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Abstract. Since the so-called Hermite-Hadamard type inequalities for convex functions were presented,
their generalizations, refinements, and variants involving various integral operators have been exten-
sively investigated. Here we aim to establish several Hermite-Hadamard inequalities and Hermite-
Hadamard-Fejer type inequalities for symmetrized convex functions and Wright-quasi-convex functions
with a weighted function symmetric with respect to the midpoint axis on the interval involving the frac-
tional conformable integral operators initiated by Jarad et al. [9]. We also point out that certain known
inequalities are particular cases of the results presented here.

1. Introduction and preliminaries

We begin by recalling the following classical Hermite-Hadamard type inequalities for convex functions
(see, e.g., [2]): Let I ⊂ R be an interval and f : I→ R a convex function. Then, for a, b ∈ I with a < b,

f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

(1)

holds. Here and in the following, let R, R+, andN be the sets of real numbers, positive real numbers, and
positive integers, respectively, and let R+

0 := R+
∪ {0} andN0 := N ∪ {0}. The inequality (1) has attracted a

remarkable number of researchers’ attention. For new proofs, refinements, generalizations, and numerous
applications of this inequality (1), we refer, for example, to [4, 10] and the references cited therein.

Here, Definitions 1.1, 1.2, and 1.3 are recalled (see [5]).

Definition 1.1. Let I be a nonempty interval on R. Then a function f : I → R is called quasi-convex on I (denoted
by f ∈ QC(I)) if

f (tx + (1 − t)y) ≤ max{ f (x), f (y)} (0 ≤ t ≤ 1; x, y ∈ I). (2)
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Clearly, any convex function is quasi-convex. Furthermore, there exists a quasi-convex function which is
not convex.

Definition 1.2. Let I be a nonempty interval on R. Then a function f : I → R is called Wright-quasi-convex on I
(denoted by f ∈WQC(I)) if

1
2

[
f (tx + (1 − t)y) + f ((1 − t)x + ty)

]
≤ max{ f (x), f (y)}. (3)(

0 ≤ t ≤ 1; x, y ∈ I
)
.

Definition 1.3. Let I be a nonempty interval on R. Then a function f : I → R is called Jensen-quasi-convex on I
(denoted by f ∈ JQC(I)) if

f
(x + y

2

)
≤ max{ f (x), f (y)}

(
x, y ∈ I

)
. (4)

The following strict inclusions holds (see [5])

QC(I) (WQC(I) ( JQC(I). (5)

We recall the following theorem (see [5]).
Theorem A. Let I be a nonempty interval on R and a, b ∈ I with a < b. Also let f ∈WQC(I) be integrable on [a, b].
Then the following Hermite-Hadamard type inequality holds

1
b − a

∫ b

a
f (t) dt ≤ max{ f (a), f (b)}. (6)

We also recall Definition 1.4 (see [12]).

Definition 1.4. Let I and J be intervals on R with (0, 1) ⊆ J. Also let f : I → R+
0 be a function and h : J → R+

0 a
function with h . 0. Then f is called h-convex if

f (tx + (1 − t)y) ≤ h(t) f (x) + h(1 − t) f (y) (0 < t < 1; x, y ∈ I). (7)

Definition 1.5. Let [a, b] (a < b) be an interval onR and f : [a, b]→ C a function. Then the symmetrical transform
of f , denoted by f̆ , is defined by

f̌ (t) :=
1
2

[
f (t) + f (a + b − t)

]
(t ∈ [a, b]). (8)

The anti-symmetrical transform of f on [a, b], denoted by denoted by f̃ , is defined by

f̃ (t) :=
1
2

[
f (t) − f (a + b − t)

]
(t ∈ [a, b]). (9)

Obviously, for any function f , f̌ + f̃ = f .

Definition 1.6. [2, 6] We say that the function f : [a, b]→ R is symmetrized convex (concave) on the interval [a, b]
if the symmetrical transform f̌ is convex (concave) on [a, b].

Now, if we denote by Con[a, b] the closed convex cone of convex functions defined on [a, b] and by SCon
[a, b] the class of symmetrized convex functions, then from the above remarks we can conclude that

Con[a, b] ( SCon[a, b] (10)

Also, if [c, d] ⊂ [a, b] and f ∈ SCon[a, b], then this does not imply in general that f ∈ SCon[c, d].
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Example 1.7. Let the function f be defined as follows:

f : [a, b]→ R f (x) =
ex
− e−x

2
a < 0 < b and a + b > 0.

Then f is a symmetrized convex function.

Definition 1.8. Let h be the function in Definition 1.4. A function f : [a, b]→ R+
0 is called h-symmetrized convex

(concave) on the interval [a, b] if the symmetrical transform f̌ is h-convex (concave) on [a, b].

Example 1.9. Let h be a function defined as h(t) = t, t > 0 and let the function f be defined as follows:

f : [−2, 2]→ R+ f (x) = x3 + 1 and f̌ (t) =
1
2

[ f (t) + f (a + b − t)] = 1 h(t) = t t > 0.

Then f is a h-symmetrized convex function.

Theorem B. Let h be the function in Definition 1.4 and a function f : [a, b]→ R+
0 be h-symmetrized convex on the

interval [a, b]. Then

1
2h( 1

2 )
f
(

a + b
2

)
≤

f (x) + f (a + b − x)
2

≤

[
h
(

b − x
b − a

)
+ h

(x − a
b − a

) ] f (a) + f (b)
2

. (11)

For Definitions 1.5 and 1.8, and Theorem B, we refer to [2, 6].
We recall Hermite-Hadamard inequalities for symmetrized convex functions (see [2]) in the following

theorem and corollary.
Theorem C. Let f : [a, b]→ R (a < b) be a symmetrized convex function. Then, for any x ∈ [a, b], we have

f
(

a + b
2

)
≤ f̌ (x) ≤

f (a) + f (b)
2

. (12)

Corollary D. Let f : [a, b] → R (a < b) be a symmetrized convex and integrable function. Then we have the
following Hermite-Hadamard inequalities

f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (t) dt ≤

f (a) + f (b)
2

. (13)

Fejér [7] established a so-called Hermite-Hadamard-Fejér inequality related to the integral mean of a
convex function f which is a weighted generalization of Hermite-Hadamard inequality (1), which is recalled
in the following theorem.

We recall the following theorem (see [7]).
Theorem E. Let f : [a, b]→ R (a < b) be a convex function and f ∈ L1(a, b). Also let 1 : [a, b]→ R be nonnegative,
integrable and symmetric to (a + b)/2. Then

f
(

a + b
2

) ∫ b

a
1(x)dx ≤

1
b − a

∫ b

a
f (x) 1(x)dx ≤

f (a) + f (b)
2

∫ b

a
1(x) dx. (14)

We recall the following Theorem F and Theorem G (see [8]).

Theorem F. Let α ∈ R+, f : [a, b] → R (a < b) be a convex function and f ∈ L1[a, b]. Also let 1 : [a, b] → R be
nonnegative, integrable and symmetric to (a + b)/2. Then

f
(

a + b
2

) [ (
Jαa+1

)
(b) +

(
Jαb−1

)
(a)

]
≤

[ (
Jαa+ f1

)
(b) +

(
Jαb− f1

)
(a)

]
≤

f (a) + f (b)
2

[ (
Jαa+1

)
(b) +

(
Jαb−1

)
(a)

]
. (15)
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Theorem G. Let ρ, λ ∈ R+. Also let f : [a, b] → R (a < b) be a convex function and f ∈ L1[a, b]. Further let
1 : [a, b]→ R be nonnegative, integrable and symmetric to a+b

2 . Then

f
(

a + b
2

) [ (
J
σ
ρ,λ,a+;w1

)
(b) +

(
J
σ
ρ,λ,b−;w1

)
(a)

]
≤

[ (
J
σ
ρ,λ,a+;w f1

)
(b) +

(
J
σ
ρ,λ,b−;w f1

)
(a)

]
≤

f (a) + f (b)
2

[ (
J
σ
ρ,λ,a+;w1

)
(b) +

(
J
σ
ρ,λ,b−;w1

)
(a)

]
.

(16)

Definition 1.10. [9] The left and right-fractional conformable integrals of order β ∈ C, Re(β) > 0, are defined by

β
aJ

α f (x) =
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 f (t)dt
(t − a)1−α , (17)

βJαb f (x) =
1

Γ(β)

∫ b

x

(
(b − x)α − (b − t)α

α

)β−1 f (t)dt
(b − t)1−α . (18)

Notice that, if (Q f )(t) = f (a + b − t), then we have (βaJαQ f )(x) = Q(βJαb f )(x). The fractional integral in (17)
coincides with the Riemann-Liouville fractional integral when a = 0 and α = 1. Moreover (18) coincides
with the Riemann-Liouville fractional integral when b = 0 and α = 1.

In this paper, we aim to establish several Hermite-Hadamard inequalities for symmetrized convex
functions and Wright-quasi-convex functions with a weighted function symmetric with respect to the
midpoint axis on the interval involving the fractional integral operators (17) and (18). We also point out
that certain known inequalities are particular cases of the results presented here.

2. Hermite-Hadamard type inequalities

In this section, we investigate certain Hermite-Hadamard inequalities involving the fractional integral
operators (17) and (18). We begin by presenting some useful equalities associated (17) and (18), asserted in
the following lemma.

Lemma 2.1. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval on R, f : [a, b] → C be an integrable
function. Then

1
2

[
β
aJ

α f (x) + βJαb f (a + b − x)
]

=
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 f̌ (t)dt
(t − a)1−α

(19)

and

1
2

[
β
aJ

α f (a + b − x) + βJαb f (x)
]

=
1

Γ(β)

∫ b

x

(
(b − x)α − (b − t)α

α

)β−1 f̌ (t)dt
(b − t)1−α . (20)

Proof. We prove (19). we find from (18) that, for a < x ≤ b,

βJαb f (a + b − x) =
1

Γ(β)

∫ b

a+b−x

(
(x − a)α − (b − t)α

α

)β−1 f (t)dt
(b − t)1−α . (21)

Setting t = a + b − u to change the variable in the right side of (21), we obtain

βJαb f (a + b − x) =
1

Γ(β)

∫ x

a

(
(x − a)α − (t − u)α

α

)β−1 f (a + b − u)dt
(u − a)1−α . (22)



E. Set et al. / Filomat 33:8 (2019), 2367–2380 2371

From (17), we also have

β
aJ

α f (x) =
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 f (t)dt
(t − a)1−α . (23)

Adding (22) and (23) sides by sides and using the definition (8), we obtain the desired equality (19).
A similar argument as in the proof of (19) will establish the equality (20). We omit the details.

We present Hermite-Hadamard inequalities involving the fractional integral operators (17) and (18),
asserted by the following theorem.

Theorem 2.2. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval on R, f : [a, b] → C is a symmetrized
convex and integrable function. Then

f
(

a + b
2

)
≤

Γ(β + 1)αβ

2(x − a)αβ

[
β
aJ

α f (x) + βJαb f (a + b − x)
]
≤

f (a) + f (b)
2

(24)

(a < x ≤ b) ;

f
(

a + b
2

)
≤

Γ(β + 1)αβ

2(b − x)αβ

[
β
aJ

α f (a + b − x) + βJαb f (x)
]
≤

f (a) + f (b)
2

(25)

(a ≤ x < b) .

Proof. Since f is symmetrized convex on [a, b], in view of Theorem C, we have

f
(

a + b
2

)
≤ f̌ (t) ≤

f (a) + f (b)
2

(t ∈ [a, b]). (26)

Multiplying both sides of (26) by 1
Γ(β)

(
(x−a)α−(t−a)α

α

)β−1 1
(t−a)1−α and integrating each term of the resulting

inequalities with respect to t from a to x (a < x ≤ b), we get

f
(

a + b
2

)
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α dt

≤
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 f̌ (t)dt
(t − a)1−α

≤
f (a) + f (b)

2
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α dt.

(27)

Using (19) for the second integral in (27) and, for the first and third integrals in (27), considering the
following easily-derivable integral∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α dt =

(x − a)αβ

βαβ
, (28)

we obtain the desired inequality (24).
Similarly as in the proof of (24), we can prove the inequality (25). We omit the details.

As in Lemma 2.1, we present some useful equalities associated (17) and (18), asserted in the following
lemma.
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Lemma 2.3. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval on R, f : [a, b] → C be an integrable
function. Then

1
2

[
βJαx f (a) +

β
a+b−xJ

α f (b)
]

=
1

Γ(β)

∫ x

a

(
(x − a)α − (x − t)α

α

)β−1 f̌ (t)dt
(x − t)1−α

(29)

and

1
2

[
βJαa+b−x f (a) +

β
xJ

α f (b)
]

=
1

Γ(β)

∫ b

x

(
(b − x)α − (t − x)α

α

)β−1 f̌ (t)dt
(t − x)1−α . (30)

Proof. Using (17), we have

β
a+b−xJ

α f (b) =
1

Γ(β)

∫ b

a+b−x

(
(x − a)α − (t − (a + b − x))α

α

)β−1 f (t)dt
(t − (a + b − x))1−α . (31)

Setting u = a + b − t in (31), we obtain

β
a+b−xJ

α f (b) =

∫ x

a

(
(x − a)α − (x − u)α

α

)β−1 f (a + b − u)du
(x − u)1−α .

We use (18) to have

βJαx f (a) =
1

Γ(β)

∫ x

a

(
(x − a)α − (x − t)α

α

)β−1 f (t)dt
(x − t)1−α . (32)

Finally, adding (31) and (32) sides by sides, in view of the definition (8), we obtain the desired equality (29).
The proof of the equality (30) would run parallel to that of (29). We omit the details.

We present Hermite-Hadamard inequalities involving the fractional integral operators (17) and (18),
asserted by the following theorem.

Theorem 2.4. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval on R, f : [a, b] → C is a symmetrized
convex and integrable function. Then

f
(

a + b
2

)
≤

Γ(β + 1)αβ

2(x − a)αβ

[
βJαx f (a) +

β
a+b−xJ

α f (b)
]
≤

f (a) + f (b)
2

(33)

(a < x ≤ b);

f
(

a + b
2

)
≤

Γ(β + 1)αβ

2(b − x)αβ

[
βJαa+b−x f (a) +

β
xJ

α f (b)
]
≤

f (a) + f (b)
2

(34)

(a ≤ x < b).

Proof. A similar argument as in the proof of Theorem 2.2, here, using the equalities in Lemma 2.3, will
establish the results here. We omit the details.

Theorem 2.5. Let β ∈ C, Re(β) > 0, [a, b] (a < b) be an interval onR, f : [a, b]→ C be an integrable function. Also
let f : [a, b]→ R be Wright-quasi-convex and integrable on [a, b]. Then

Γ(β + 1)αβ

2(x − a)αβ

[
β
aJ

α f (x) + βJαb f (a + b − x)
]
≤ max{ f (a), f (b)} (35)

(a < x ≤ b);
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Γ(β + 1)αβ

2(b − a)αβ

[
β
aJ

α f (b) + βJαb f (a)
]
≤ max{ f (a), f (b)}; (36)

Γ(β + 1)αβ2αβ−1

(b − a)αβ

[
β
aJ

α f (
a + b

2
) + βJαb f (

a + b
2

)
]
≤ max{ f (a), f (b)}. (37)

Proof. Since f : [a, b] → R is Wright-quasi-convex on [a, b], setting x = a, y = b and t = s−a
b−a ∈ [0, 1] for

s ∈ [a, b] in (3), we have

f̌ (s) =
1
2

[
f (a + b − s) + f (s)

]
≤ max{ f (a), f (b)}. (38)

Multiplying both sides of (38) by 1
Γ(β)

(
(x−a)α−(s−a)α

α

)β−1 1
(s−a)1−α and integrating each term of the resulting

inequalities with respect to s from a to x (a < x ≤ b), we obtain

1
Γ(β)

∫ x

a

(
(x − a)α − (s − a)α

α

)β−1 f̌ (s)ds
(s − a)1−α ≤ max{ f (a), f (b)}

1
Γ(β)

∫ x

a

(
(x − a)α − (s − a)α

α

)β−1 ds
(s − a)1−α . (39)

Applying (19) to the left side of (39), we get

1
2

[
β
aJ

α f (x) + βJαb f (a + b − x)
]
≤ max{ f (a), f (b)}

(x − a)αβ

Γ(β + 1)αβ
,

leads to the desired inequality (35).
Setting x = b and x = a+b

2 in (35) yields, respectively, the inequalities in (36) and (37).

Theorem 2.6. Let β ∈ C, Re(β) > 0, [a, b] (a < b) be an interval onR, f : [a, b]→ C be an integrable function. Also
let f : [a, b]→ R be Wright-quasi-convex and integrable on [a, b]. Then

Γ(β + 1)αβ

2(x − a)αβ

[
βJαx f (a) +

β
a+b−xJ

α f (b)
]
≤ max{ f (a), f (b)} (40)

(a < x ≤ b);

Γ(β + 1)αβ2αβ−1

(b − a)αβ

[
βJαa+b

2
f (a) +

β
a+b

2

Jα f (b)
]
≤ max{ f (a), f (b)}. (41)

Proof. A similar argument as in the proof of Theorem 2.5 will establish the inequality (40). The inequality
(41) is just a special case of the inequality (40) when x = a+b

2 . We omit the details.

Theorem 2.7. Assume that the function f : [a, b]→ [0,∞) is h-symmetrized convex on the interval [a, b] with h is
integrable on [0, 1] and f is integrable on [a, b]. Then we have

f
(

a+b
2

)
2h

(
1
2

)
β
≤

Γ(β)αβ
[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2(x − a)αβ
(42)

≤ α
f (a) + f (b)

2

∫ 1

0
(1 − sα)β−1s1−α

[
h
(
1 −

x − a
b − a

s
)

+ h
(x − a

b − a
s
) ]

ds.

Proof. Since h-symmetrized convex function, we have;

1
2h( 1

2 )
f
(

a + b
2

)
≤ f̌ (t) ≤

[
h
(

b − t
b − a

)
+ h

( t − a
b − a

) ] f (a) + f (b)
2

.
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To prove the first inequality, multiplying each terms with 1
Γ(β)

(
(x−a)α−(t−a)α

α

)β−1 1
(t−a)1−α and integrating on [a, x]

with respect to t, we get

1
2h( 1

2 )Γ(β)
f
(

a + b
2

) ∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α dt ≤

[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2
.

After simple calculation, we get

f
(

a+b
2

)
2h

(
1
2

)
β
≤

Γ(β)αβ
[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2(x − a)αβ
(43)

thus the first inequality is proved.

To prove the second inequality, multiplying each terms with 1
Γ(β)

(
(x−a)α−(t−a)α

α

)β−1 1
(t−a)1−α and integrating on

[a, x] with respect to t, we get[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2
≤

f (a) + f (b)
2Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α

[
h
(

b − t
b − a

)
+ h

( t − a
b − a

) ]
dt

for any a < x ≤ b.
If we change the variable with t = (1 − s)a + sx for s ∈ [0, 1], i.e. dt = (x − a)ds, b−t

b−a = 1 − x−a
b−a s, t−a

b−a = x−a
b−a s

and x − t = (1 − s)(x − a), then we have[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2

≤

(
f (a) + f (b)

2

) ∫ 1

0

(
(x − a)α − (s(x − a))α

α

)β−1 1[
s(x − a)

]1−α

[
h
(
1 −

x − a
b − a

s
)

+ h
(x − a

b − a
s
) ]

(x − a)ds.

After simple calculation, we get

Γ(β)αβ
[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2(x − a)αβ
≤ α

f (a) + f (b)
2

∫ 1

0
(1 − sα)β−1s1−α

[
h
(
1 −

x − a
b − a

s
)

+ h
(x − a

b − a
s
) ]

ds. (44)

The proof is completed.

Remark 2.8. The case a = 0 and α = 1 in Lemma 2.1, Theorem 2.2, Lemma 2.3, Theorem 2.4, Theorem 2.5,
Theorem 2.6 and Theorem 2.7 reduces to the known results, respectively, in [3, Lemma 1],[3, Theorem 2],[3,
Lemma 2],[3, Theorem 3],[3, Theorem 4],[3, Theorem 5] and [3, (4.10) - (4.13)].

3. Hermite-Hadamard-Fejér type inequalities

In this section, we investigate certain Hermite-Hadamard-Fejér type inequalities involving the fractional
integral operators (17) and (18). We begin by presenting some useful equalities associated (17) and (18),
asserted in the following lemma.

Lemma 3.1. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval onR, f : [a, b]→ C be an integrable function
and 1 : [a, b]→ R be integrable and symmetric to (a + b)/2. Then

1
2

[
(βaJ

α f1)(x) + (βJαb f1)(a + b − x)
]

=
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 f̌ (t)1(t)dt
(t − a)1−α

(45)
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and

1
2

[
(βaJ

α f1)(a + b − x) + (βJαb f1)(x)
]

=
1

Γ(β)

∫ b

x

(
(b − x)α − (b − t)α

α

)β−1 f̌ (t)1(t)dt
(b − t)1−α . (46)

Proof. Firstly, we will prove (45). We find from (18) that, for a < x ≤ b,

(βJαb f1)(a + b − x) =
1

Γ(β)

∫ b

a+b−x

(
(x − a)α − (b − t)α

α

)β−1 f (t)1(t)dt
(b − t)1−α . (47)

Setting t = a + b − u to change the variable in the right side of (21), we obtain

(βJαb f1)(a + b − x) =
1

Γ(β)

∫ x

a

(
(x − a)α − (t − u)α

α

)β−1 f (a + b − u)1(a + b − u)du
(u − a)1−α . (48)

Since 1(t) is symmetric with respect to the axis t = (a + b)/2 on [a, b], from (22), we get

(βJαb f1)(a + b − x) =
1

Γ(β)

∫ x

a

(
(x − a)α − (t − u)α

α

)β−1 f (a + b − u)1(u)du
(u − a)1−α . (49)

From (17), we also have

(βaJ
α f1)(x) =

1
Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 f (t)1(t)dt
(t − a)1−α . (50)

Adding (49) and (50) sides by sides and using the definition (8), we obtain the desired equality (45).
A similar argument as in the proof of (45) will establish the equality (46). We omit the details.

We present Hermite-Hadamard inequalities involving the fractional integral operators (17) and (18),
asserted by the following theorem.

Theorem 3.2. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval on R, f : [a, b] → C is a symmetrized
convex and integrable function and 1 : [a, b]→ R be integrable and symmetric to (a + b)/2. Then

f
(

a + b
2

)
≤

Γ(β + 1)αβ
[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2(x − a)αβ‖1‖min
(51)

(a < x ≤ b) ;

Γ(β + 1)αβ
[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2(x − a)αβ‖1‖∞
≤

f (a) + f (b)
2

(52)

(a < x ≤ b) .

f
(

a + b
2

)
≤

Γ(β + 1)αβ
[
β
aJ

α f (a + b − x) + βJαb f (x)
]

2(b − x)αβ‖1‖min
(53)

(a ≤ x < b) ;

Γ(β + 1)αβ
[
β
aJ

α f (a + b − x) + βJαb f (x)
]

2(b − x)αβ‖1‖∞
≤

f (a) + f (b)
2

(54)

(a ≤ x < b) .
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Proof. Since f is symmetrized convex on [a, b], in view of Theorem C, we have

f
(

a + b
2

)
≤ f̌ (t) ≤

f (a) + f (b)
2

(t ∈ [a, b]). (55)

Multiplying both sides of (26) by 1
Γ(β)

(
(x−a)α−(t−a)α

α

)β−1 1
(t−a)1−α 1(t) and integrating each term of the resulting

inequalities with respect to t from a to x (a < x ≤ b), we get

f
(

a + b
2

)
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α 1(t)dt

≤
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 f̌1(t)(t)dt
(t − a)1−α

≤
f (a) + f (b)

2
1

Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α 1(t)dt.

(56)

Using (45) for the second integral in (56) and, for the first and third integrals in (56), considering the
following easily-derivable integral∫ x

a

(
(x − a)α − (t − a)α

α

)β−1 1
(t − a)1−α dt =

(x − a)αβ

βαβ
, (57)

we obtain the desired inequality (51) and (52)
Similarly as in the proof of (51) and (52), we can prove the inequality (53) and (54). We omit the

details.

As in Lemma 3.1, we present some useful equalities associated (17) and (18), asserted in the following
lemma.

Lemma 3.3. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval onR, f : [a, b]→ C be an integrable function
and 1 : [a, b]→ R be integrable and symmetric to (a + b)/2 . Then

1
2

[
(βJαx f1)(a) + (βa+b−xJ

α f1)(b)
]

=
1

Γ(β)

∫ x

a

(
(x − a)α − (x − t)α

α

)β−1 f̌ (t)1(t)dt
(x − t)1−α

(58)

and

1
2

[
(βJαa+b−x f1)(a) + (βxJ

α f1)(b)
]

=
1

Γ(β)

∫ b

x

(
(b − x)α − (t − x)α

α

)β−1 f̌ (t)1(t)dt
(t − x)1−α . (59)

Proof. Using (17), we have

(βa+b−xJ
α f1)(b) =

1
Γ(β)

∫ b

a+b−x

(
(x − a)α − (t − (a + b − x))α

α

)β−1 f (t)1(t)dt
(t − (a + b − x))1−α . (60)

Setting u = a + b − t in (60), we obtain

(βa+b−xJ
α f1)(b) =

∫ x

a

(
(x − a)α − (x − u)α

α

)β−1 f (a + b − u)1(a + b − u)du
(x − u)1−α .

Since 1(t) is symmetric with respect to the axis t = (a + b)/2 on [a, b], we get

(βa+b−xJ
α f1)(b) =

∫ x

a

(
(x − a)α − (x − u)α

α

)β−1 f (a + b − u)1(u)du
(x − u)1−α . (61)
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We use (18) to have

(βJαx f1)(a) =
1

Γ(β)

∫ x

a

(
(x − a)α − (x − t)α

α

)β−1 f (t)1(t)dt
(x − t)1−α . (62)

Finally, adding (61) and (62) sides by sides, in view of the definition (8), we obtain the desired equality (58).
The proof of the equality (59) would run parallel to that of (58). We omit the details.

We present Hermite-Hadamard inequalities involving the fractional integral operators (17) and (18), as-
serted by the following theorem.

Theorem 3.4. Let β ∈ C, Re(β) > 0. Also let [a, b] (a < b) be an interval on R, f : [a, b] → C is a symmetrized
convex and integrable function and 1 : [a, b]→ R be integrable and symmetric to (a + b)/2. Then

f
(

a + b
2

)
≤

Γ(β + 1)αβ
[
βJαx f (a) +

β
a+b−xJ

α f (b)
]

2(x − a)αβ‖1‖min
(63)

(a < x ≤ b);

Γ(β + 1)αβ
[
βJαx f (a) +

β
a+b−xJ

α f (b)
]

2(x − a)αβ‖1‖∞
≤

f (a) + f (b)
2

(64)

(a < x ≤ b).

f
(

a + b
2

)
≤

Γ(β + 1)αβ
[
βJαa+b−x f (a) +

β
xJ

α f (b)
]

2(b − x)αβ‖1‖min
(65)

(a ≤ x < b);

Γ(β + 1)αβ
[
βJαa+b−x f (a) +

β
xJ

α f (b)
]

2(b − x)αβ‖1‖∞
≤

f (a) + f (b)
2

(66)

(a ≤ x < b).

Proof. A similar argument as in the proof of Theorem 3.2, here, using the equalities in Lemma 3.3, will
establish the results here. We omit the details.

Theorem 3.5. Let β ∈ C, Re(β) > 0, [a, b] (a < b) be an interval onR, f : [a, b]→ C be an integrable function. Also
let f : [a, b]→ R be Wright-quasi-convex and integrable on [a, b] and 1 : [a, b]→ R be integrable and symmetric to
(a + b)/2. Then

Γ(β + 1)αβ
[
(βaJα f1)(x) + (βJαb f1)(a + b − x)

]
2(x − a)αβ‖1‖∞

≤ max{ f (a), f (b)} (67)

(a < x ≤ b);

Γ(β + 1)αβ
[
(βaJα f1)(b) + (βJαb f1)(a)

]
2(b − a)αβ‖1‖∞

≤ max{ f (a), f (b)}; (68)

Γ(β + 1)αβ2αβ−1
[
(βaJα f1)( a+b

2 ) + (βJαb f1)( a+b
2 )

]
(b − a)αβ‖1‖∞

≤ max{ f (a), f (b)}. (69)
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Proof. Since f : [a, b] → R is Wright-quasi-convex on [a, b], setting x = a, y = b and t = s−a
b−a ∈ [0, 1] for

s ∈ [a, b] in (3), we have

f̌ (s) =
1
2

[
f (a + b − s) + f (s)

]
≤ max{ f (a), f (b)}. (70)

Multiplying both sides of (38) by 1
Γ(β)

(
(x−a)α−(s−a)α

α

)β−1 1(s)
(s−a)1−α and integrating each term of the resulting

inequalities with respect to s from a to x (a < x ≤ b), we obtain

1
Γ(β)

∫ x

a

(
(x − a)α − (s − a)α

α

)β−1 f̌ (s)1(s)ds
(s − a)1−α ≤ max{ f (a), f (b)}

1
Γ(β)

∫ x

a

(
(x − a)α − (s − a)α

α

)β−1
1(s)ds

(s − a)1−α . (71)

Applying (45) to the left side of (71), we get

1
2

[
(βaJ

α f1)(x) + (βJαb f1)(a + b − x)
]
≤ max{ f (a), f (b)}

(x − a)αβ‖1‖∞
Γ(β + 1)αβ

,

leads to the desired inequality (67).
Setting x = b and x = a+b

2 in (67) yields, respectively, the inequalities in (68) and (69).

Theorem 3.6. Let β ∈ C, Re(β) > 0, [a, b] (a < b) be an interval onR, f : [a, b]→ C be an integrable function. Also
let f : [a, b]→ R be Wright-quasi-convex and integrable on [a, b] and 1 : [a, b]→ R be integrable and symmetric to
(a + b)/2. Then

Γ(β + 1)αβ
[
(βJαx f1)(a) + (βa+b−xJ

α f1)(b)
]

2(x − a)αβ‖1‖∞
≤ max{ f (a), f (b)} (72)

(a < x ≤ b);

Γ(β + 1)αβ2αβ−1
[
βJαa+b

2

f (a) +
β
a+b

2

Jα f (b)
]

(b − a)αβ‖1‖∞
≤ max{ f (a), f (b)}. (73)

Proof. A similar argument as in the proof of Theorem 3.5 will establish the inequality (72). The inequality
(73) is just a special case of the inequality (72) when x = a+b

2 . We omit the details.

Theorem 3.7. Assume that the function f : [a, b]→ [0,∞) is h-symmetrized convex on the interval [a, b] with h is
integrable on [0, 1] and f is integrable on [a, b] and 1 : [a, b]→ R be integrable and symmetric to (a + b)/2. Then we
have

f
(

a + b
2

)
≤

h
(

1
2

)
Γ(β + 1)αβ

[
(βaJα f1)(x) + (βJαb f1)(a + b − x)

]
(x − a)αβ‖1‖min

, (74)

and

Γ(β)αβ−1
[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2(x − a)αβ‖1‖∞
(75)

≤
f (a) + f (b)

2

∫ 1

0
(1 − sα)β−1s1−α

[
h
(
1 −

x − a
b − a

s
)

+ h
(x − a

b − a
s
) ]

ds.
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Proof. Since h-symmetrized convex function, we have;

1
2h( 1

2 )
f
(

a + b
2

)
≤ f̌ (t) ≤

[
h
(

b − t
b − a

)
+ h

( t − a
b − a

) ] f (a) + f (b)
2

.

To prove (74), multiplying each terms with 1
Γ(β)

(
(x−a)α−(t−a)α

α

)β−1 1(t)
(t−a)1−α and integrating on [a, x] with respect

to t we get

1
2h( 1

2 )Γ(β)
f
(

a + b
2

) ∫ x

a

(
(x − a)α − (t − a)α

α

)β−1
1(t)

(t − a)1−α dt ≤

[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2
.

After simple calculating we get

f
(

a + b
2

)
≤

h
(

1
2

)
Γ(β + 1)αβ

[
(βaJα f1)(x) + (βJαb f1)(a + b − x)

]
(x − a)αβ‖1‖min

. (76)

Thus (74) is proved. To prove (75), multiplying each terms with 1
Γ(β)

(
(x−a)α−(t−a)α

α

)β−1 1(t)
(t−a)1−α and integrating

on [a, x] with respect to t, we get[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2
≤

f (a) + f (b)
2Γ(β)

∫ x

a

(
(x − a)α − (t − a)α

α

)β−1
1(t)

(t − a)1−α

[
h
(

b − t
b − a

)
+ h

( t − a
b − a

) ]
dt.

for any a < x ≤ b.
If we change the variable with t = (1 − s)a + sx for s ∈ [0, 1], i.e. dt = (x − a)ds, b−t

b−a = 1 − x−a
b−a s, t−a

b−a = x−a
b−a s

and x − t = (1 − s)(x − a), then we have[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2

≤

(
f (a) + f (b)

2

) ∫ 1

0

(
(x − a)α − (s(x − a))α

α

)β−1
1 ((1 − s)a + sx)[

s(x − a)
]1−α

[
h
(
1 −

x − a
b − a

s
)

+ h
(x − a

b − a
s
) ]

(x − a)ds.

After simple calculation, we get

Γ(β)αβ−1
[
β
aJ

α f (x) + βJαb f (a + b − x)
]

2(x − a)αβ‖1‖∞
≤

f (a) + f (b)
2

∫ 1

0
(1 − sα)β−1s1−α

[
h
(
1 −

x − a
b − a

s
)

+ h
(x − a

b − a
s
) ]

ds. (77)

The proof is completed.

Remark 3.8. The case 1(t) = 1 in Lemma 3.1, Theorem 3.2, Lemma 3.3, Theorem 3.4, Theorem 3.5, Theorem
3.6 and Theorem 3.7 reduces to the known results, respectively, Lemma 2.1, Theorem 2.2, Lemma 2.3,
Theorem 2.4, Theorem 2.5, Theorem 2.6 and Theorem 2.7.

Remark 3.9. The case a = 0 and α = 1 in Lemma 3.1, Theorem 3.2, Lemma 3.3, Theorem 3.4, Theorem 3.5,
Theorem 3.6 and Theorem 3.7 reduces to the known results, respectively, in [11, Corollary 1],[11, Corollary
2],[11, Corollary 3],[11, Corollary 4],[11, Corollary 5],[11, Corollary 6] and [11, Corollary 7].
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