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New Hermite-Hadamard Type Inequalities for Convex Mappings
Utilizing Generalized Fractional Integrals

Hiiseyin Budak?
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Abstract. In this work, we first establish new Hermite-Hadamard inequalities for convex function utilizing
fractional integrals with respect to another function which are generalization of some important fractional
integrals such as the Riemann-Liouville fractional integrals and the Hadamard fractional integrals. More-
over, we obtain some generalized midpoint and trapezoid type inequalities for these kinds of fractional
integrals. The inequalities given in this paper provide generalizations of several results obtained in earlier
works.

1. Introduction

The inequalities discovered by C. Hermite and ]. Hadamard for convex functions are considerable
significant in the literature (see, e.g.,[10], [14], [29, p.137]). These inequalities state thatif f : | - Ris a
convex function on the interval I of real numbers and a,b € I with a < b, then

b b
f(#) < b%af Fdx < f—(”);f( ), (1)

Both inequalities hold in the reversed direction if f is concave. We note that Hermite-Hadamard inequality
may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality.

The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a
natural geometrical interpretation and many applications, has drawn attention much interest in elementary
mathematics. A number of mathematicians have devoted their efforts to generalise, refine, counterpart and
extend it for different classes of functions such as using convex mappings.

Over the last twenty years, the numerous studies have focused on to establish generalization of the
inequality (1) and to obtain new bounds for left hand side and right hand side of the inequality (1). For
some examples, please refer to ([1], [3], [7], [11], [22], [27], [28], [32])

The overall structure of the study takes the form of four sections with introduction. The remainder of
this work is organized as follows: we first give some kinds of fractional integrals and then we mention
some works which focus on fractional version of Hermite-Hadamard inequality. In Section 2 new Hermite-
Hadamard type inequalities for generalized fractional integrals are proved. In Section 3 and Section 4, using
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generalized fractional integrals, we present some midpoint and trapezoid type inequalities for functions
whose first derivatives in absolute value are convex, respectively.
In the following we present the definitions of the Riemann-Liouville fractional integrals:

Definition 1.1. Let f € Ly[a, b]. The Riemann-Liouville fractional integrals J. f and J;_f of order a > 0 witha > 0
are defined by

Jar f(x) = % fﬂ V (x— )" f(tydt, x>a

and

b
Jo ) = ﬁ f (t -0 f(dt, x <D

respectively. Here, T(a) is the Gamma function and J, f(x) = J)_f(x) = f(x).
The definition of Hadamard fractional integrals is given as follows:

Definition 1.2. Let f € Li[a, b]. The Hadamard fractional integrals Jg, f and J;,_f of order a > 0 with a > 0 are
defined by

X a-1

I = s f (03 0L, x>

and

Jy fx) = ﬁth(lnf)mf(t)% x<b

x
respectively.
Now, we give the following generalized fractional integrals:

Definition 1.3. Let w : [a,b] — R be an increasing and positive monotone function on (a,b], having a continuous
derivative w’(x) on (a,b). The left-sides (7, f(x)) and right-sides (I, f(x)) fractional integral of f with respect to
the function g on [a, b] of order o < O are defined by

1 (" w®f)
o . - d
forsf () I(a) ;/u‘ [w(x) — w(t)]™ box>a

and

1 (7 wOf®)
@ = d
louf () F(a)fx [w(t) — w(x)]" boa<h

respectively.

In [34], Sarikaya et al. first proved the following important Hermite-Hadamard type utilizing Riemann-
Liouville fractional integrals.

Theorem 1.4. Let f : [a,b] — R be a positive function with0 <a < band f € Ly [a,b]. If f is a convex function on
[a, b], then the following inequalities for fractional integrals hold:

f(a+b)< T(a+1) f(a)+ £ ()
2 )T 2(b-a) 2

|12, ) + i f@)] < b))

with a > 0.
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On the other hand, Sarikaya and Yildirim give the following Hermite-Hadamard type inequality for the
Riemann-Lioville fractional integrals in [33].

Theorem 1.5. Let f : [a,b] — R be a positive function with a < band f € Ly [a,b]. If f is a convex function on
[a,b], then the following inequalities for fractional integrals hold:

a+b\ 2T+, . f(a) + f(b)
/ ( 2 )S ©—ay [@)J(b’”(%)—f(“)]ﬁ—z : 3)

Whereupon Sarikaya et al. obtain the Hermite-Hadamard inequality for Riemann-Lioville fractional
integrals, many authors have studied to generalize this inequality and to establish Hermite-Hadamard in-
equality other fractional integrals such as k-fractional integral, Hadamard fractianal integrals, Katugampola
frtactional integrals, Conformable fractional integrals, etc. For some of them, please see ([2], [4]-[6], [8], [9],
[12], [15]-[17], [19], [21], [24]-[26], [31], [35]- [45]). More details for fractional calculus, one can refer to ([13],
[20], [23], [30]).

In [18], Jleli and Samet proved the following Hermite-Hadamard type inequality:

Theorem 1.6. Let w : [a,b] — R be an increasing and positive monotone function on (a,b], having a continuous
derivative w’(x) on (a,b) and let o > 0. If f is a convex on [a, b], then

b
f(a ; b) < 4 [wiéjéj;za)]a (I?+;wp(b) + I?f}wl—“(u)) < M (4)
where
F(x) = f(x) + f(x), and f(x) = f(a +b —x) .

forx € [a,b]

The aim of this paper is to establish new Hermite-Hadamard type integral inequalities for convex
function utilizing fractional integrals with respect to another function. Furthermore, we present some
trapezoid and midpoint type inequalities.

2. Generalized Hermite-Hadamard Type Inequalities

Firstly, let us start with some notations. Let @ > 0 and let w : [2,b] — R be an increasing and positive
monotone function on (4, b], having a continuous derivative w’(x) on (4, b). We define the following positive
mapping on [0, 1],

t 2t 2t

NS () = [w(b) - w(ia N Tb)r n [w(Tu n %b) - w(a)r . ©)

’ + [w(g ; b) - w(a)]a.

Moreover, if we consider the identity mapping ¢ instead of the mapping w (i.e. w(t) = £(t) = t), then we get

new =2

Particularly,

A1) = [w(b) —w (” er b)

)

Furthermore, for w(t) = Int we have

.o 2b ¢ 2 —-ta+th\]|"
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and particularly,
O R a+b]
AL (1) = [ln oy b] + [ln o ] .

Now, we give the following generalized Hermite-Hadamard inequality:

Theorem 2.1. Let o > 0. Let w : [a,b] — R be an increasing and positive monotone function on (a,bl, having a
continuous derivative w’(x) on (a, b). If f is a convex function on [a, b], then we have the following Hermite-Hadamard
type inequalities for generalized fractional integrals

a+b Ia+1)7T,, N
f(7?) = 2AR(D) Q#%wﬂm+k#%mﬂm] ®)
fa) + f(b)
= 2

where the mapping F is defined as in (5) and the mapping A, is defined as in (6).

Proof. As f is an convex function on [4, b], we have

x+y\ _ f()+f(y)
e 10

for x,y € [a,b]. If we choose x = £a + Ztband y = ta + Lb for t € [0,1], using the onvexity of f, then we
have

- — b
(55 <3 )y (e o) 22510

After multiplying both sides of (11) by

b—a W(%”"‘%b)

(@) [w(b) —w (%a + %b)]l_a

if we integrate the resulting inequality with respect to t over (0, 1), then we get

b—-a (a+b)j‘ w/(éu"'Z;b) it
2K@°N 2 1 @) - w(ba+ 520)]
1
b—a w' (4a+ Ztb) to2-t 2t ¢
< - Zp)|ar
(@ J kww—w6a+%%ﬂhifg 2 )+f(2 “+2ﬂ

1

b-a [f(a)+f(b)] f W' (a + %51)
2A@L 2 1 o) -w(ta+ 50)])

IA
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By change of variable u = ta + &b with du = —%24t, we obtain the inequalities

b
a+b\ 1 w' (u)
d
f ( 2 )F(a)f [w(b) — w ()] !

atb
2

b
1 w’ (1)
ZNWJ}Mw—wWW”

[f(u)+ fa+b—u)]dt

f@+f® [ ww
N

Using the fact that

b
w’ (1) 1 a+b\]"
O au==\we - ,
f ) —w a[w() w( 2 )] (12

axb
2

and Definition 1.3, we establish the following inequalities
1 a+b\|* (a+b 17, N -
T +1) [w(b) B w( 2 )] f( 2 ) = 3 [I(L;h)+;wf(b) * I(#)ﬂwf(b)]
f@+ f®) [w(b) » (M )]

2T(a + 1) 2

i.e.

1 a+b\|" (a+Db
[0 (7 ®

L, f@+ £®) a+b\["
< 2yl O = Tray [w<b) - w(T)

By the similar way, multiplying both sides of (11) by

b-a w’ (%’1 + %b)
2[() [w (%a + éb) - w(a)]l_a

and integrating the resulting inequality with respect to ¢ over (0, 1), we obtain

1 a+b “ fla+b
e o(5) o] (5 a
1, f@)+ [ (a+b ¢
< 2l @ = Fra [w( 2 ) - w(”)] '
Summing the inequalities (13) and (14), we get
AQ) _(a+b)\ 17, N Ay (1) | fa) + f(b)
T(a+ 1)f (T) =2 [I(%)ﬂwm) ”(#)—;wF(”)] =Ta+1) [ 2 ]

which completes the proof of the inequality (9). O
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Remark 2.2. If we choose w(t) = t in (9), then the inequalities (9) reduce to the inequalities (3) proved by Sarikaya
and Yildirim in [33].

Corollary 2.3. Under assumption of Theorem 2.1 with w(t) = Int, we have the following Hermite-Hadamard type
inequalities for Hadamard fractional integrals

a+b Ta+1)[,, N
! (T) < 2aa @) Pyt O Tyt @
f@+/©®
B 2

where the mapping A{ is given as in (8).

3. Generalized Midpoint Type Inequalities

In this section, we present some generalized midpoint type inequalities for the generalized fractional
integrals.

Lemma 3.1. Let a > 0 and let the mapping w be as in Theorem 2.1. If f : [a,b] — R be a differentiable mapping on
(a,b) with a < b, then we have the following identity for generalized fractional integrals

T'a+1) [ (15)

a+b
2A5(1)

PO+ Ty FO) (1

- s [0l (o) (5t

where the mapping F is defined as in (5) and the mapping A, is defined as in (6).

Proof. Integrating by parts we have

1

f[w(b) - w(%a + Eb)r F (%a + Eb) dt (16)

L 5
0

= _b%a [w(b) - w(éa + ;b)rl—"(—a + —b)

b
2 a+b\|" (a+b\ 2a W’ (u)
= b2 [W(b)—W(T)] F( 5 )+ b—a f [w(b)_w(u)]l_al:(u)dt

ath
2

A(a+1), 4 a+b\|" (a+b
_Z?Z_QTFWHM_E?EF“m_u{ 2)]f(2 )
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Similarly integrating by parts, we have

L = j[w(%a + éb) - w(u)r F (?a + %b)dt 17)
0

% [w(a er b) _ w(a)]“f(a 42r b) B 21“1505_4;2 1)1‘(*M) F@).

From (16) and (17), we obtain

b—a _ T(a+1)
4A3,(1)(11 -h)= >

N N a+b
[I(%h)+ FO T F(a)] (—) (18)

On the other hand, since F'(x) = f(x) — f’(a + b — x), we get

= [ o= 0 (o 25 5
0

and

1= [l )] [ (5o ) o255

Thus we have
L—1I= fl A%(H) [f (- + 2—b) I (¥a ; %b)] dt. (19)
0

Using the equality (19) in (18), we obtain the required identity (15). O

Remark 3.2. Ifwe choose w(t) = t in (15), then we obtain the following equality for the Riemann-Liouville fractional
integrals

21T (a + 1)
(b —a)

85 el 35 (5 o

which is proved by Sarikaya and Yildirim in [33].

a a a+b
sy F0)+ sy 0] - £(%5)

Corollary 3.3. Under assumption of Lemma 3.1 with w(t) = Int, we have the following identity for Hadamard
fractional integrals

T+ D[, . a+b
AT Pl O Ty PO - (5

- oty [reolrlies 50 (5t o

where the mapping Al is given as in (8).
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Theorem 3.4. Let
the following trapezoid type inequality for generalized fractional integrals

,b], then we have

T@+1)[, ) .
m[l(%wﬂb)u(m) F(a)] (_)‘ .
1
b-
= 4A%(1) [ @]+ (b)|] f A% (t)dt

0

where the mapping F is defined as in (5) and the mapping AS, is defined as in (6).

Proof. Taking madulus in Lemma 3.1, we have

Ta+1)
2A4%(1) [

a a a+b
By PO+ Ty F(a)] (—)‘

1
t b—a N
b)'dt+4Agj(1)f|A
0

,b], we get

—a+ ﬁb)‘dt.

2

2A%(1)
0

Since

t, 2t
Sﬁf(ﬂ)|+ 5

(F 2t
f(i“ 2 b)
and

2t
< -
2

£ (%a ; %b) F@)|+~

Hence,

Fla+1) [, " a+b
‘Z@ﬁ?h@»ww“iw> )~ ( N

& (8| dt.

<
45 (1)
This completes the proof. [J

Remark 3.5. If we choose w(t) = t in (20), then we have the following inequality for Riemann-Liouville fractional
integrals

25T @+ ) [, N a+b
W[] n+b)+f(b)+] (25t)- f(bl)] f(T)'

+rol]

which is given by Sarikaya and Yildirim in [33].
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Corollary 3.6. Under assumption of Theorem 3.4 with w(t) = Int, we have the following midpoint type inequality
for Hadamard fractional integrals

Ta+1)[,, ) lavb
2A% (1) [J(#)WF (b)+J(ﬂ§J)_;wF(a)] f( - )’

AL (Dt

—a
< g
4A¢ (1)
where the mapping A{ is given as in (8).

", q > 1, is a convex mapping on [a, b] with
1+ 1 =1, then we have the following trapezoid type inequality for generalized fractional integrals

P q
Fla+1) [, " a+b
‘21\;;(1) [I(%)w ©* Loy ”)] ( )‘ @)
1 5 ] . .
b—a X /a) ’ | q 3¢ + | | q
< |/ (Aw“))pdt] [[ 1 ] *[ 3 ”
0
b ' :
—4a a ’
< |t (Aw(t))p‘“J @l +
0

where the mapping F is defined as in (5) and the mapping A, is defined as in (6).

Proof. Taking madulus in Lemma 3.1 and using the well known Hélder’s inequality, we have

) [eyonF O+ ey FO - (M) 22)
= W;(DO ' 4A“(1)f A )’dt
e fue »rw];[jfew%b)%]"
+4”A;(‘;)[ fl Ao dt ;[ fl f’(éa+%b)|th]}1_
; i
As [0, b], we get
Ofl “_b)‘ at = Ofl [5l7@ + 5= [rof|a (23)

f(@)|’

4
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1
!
f@l +
4
Putting the inequalities (23) and (24) in (22), we obtain the first inequality in (21).

and

IA

1
f 2otk b)‘dt
0

7 ] dt (24)

'(0)|'

For the proof of second inequality, let a; = ) i ,ap =3|f (a)|q and b, = l 1 (b)(q . Using
the fact that
n n n
Z(ak+bk)sSZaZ+st,OSs<1 (25)
k=1 k=1 k=1

and 1 +37 < 4 then the required inequality can be obtained easilly. [J

Remark 3.8. If we choose w(t) = t in (21), then we have the following inequalities for Riemann-Liouville fractional
integrals

21T (a + 1) N a+b
2 D ey 50+ Iy S0 - £ )|

1 1
b—a 1 % ’ ’ |‘7 q+ 3| +F |’7 7
4 \ap+1 4 4

bél;a(ozp+1) )]

which are given by Sarikaya and Yildirim in [33].

—_—

Corollary 3.9. Under assumption of Theorem 3.7 with w(t) = Int, we have the following midpoint type inequality
for Hadamard fractional integrals

T(a+1) [, o _g[atb
285D ey Yy PO - 1 ( 2 )’

1
1 P

Of (An@) dtJ

r@l +3lrof)  Elref ol
1 * 1

where the mapping A{ is given as in (8).

b—-a
4AT (1)

<=

'

= 4A“ (1)

4f (t) ]

0

4. Generalized Trapezoid Type Inequalities

In this section, we establish some generalized trapezoid type inequalities for the generalized fractional
integrals.
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Lemma 4.1. Let o > 0 and let the mapping w be as in Theorem 2.1. If f : [a,b] — R be a differentiable mapping on
(a,b) with a < b, then have the following identity for generalized fractional integrals

f@+ f(b) T(a+1) [
2 2A%(1)

By PO + Iy F@)| (26)

(4t)+w (%

Ot a 2_ 2 - t E
= 4A“(1 f(A —A (t))[f( “t b) f( 2 ”+2b)]dt
where the mapping F is defined as in (5) and the mapping AS, is defined as in (6).

Proof. Using the integration by parts, we have

-2 -feo - 2520 ) 3550

J1

b
B 2 3 a+b\]" 3 2u w'(u)
- b—a[w(b) w( 2 )] T f @) - w0

_ 2 B a+b A’ +1) ,
= [w(b) ( )] [F@)+ fO)] - == FO)

By the similar way, we obtain

I = Ofl( —a+ b) w(a)]a—[w(a;b) (u)}) (%a+§b)dt

b ‘ 1
i o) - v o+ o - T e, o,

Then it follows that
b-
4A3,(1) (1 +]2) )
f@+f(b) T(a+1) )
S22 [ty PO+ sy F)].

On the other hand, using the fact that F'(x) = f'(x) — f’(a + b — x), we have

R R )

7 (5o =0) - (o sl
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and

= e vl -[o(132) -]

(2—t ¢ St 22—t
x[f (S Eb)—f (57+5 b)]dt.
By substituting the equalities (28) and (29) in (27), we establish the desired result (26) [

Remark 4.2. If we choose w(t) = t in (26), then we have the following equality for Riemann-Liouville fractional
integrals

fl@)+f) 2T+, i
iy e (SRR SIC]

- 522 famn (e 25 oo
0

which is proved by Ozdemir et al. in [26, Lemma 2 (for x = “2)].

Corollary 4.3. Under assumption of Lemma 4.1 with w(t) = Int, we have the following identity for Hadamard
fractional integrals

f@+ f) T@+1)[,, .
2 2A(D) [ (222 )l (b)+J(@J)_;wF(a)]

1
_ f/\?;(“l) f(A;;u) - a5 0)[7(30+ 20)- (¥a + 50| ar
0

where the mapping Al is given as in (8).

Theorem 4.4. Let @ > 0 and let the mapping w as in Theorem 2.1. If | f’
the following trapezoid type inequality for generalized fractional integrals

f@+f) T@+D)7, i
T SR VPO sy P

is a convex mapping on [a, b], then we have

(30)

f @]+

1
b—-a ,
< I (1)[ £ )] f A% (1) - A% ()|t
0
where the mapping F is defined as in (5) and the mapping A, is defined as in (6).
Proof. Taking madulus in Lemma 4.1, we have

f@+f®) T@+1)7, )
‘ 2 2M0 [ty PO+ gy F@)

f’(%a + %b)' dt

1
b—a a a
m flAw(l) - Aw(t)l
0

+45’\ 0 fl |AZ(1) = A% (D) l f (%a ¥ %b)‘dt.
0
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Since |f”

is a convex function on [4, b], we get

f(ﬂ) + f(b) T(a + 1) . )
‘ 2 2N [I(ﬂ—;b)mf ®) +I(#)_;WF(a)]

1
b_ 4 4 o o
v I @+l o] [lasw - asola
0

which completes the proof. [

Remark 4.5. If we choose w(t) = t in (30), then we have the following inequality for Riemann-Liouville fractional
integrals

f@)+f) 2T+, i
e il U WL RN L)

b-a( «

= 1 (a+ 1)”10(”)' ’
which is proved by Budak et al. in [5].

£ )]

Corollary 4.6. Under assumption of Theorem 4.4 with w(t) = Int, we have the following trapezoid type inequalities
for Hadamard fractional integrals

f@+f() T+, )
2 2A%() L (b)”@)_;ﬂ“)]

b—a
< = |
42 (1)

1
£ @] +|f (b)|] f |AZ (1) — AL (1) dt
0

where the mapping A{ is given as in (8).

Theorem 4.7. Let a > 0 and let the mapping w as in Theorem 2.1. If‘f’ 1 g > 1, is a convex mapping on [a, b] with
% + % =1, then we have the following trapezoid type inequality for generalized fractional integrals

f@+fb) T@a+1)7, .
‘ 2 2AND) [I(%b)+;wP(b)”(%)—;wp(”)] (1)
1 ; 1 1
b—a N Lo lFr@f+3lro'y (3|r@f +|Fo|Y
< A f|Aw(1)—Aw(t)| dt] l[ 1 + 1
0
b 1 :
—a a a ’ ’
< arml|? f IAwa)—Aw(t)l”dt] lF @]+ ol
0

where the mapping F is defined as in (5) and the mapping AS, is defined as in (6).
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Proof. Taking madulus in Lemma 4.1 and using Holder’s inequality, we have

‘f(a) +A0) T@+1) [
2 2A% (1)

1 b
|A§,(1)—A§f,(t)|pdt] [
/ /
) 1 b
—4a o an|P
+m[ f |A%(1) = A% ()] dt] [ f
0

0

1
f A% (D) — A% ()| dt]
0

This completes the proof of the first inequality in (31)
The proof of second inequality in (31) is obvious from the inequality (25). O

iy, PO + I‘(‘%b)_;wF(a)]

%
(b 2—t A\
f(§a+—2 b)’ dt]

1
q
q
dt]
1
7

I(!fw = '(b"q) + [3 f@+ f’(b)f];}
4 4 .

b—a
4A5(1)

22—t ¢
f( 2 “Eb)

==

b—a
4A5(1)

Remark 4.8. If we choose w(t) = t in (31), then we have the following inequality for Riemann-Liouville fractional
integrals

‘f(a) +f(b) 2'T(a +1)
2

(b_a)a
1
b-—a 1 ?
4 \ap+1

b—a 4 ’1’[
4 \ap+1

which is proved by Budak et al. in [5].

[y S0+ s

[ F@f +3 f'(b)lqr ) [3 F@)| + f'(b)lqﬂ
4 4

F@|+|F ol

Proof. For w(t) =t, we get

1 5 1 5
f(A;(l)—Ag,(t)th] - %[[u—tav’dt] :
0 0

Using the fact that |tf - t§| <|th—t* for A € (0,1]and ¥ #, £ € [0,1], we have

b-a
4A5(1)
1
P 1

b 1 % b ‘ b ’

—a _ap —-a _ ap _b-a 1 )

4 [fll a dt] = 4 [fll f dt] 4 (ap+1)
0 0

which completes the proof. [
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Corollary 4.9. Under assumption of Theorem 4.7 with w(t) = Int, we have the following trapezoid type inequalities
for Hadamard fractional integrals

f@+f®) T@+1)7,., )
2 B 2Aﬁ1(1) [J(%)ﬂwp(b) + J(%b)_,wl:(a)]

1 5 L )
ma | Plae - aopal [[F@2lFONY (slr@l Iroly
= I f’Aln(l)_Aln(t)| dt - . -
0
b ( g
L - o
O 4()[ @ - a5 o at| [lF@] +|F o]

where the mapping Al is given as in (8).
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