥∥ f

( xy
2n · 2n , z

)
− f

( x
2n , z

) y
2n −

x
2n f

( y
2n , z

)∥∥∥∥∥
≤ lim

n→∞

4nθ
2rn (‖x‖r + ‖y‖r)‖z‖r = 0

for all x, y, z ∈ A. Thus
D(xy, z) = D(x, z)y + xD(y, z)

for all x, y, z ∈ A.
Similarly, one can show that

D(x, zw) = D(x, z)w + zD(x,w)

for all x, z,w ∈ A. Hence the mapping f : A2
→ A is a biderivation.

Theorem 4.3. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ A be a mapping satisfying (18) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2
→ A such that

‖ f (x, z) −D(x, z)‖ ≤
θ

(1 − |s|)(2 − 2r)
‖x‖r‖z‖r (22)

for all x, z ∈ A.
If, in addition, the mapping f : A2

→ A satisfies (20), (21) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ A is a biderivation.

Proof. The proof is similar to the proof of Theorem 4.2.

Similarly, we can obtain the following results.
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Theorem 4.4. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ A be a mapping satisfying

f (x, 0) = f (0, z) = 0 and∥∥∥2 f
(
λ(x + y), µ(z − w)

)
+ 2 f

(
λ(x − y), µ(z + w)

)
− 4λµ f (x, z) + 4λµ f (y,w)

∥∥∥ (23)

≤

∥∥∥s
(

f (x + y, z + w) + f (x + y, z − w) + f (x − y, z + w) + f (x − y, z − w) − 4 f (x, z)
)∥∥∥

+θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)

for all λ, µ ∈ T1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear mapping D : A2
→ A such that

‖ f (x, z) −D(x, z)‖ ≤
θ

(1 − |s|)(2r − 2)
‖x‖r‖z‖r (24)

for all x, z ∈ A.
If, in addition, the mapping f : A2

→ A satisfies (20), (21) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ A is a biderivation.

Theorem 4.5. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ A be a mapping satisfying (23) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2
→ A such that

‖ f (x, z) −D(x, z)‖ ≤
θ

(1 − |s|)(2 − 2r)
‖x‖r‖z‖r (25)

for all x, z ∈ A.
If, in addition, the mapping f : A2

→ A satisfies (20), (21) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ A is a biderivation.

From now on, assume that A is a unital C∗-algebra with unit e and unitary group U(A).

Theorem 4.6. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ A be a mapping satisfying (18) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2
→ A satisfying (19).

If, in addition, the mapping f : A2
→ A satisfies (21), f (2x, z) = 2 f (x, z) and

‖ f (uy, z) − f (u, z)y − u f (y, z)‖ ≤ θ(1 + ‖y‖r)‖z‖r, (26)

‖ f (x, zv) − f (x, z)v − z f (x, v)‖ ≤ θ(1 + ‖y‖r)‖z‖r (27)

for all u, v ∈ U(A) and all x, y, z ∈ A, then the mapping f : A2
→ A is a biderivation.

Proof. By the same reasoning as in the proof of Theorem 4.2, there is a uniqueC-bilinear mapping D : A2
→ A

satisfying (19) defined by

D(x, z) := lim
n→∞

2n f
( x

2n , z
)

for all x, z ∈ A.
If f (2x, z) = 2 f (x, z) for all x, z ∈ A, then we can easily show that D(x, z) = f (x, z) for all x, z ∈ A.
By the same reasoning as in the proof of Theorem 4.2, D(uy, z) = D(u, z)y + uD(y, z) for all u, v ∈ U(A)

and all y, z ∈ A.
Since D is C-linear in the first variable and each x ∈ A is a finite linear combination of unitary elements

(see [13]), i.e., x =
∑m

j=1 λ ju j (λ j ∈ C, u j ∈ U(A)),

D(xy, z) = D(
m∑

j=1

λ ju jy, z) =

m∑
j=1

λ jD(u jy, z) =

m∑
j=1

λ j(D(u j, z)y + u jD(y, z))

= (
m∑

j=1

λ j)D(u j, z)y + (
m∑

j=1

λ ju j)D(y, z) = D(x, z)y + xD(y, z)

for all x, y, z ∈ A.
Similarly, one can show that D(x, zw) = D(x, z)w + zD(x,w) for all x, z,w ∈ A. Thus f : A2

→ A is a
biderivation.
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Theorem 4.7. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ A be a mapping satisfying (18) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2
→ A satisfying (22).

If, in addition, the mapping f : A2
→ A satisfies (26), (27) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the

mapping f : A2
→ A is a biderivation.

Proof. The proof is similar to the proof of Theorem 4.6.

Similarly, we can obtain the following results.

Theorem 4.8. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ A be a mapping satisfying (23) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2
→ A satisfying (24).

If, in addition, the mapping f : A2
→ A satisfies (26), (27) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the

mapping f : A2
→ A is a biderivation.

Theorem 4.9. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ A be a mapping satisfying (23) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2
→ A satisfying (25).

If, in addition, the mapping f : A2
→ A satisfies (26), (27) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the

mapping f : A2
→ A is a biderivation.

5. Bihomomorphisms in Banach algebras

Now, we investigate bihomomorphisms in complex Banach algebras and unital C∗-algebras associated
with the bi-additive s-functional inequalities (1) and (2).

Theorem 5.1. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying

f (x, 0) = f (0, z) = 0 and (18). Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (19), where D

is replaced by H in (19).
If, in addition, the mapping f : A2

→ B satisfies f (2x, z) = 2 f (x, z) and

‖ f (xy, z2) − f (x, z) f (y, z)‖ ≤ θ(‖x‖r + ‖y‖r)‖z‖r, (28)

‖ f (x2, zw) − f (x, z) f (x,w)‖ ≤ θ‖x‖r(‖z‖r + ‖w‖r) (29)

for all x, y, z,w ∈ A, then the mapping f : A2
→ B is a bihomomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.2, there is a uniqueC-bilinear mapping H : A2
→ B,

which is defined by

H(x, z) = lim
n→∞

2n f
( x

2n , z
)

for all x, z ∈ A.
If f (2x, z) = 2 f (x, z) for all x, z ∈ A, then we can easily show that H(x, z) = f (x, z) for all x, z ∈ A.
It follows from (28) that

‖H(xy, z2) −H(x, z)H(y, z)‖ = lim
n→∞

4n
∥∥∥∥∥ f

( xy
2n · 2n , z

2
)
− f

( x
2n , z

)
f
( y

2n , z
)∥∥∥∥∥

≤ lim
n→∞

4nθ
2rn (‖x‖r + ‖y‖r)‖z‖r = 0

for all x, y, z ∈ A. Thus
H(xy, z2) = H(x, z)H(y, z)

for all x, y, z ∈ A.
Similarly, one can show that

H(x2, zw) = H(x, z)H(x,w)

for all x, z,w ∈ A. Hence the mapping f : A2
→ B is a bihomomorphism.



C. Park / Filomat 33:8 (2019), 2317–2328 2326

Theorem 5.2. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying (18) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (22),

where D is replaced by H in (22).
If, in addition, the mapping f : A2

→ B satisfies (28), (29) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ B is a bihomomorphism.

Proof. The proof is similar to the proof of Theorem 5.1.

Similarly, we can obtain the following results.

Theorem 5.3. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying

f (x, 0) = f (0, z) = 0 and (23). Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (24), where D

is replaced by H in (24).
If, in addition, the mapping f : A2

→ B satisfies (28), (29) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ B is a bihomomorphism.

Theorem 5.4. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying (23) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (25),

where D is replaced by H in (25).
If, in addition, the mapping f : A2

→ B satisfies (28), (29) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ B is a bihomomorphism.

From now on, assume that A is a unital C∗-algebra with unit e and unitary group U(A).

Theorem 5.5. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying (18) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (19),

where D is replaced by H in (19).
If, in addition, the mapping f : A2

→ B satisfies f (2x, z) = 2 f (x, z) and

‖ f (uy, z2) − f (u, z) f (y, z)‖ ≤ θ(1 + ‖y‖r)‖z‖r, (30)

‖ f (x2, zv) − f (x, z) f (x, v)‖ ≤ θ(1 + ‖y‖r)‖z‖r, (31)

for all u, v ∈ U(A) and all x, y, z ∈ A, then the mapping f : A2
→ B is a bihomomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.2, there is a uniqueC-bilinear mapping H : A2
→ B

satisfying (19) defined by

H(x, z) := lim
n→∞

2n f
( x

2n , z
)

for all x, z ∈ A.
If f (2x, z) = 2 f (x, z) for all x, z ∈ A, then we can easily show that H(x, z) = f (x, z) for all x, z ∈ A.
By the same reasoning as in the proof of Theorem 4.2, H(uy, z2) = H(u, z)H(y, z) for all u, v ∈ U(A) and

all y, z ∈ A.
Since H is C-linear in the first variable and each x ∈ A is a finite linear combination of unitary elements

(see [13]), i.e., x =
∑m

j=1 λ ju j (λ j ∈ C, u j ∈ U(A)),

H(xy, z2) = H(
m∑

j=1

λ ju jy, z2) =

m∑
j=1

λ jH(u jy, z2) =

m∑
j=1

λ j(H(u j, z)H(y, z))

= (
m∑

j=1

λ j)H(u j, z)H(y, z) = H(x, z)H(y, z)

for all x, y, z ∈ A.
Similarly, one can show that H(x, zw) = H(x, z)H(x,w) for all x, z,w ∈ A. Thus f : A2

→ B is a
bihomomorphism.
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Theorem 5.6. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying (18) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (22),

where D is replaced by H in (22).
If, in addition, the mapping f : A2

→ B satisfies (30), (31) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ B is a bihomomorphism.

Proof. The proof is similar to the proof of Theorem 5.7.

Similarly, we can obtain the following results.

Theorem 5.7. Let r > 2 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying (23) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (24),

where D is replaced by H in (24).
If, in addition, the mapping f : A2

→ B satisfies (30), (31) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ B is a bihomomorphism.

Theorem 5.8. Let r < 1 and θ be nonnegative real numbers, and let f : A2
→ B be a mapping satisfying (23) and

f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2
→ B satisfying (25),

where D is replaced by H in (25).
If, in addition, the mapping f : A2

→ B satisfies (30), (31) and f (2x, z) = 2 f (x, z) for all x, z ∈ A, then the
mapping f : A2

→ B is a bihomomorphism.
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[17] M.A. Öztürk and M. Sapanci, Orthogonal symmetric bi-derivation on semi-prime gamma rings, Hacet. Bull. Nat. Sci. Eng. Ser. B 26

(1997), 31–46.
[18] C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17–26.
[19] C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015), 397–407.
[20] C. Park, Additive s-functional inequalities and partial multipliers in Banach algebras, (preprint).
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297–300.
[22] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191–200.
[23] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.



C. Park / Filomat 33:8 (2019), 2317–2328 2328

[24] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38 (1989), 245–254.
[25] Z. Wang and P.K. Sahoo, Stability of the pexiderized quadratic functional equation in paranormed spaces, Filomat 30 (2016), 3829–3837.
[26] H. Yazarli, Permuting triderivations of prime and semiprime rings, Miskolc Math. Notes 18 (2017), 489–497.


