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Abstract. In this paper, we introduce two hybrid algorithms for finding a common best proximity point of
two best proximally nonexpansive mappings. We establish strong convergence theorems of the proposed
algorithms under some control conditions in a real Hilbert space. Moreover, some numerical examples are
given for supporting our main theorems.

1. Introduction

Best proximity point problems can be applied to study the existence of various nonlinear equations in
science, applied science and including equilibrium point problems in economics. Many interesting results,
by several authors, concerning best proximity point problems can be found in the following works [2–13],
for examples.

Let (X, ‖ · ‖) be a normed linear space and U a nonempty subset of X. An operator T : U → X is said
to have a fixed point in U if the fixed point equation Tx = x has at least one solution, that is, there exists
a point x ∈ U such that ‖x − Tx‖ = 0. Throughout this article, we consider in the case that the fixed point
equation does not have a solution, i.e., ‖x − Tx‖ > 0 for all x ∈ U. Our aim is to find an element x ∈ U such
that the error ‖x−Tx‖ is minimum. The point x is said to be a best approximation of T. This is the idea behind
the best approximation theory.

One of the well-known best approximation theorems was proved by Fan [1] in 1961 as the following
theorem:

Theorem 1.1. ([1]) Let U be a nonempty, compact and convex set in a normed linear space X. If T is a continuous
mapping from U into X, then there exists a point x in U such that ‖x − Tx‖ = d(Tx,U) := inf{‖Tx − u‖ : u ∈ U}.

An element x in the previous theorem is called a best approximation point of T in U. Now, we consider the
optimization problem,

minimize f (x) subject to x ∈ U,
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where a real valued function f : U → R is an objective function. A point x ∈ U such that f (x) ≥ f (x) for all
x ∈ U is called a global minimizer of f over U and we write

f (x) = min
x∈U

f (x).

In this regard, the optimization problem is solved only when its global minimizer exists. Best proxim-
ity point theorems have been explored to find sufficient conditions so that, the minimization problem
minx∈U ‖x − Tx‖ has at least one solution.

To have a concrete lower bound, let U and V be two nonempty subsets of a normed linear space X
and T : U → V a mapping. The natural problem is whether we can find an element x0 ∈ U such that
‖x0 − Tx0‖ = minx∈U ‖x − Tx‖. We denote that d(U,V) := inf{‖x − y‖ : x ∈ U, y ∈ V}. Since ‖x − Tx‖ ≥ d(U,V)
for any x ∈ U, the interesting problem is to find a point x ∈ U such that

‖x − Tx‖ = d(U,V).

It is called a best proximity point of T. In particular case, if d(U,V) = 0, then the best proximity points of T are
exactly fixed points of T.

A interesting way to solve the problems of fixed point theory is to introduce and employ some iterative
methods which now have received vast investigations. In 2003, the hybrid algorithm for nonexpansive
mappings was firstly introduced by Nakajo and Takahashi [14]. They proved that the iterative sequence,
generated by the CQ method, converges strongly to fixed points of such kind of mapping. Martinez-
Yanes and Xu [22] used the ideas of Nakajo and Takahashi to prove some strong convergence theorems
for nonexpansive mappings in Hilbert spaces. At a later time, Takahashi et al. [15] proved a strong
convergence theorem by their hybrid method for a family of nonexpansive mappings which generalizes
Nakajo and Takahashi theorems [14]. Jacob et al. [16], in 2017, introduced the hybrid algorithms for nonself
nonexpansive mappings on real Hibert spaces and proved that the iterative sequence of these algorithms
converges strongly to the proximity point. Recently, Suparatulatorn and Suantai [17] introduced a best
proximally nonexpansive mapping which is more general than nonexpansive mappings. They presented a
new hybrid algorithm for finding a global minimization of best proximity points for this type of mapping.

It is our purpose in this paper to introduce two hybrid algorithms and prove some results which assure
the proposed algorithms converge strongly to common best proximity points of two nonself best proximity
nonexpansive mappings under some certain conditions in real Hilbert spaces. Moreover, we compare the
convergence behavior between our proposed algorithms with the previous work.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let U be a nonempty,
closed and convex subset of H. For each x ∈ H, there exists a unique point in U, say PUx, such that

‖x − PUx‖ ≤ ‖x − y‖ for all y ∈ U.

The map PU is called the metric projection of H onto U. We also know that PU is a nonexpansive mapping of
H onto U.

Let U and V be two nonempty, closed and convex subsets of a real Hilbert space H. We denote by Fix(T)
the set of fixed points of T and BestU(T) the set of best proximity points of T, that is,

BestU(T) := {x ∈ U : ‖x − Tx‖ = d(U,V)},

where d(U,V) := inf{‖x − y‖ : x ∈ U, y ∈ V}. Next, we will recall some notations for convenience. Let

U0 := {x ∈ U : ‖x − y‖ = d(U,V), for some y ∈ V},

V0 := {y ∈ V : ‖x − y‖ = d(U,V), for some x ∈ U}.

Actually, we can see that every element of BestU(T) is in the set U0. We shall use the notations: xn → x
means that a sequence {xn} converges strongly to x and xn ⇀ x means that a sequence {xn} converges weakly
to x. The following some important definitions and useful lemmas will be used in the sequel.
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Definition 2.1. ([17]) Let U and V be two nonempty subsets of a real Hilbert space H and C a subset of U. A
mapping T : U→ V is said to be C-nonexpansive if

‖Tx − Tz‖ ≤ ‖x − z‖ for all x ∈ U, z ∈ C.

If C = BestU(T) , ∅, we say that T is best proximally nonexpansive.

It is obvious that if T is nonself nonexpansive, then it is C-nonexpansive for every subset C of U. Moreover,
a C-nonexpansive mapping is a quasi-nonexpansive mapping where C = Fix(T) , ∅.

Definition 2.2. ([4, 18]) A pair (U,V) of nonempty subsets of a normed linear space X with U0 , ∅ is said to have
the P-property if and only if

||x1 − y1|| = d(U,V)
||x2 − y2|| = d(U,V)

}
=⇒ ||x1 − x2|| = ||y1 − y2||,

whenever x1, x2 ∈ U0 and y1, y2 ∈ V0.

We know that every pair (U,V) of nonempty, closed and convex subsets of a real Hilbert space H has the
P-property.

Definition 2.3. ([3]) Let U and V be nonempty subsets of a metric space (X, d). Then (U,V) is said to satisfy the
property UC if the following holds:

If {xn} and {x′n} are two sequences in U and {yn} is a sequence in V such that limn→∞ d(xn, yn) = d(U,V) and
limn→∞ d(x′n, yn) = d(U,V), then limn→∞ d(xn, x′n) = 0 holds.

For U and V are nonempty subsets of a uniformly convex Banach space, if U is convex, then the pair (U,V)
has the property UC.

Lemma 2.4. ([17]) Let U and V be two nonempty, closed and convex subsets of a metric space (X, d). Then
d(x,PVx) = d(U,V) for all x ∈ U0 and d(y,PU y) = d(U,V) for all y ∈ V0.

Lemma 2.5. ([17]) Let U and V be two nonempty subsets of a uniformly convex Banach space X such that U is
closed and convex. Suppose that T : U→ V is a mapping such that T(U0) ⊂ V0. Then

Fix(PUT|U0 ) = Fix(PUT) ∩U0 = BestU(T).

Lemma 2.6. ([17]) Let U and V be two nonempty subsets of a uniformly convex Banach space X such that U is
closed and convex. Suppose that T : U→ V is a best proximally nonexpansive mapping such that T(U0) ⊂ V0. Then
PUT|U0 is a quasi-nonexpansive mapping.

Lemma 2.7. ([19]) Let U be a closed and convex subset of a real Hilbert space H. Let T : U → U be a quasi-
nonexpansive mapping. Then Fix(T) is a closed and convex subset.

Definition 2.8. Let U be a nonempty subset of a Banach space X and T : U → X a mapping. Then T is said to be
demiclosed at y ∈ X if for any sequence {xn} in U such that xn ⇀ x ∈ U and Txn → y imply Tx = y.

Definition 2.9. ([20]) Let U and V be nonempty subsets of a normed space X and T : U→ V a mapping. Then T is
said to satisfy the proximal property if for any sequence {xn} in U such that xn ⇀ x ∈ U and ‖xn − Txn‖ → d(U,V)
imply ‖x − Tx‖ = d(U,V).

It is obvious from above definition that if d(U,V) = 0, the proximal property reduces to the usual demi-
closedness property of the map I − T at 0.

Lemma 2.10. ([21]) Let U and V be two nonempty subsets of a uniformly convex Banach space X such that U is
closed and convex. Suppose that T : U → V is mapping such that T(U0) ⊂ V0. Then T|U0 satisfies the proximal
property if and only if I − PAT|U0 is demiclosed at zero.
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In the sequel, we shall need the following facts and tools in a real Hilbert space.

Lemma 2.11. In a real Hilbert space H, the identity following holds:

‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 for any x, y ∈ H.

Lemma 2.12. ([22]) Let H be a real Hilbert space. Given a closed and convex subset U ⊂ H and points w, x, y ∈ H
and a real number a ∈ R. The set

D := {u ∈ U : ‖y − u‖2 ≤ ‖x − u‖2 + 〈w,u〉 + a}

is a closed convex subset of U.

Lemma 2.13. Let U be a closed and convex subset of a real Hilbert space H and let PU be the metric projection
mapping from H onto U. Given x ∈ H and z ∈ U. Then z = PUx if and only if there holds the relation:

〈x − z, y − z〉 ≤ 0 for all y ∈ U.

Lemma 2.14. ([22]) Let U be a closed and convex subset of a real Hilbert space H. Let {xn} be a sequence in H and
x ∈ H. Let q = PUx. Suppose that ωw(xn) := {u : there is a sequence {xn j } of {xn} such that xn j ⇀ u}, the weak
ω-limit set of {xn}, is a subset of U and satisfies the condition

‖xn − x‖ ≤ ‖x − q‖ for all n.

Then xn → q.

3. Main Results

In this section, we introduce new algorithms for finding a global minimization of common best proximity
points of two nonself best proximally nonexpansive mappings and prove that the iterate sequence generated
by the proposed algorithms converges strongly to a common best proximity point of those mappings.

Now, we start with our first main result.

Theorem 3.1. Let U and V be two nonempty, closed and convex subsets of a real Hilbert space H. Let S,T : U→ V
be best proximally nonexpansive mappings such that S(U0) ⊂ V0 and T(U0) ⊂ V0. Suppose that S and T satisfy the
proximal property and Ω := BestU(S) ∩ BestU(T) , ∅. Let {αn} and {βn} be sequences in [0, 1] such that αn → 0 and
βn → 0 as n→∞. For an initial guess x0 ∈ U0, define the sequence {xn} by

zn = βnPVxn + (1 − βn)Txn,

yn = αnzn + (1 − αn)Sxn,

Cn = {u ∈ U0 : ‖yn − u‖ ≤ ‖xn − u‖ + d(U,V) and ‖zn − u‖ ≤ ‖xn − u‖ + d(U,V)},
Qn = {u ∈ U0 : 〈xn − u, xn − x0〉 ≤ 0},

xn+1 = PCn∩Qn x0,n ≥ 0.

(1)

Then the sequence {xn} defined by (1) converges strongly to a point q∗ ∈ Ω, where q∗ = PΩx0.

Proof. Choose x0 ∈ U0 arbitrarily: First observe that Cn and Qn are closed convex subsets of U by Lemma 2.12 (see
more details Lemma 3.1[16]). Next, we claim that Ω ⊂ Cn for all n. Indeed, we have, for all q ∈ Ω,

‖zn − q‖ = ‖βnPVxn + (1 − βn)Txn − q‖
= ‖βn(PVxn − q) + (1 − βn)(Txn − q)‖
≤ βn‖PVxn − q‖ + (1 − βn)‖Txn − q‖
≤ βn‖PVxn − Tq‖ + βn‖Tq − q‖ + (1 − βn)‖Txn − Tq‖ + (1 − βn)‖Tq − q‖
≤ βn‖PVxn − Tq‖ + βnd(U,V) + (1 − βn)‖xn − q‖ + (1 − βn)d(U,V)
= βn‖PVxn − Tq‖ + (1 − βn)‖xn − q‖ + d(U,V).
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Since ‖xn − PVxn‖ = d(U,V) and ‖q − Tq‖ = d(U,V), using the P-property we obtain that ‖PVxn − Tq‖ = ‖xn − q‖.
Therefore, the above inequality becomes

‖zn − q‖ ≤ βn‖PVxn − Tq‖ + (1 − βn)‖xn − q‖ + d(U,V)
= βn‖xn − q‖ + (1 − βn)‖xn − q‖ + d(U,V)
= ‖xn − q‖ + d(U,V). (2)

Moreover, by (2) and the best proximally nonexpansivity of S, we have

‖yn − q‖ = ‖αnzn + (1 − αn)Sxn − q‖
= ‖αn(zn − q) + (1 − αn)(Sxn − q)‖
≤ αn‖zn − q‖ + (1 − αn)‖Sxn − q‖
≤ αn‖zn − q‖ + (1 − αn)‖Sxn − Sq‖ + (1 − αn)‖Sq − q‖
≤ αn(‖xn − q‖ + d(U,V)) + (1 − αn)‖xn − q‖ + (1 − αn)d(U,V)
= ‖xn − q‖ + d(U,V). (3)

Hence q ∈ Cn and Ω ⊂ Cn for all n. Next, we show that

Ω ⊂ Qn for all n ≥ 0. (4)

We prove this by induction. For n = 0, we have Q0 = U0. Assume that Ω ⊂ Qn. Since xn+1 is the projection of x0
onto Cn ∩Qn (such an element exist since Cn and Qn are closed and convex), by Lemma 2.13, we have

〈xn+1 − z, x0 − xn+1〉 ≥ 0 for all z ∈ Cn ∩Qn.

As Ω ⊂ Cn ∩ Qn, by the induction assumption, the last inequality holds, in particular, for all z ∈ Ω. This together
with the definition of Qn+1 imply Ω ⊂ Qn+1. Hence (4) holds true for all n ≥ 0.

By the definition of Qn and Lemma 2.13, we get xn = PQn x0. Since Ω ⊂ Qn, we have ‖xn − x0‖ ≤ ‖q − x0‖ for all
q ∈ Ω. It follows that {xn} is bounded and

‖xn − x0‖ ≤ ‖q∗ − x0‖, where q∗ = PΩx0. (5)

From ‖PVxn − Txn‖ ≤ ‖PVxn − Tq‖ + ‖Tq − Txn‖, we also get that {PVxn − Txn} is bounded. By xn+1 ∈ Qn, we have
〈xn+1 − xn, xn − x0〉 ≥ 0. This together with Lemma 2.11 imply

‖xn+1 − xn‖
2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖
2
− ‖xn − x0‖

2
− 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖
2
− ‖xn − x0‖

2.

Hence
∑
∞

n=0 ‖xn+1 − xn‖
2 < ∞, which implies ‖xn+1 − xn‖ → 0.

Since xn+1 ∈ Cn, we have

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖

≤ ‖xn − xn+1‖ + d(U,V) + ‖xn+1 − xn‖

and

‖yn − xn‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − xn‖

≤ ‖xn − xn+1‖ + d(U,V) + ‖xn+1 − xn‖.

The last two inequalities imply that ‖zn − xn‖ → d(U,V) and ‖yn − xn‖ → d(U,V).
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Now, we consider

yn − xn = αnzn + (1 − αn)Sxn − xn = αn(zn − xn) + (1 − αn)(Sxn − xn)

and

zn − xn = βnPVxn + (1 − βn)Txn − xn = βn(PVxn − Txn) + (Txn − xn).

Then

(1 − αn)(Sxn − xn) = (yn − xn) − αn(zn − xn)

and

Txn − xn = (zn − xn) − βn(PVxn − Txn).

From above equalities, we obtain

‖Sxn − xn‖ ≤
1

1 − αn

(
‖yn − xn‖ + αn‖zn − xn‖

)
and

‖Txn − xn‖ ≤ ‖zn − xn‖ + βn‖PVxn − Txn‖.

Taking n → ∞ in above inequalities and use the assumptions αn → 0 and βn → 0 together with boundedness of
{PVxn − Txn} we obtain

‖Sxn − xn‖ → d(U,V) and ‖Txn − xn‖ → d(U,V).

Since ‖PUSxn − Sxn‖ = d(U,V) and ‖PUTxn − Txn‖ = d(U,V), by Property UC, we get

‖PUSxn − xn‖ → 0 as n→∞ (6)

and

‖PUTxn − xn‖ → 0 as n→∞. (7)

Now, we define two mappings S∗,T∗ : U0 → U0 by S∗(x) = PUSx, x ∈ U0 and T∗(x) = PUTx, x ∈ U0. By
Lemma 2.6, we get S∗ and T∗ are quasi-nonexpansive. Also, by Lemma 2.7, we have Fix(S∗),Fix(T∗) are closed and
convex subsets of U0. Since Fix(S∗) = BestU(S) and Fix(T∗) = BestU(T) (by Lemma 2.5), it follows that BestU(S)
and BestU(T) are closed convex subsets of U0. Since S and T satisfy the proximal property, by Lemma 2.10, we have
I − S∗ and I − T∗ are demiclosed at zero. Hence, by (6) and (7), we obtain the inclusion wω(xn) ⊂ Fix(S∗) ∩ Fix(T∗).
This together with (5) and Lemma 2.14 guarantees that {xn} converges strongly to q∗ ∈ Ω, where q∗ = PΩx0 and this
completes the proof.

Next, we prove our second main result.

Theorem 3.2. Let U and V be two nonempty, closed and convex subsets of a real Hilbert space H. Let S,T : U→ V
be best proximally nonexpansive mappings such that S(U0) ⊂ V0 and T(U0) ⊂ V0. Suppose that S and T satisfy the
proximal property and Ω := BestU(S)∩BestU(T) , ∅. Let {αn} and {βn} be sequences in [0, 1] such that limn→∞ αn = 0
and lim supn→∞ βn < 1. Let C1 = U0 and an initial guess x0 ∈ H, define the sequence {xn} by x1 = PC1 x0 and

zn = βnxn + (1 − βn)PUTxn,

yn = αnPVzn + (1 − αn)Sxn,

Cn+1 = {u ∈ Cn : ‖yn − u‖ ≤ ‖xn − u‖ + d(U,V) and ‖zn − u‖ ≤ ‖xn − u‖},
xn+1 = PCn+1 x0,n ≥ 1.

(8)

Then the sequence {xn} defined by (8) converges strongly to a point q∗ ∈ Ω, where q∗ = PΩx0.
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Proof. Choose x0 ∈ H arbitrarily and put q∗ = PΩx0. By Lemma 2.12, we know that Cn is convex and closed (see
more details Lemma 3.1[16]). We now show that Ω ⊂ Cn for all n ≥ 1. The proof is by induction. It is clear that
Ω ⊂ U0 = C1. Assume that Ω ⊂ Cn for some n ∈N. Then, for any q ∈ Ω, we have q ∈ Cn and

‖zn − q‖ = ‖βnxn + (1 − βn)PUTxn − q‖
= ‖βn(xn − q) + (1 − βn)(PUTxn − q)‖
≤ βn‖xn − q‖ + (1 − βn)‖PUTxn − q‖.

From ‖PUTxn − Txn‖ = d(U,V) and ‖q − Tq‖ = d(U,V), by the P-property, we obtain ‖PUTxn − q‖ = ‖Txn − Tq‖.
This together with above inequality, we have

‖zn − q‖ ≤ βn‖xn − q‖ + (1 − βn)‖Txn − Tq‖
≤ βn‖xn − q‖ + (1 − βn)‖xn − q‖
= ‖xn − q‖. (9)

Using (8) and property of S, we get

‖yn − q‖ = ‖αnPVzn + (1 − αn)Sxn − q‖
= ‖αn(PVzn − q) + (1 − αn)(Sxn − q)‖
≤ αn‖(PVzn − q)‖ + (1 − αn)‖(Sxn − q)‖
≤ αn‖PVzn − Sq‖ + αn‖Sq − q‖ + (1 − αn)‖Sxn − Sq‖ + (1 − αn)‖Sq − q‖
= αn‖PVzn − Sq‖ + αnd(U,V) + (1 − αn)‖xn − q‖ + (1 − αn)d(U,V)
= αn‖PVzn − Sq‖ + (1 − αn)‖xn − q‖ + d(U,V).

From ‖PVzn − zn‖ = d(U,V) and ‖Sq − q‖ = d(U,V), using P-property again, we obtain ‖PVzn − Sq‖ = ‖zn − q‖.
Hence, we have

‖yn − q‖ ≤ αn‖zn − q‖ + (1 − αn)‖xn − q‖ + d(U,V)
≤ αn‖xn − q‖ + (1 − αn)‖xn − q‖ + d(U,V)
= ‖xn − q‖ + d(U,V). (10)

Using (9) and (10) together with the induction hypothesis, we have q ∈ Cn+1. Thus, by induction, Ω ⊂ Cn for all
n ∈N. From Ω ⊂ Cn+1 and xn+1 = PCn+1 x0 for all n ≥ 0, it follows that

‖xn+1 − x0‖ ≤ ‖q∗ − x0‖, (11)

which implies {‖xn − x0‖} is a bounded sequence.
From the fact that xn = PCn x0 for each n ∈N, it implies by Lemma 2.13 that

〈x0 − xn, xn − y〉 ≥ 0 for all y ∈ Cn. (12)

Since xn+1 ∈ Cn, (12) implies

0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −〈xn − x0, xn − x0〉 + 〈xn − x0, xn+1 − x0〉

≤ −‖x0 − xn‖
2 + ‖xn − x0‖‖xn+1 − x0‖.

It follows that {‖xn − x0‖} is nondecreasing. Because {‖xn − x0‖} is bounded, we can conclude that limn→∞ ‖xn − x0‖

exists. By Lemma 2.11 and (12), we have

‖xn+1 − xn‖
2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖
2
− ‖xn − x0‖

2
− 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖
2
− ‖xn − x0‖

2.
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It follows that ‖xn+1 − xn‖ → 0. By xn+1 ∈ Cn+1, we have

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − xn‖

and

‖yn − xn‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − xn‖

≤ ‖xn − xn+1‖ + d(U,V) + ‖xn+1 − xn‖,

which imply ‖zn − xn‖ → 0 as n→∞ and ‖yn − xn‖ → d(U,V) as n→∞.
From ‖PVzn − Sxn‖ ≤ ‖PVzn − zn‖ + ‖zn − xn‖ + ‖xn − Sq‖ + ‖Sq − Sxn‖, it follows that {PVzn − Sxn} is a bounded
sequence. Now, we note that

yn − xn = αnPVzn + (1 − αn)Sxn − xn = αn(PVzn − Sxn) + (Sxn − xn).

Then ‖Sxn−xn‖ ≤ ‖yn−xn‖+αn‖PVzn−Sxn‖which implies that ‖Sxn−xn‖ → d(U,V). Since ‖PUSxn−Sxn‖ = d(U,V)
and ‖Sxn − xn‖ → d(U,V), by Property UC, we have

‖PUSxn − xn‖ → 0 as n→∞. (13)

From (8),

zn − xn = βnxn + (1 − βn)PUTxn − xn = (1 − βn)(PUTxn − xn).

Then (1 − βn)‖PUTxn − xn‖ = ‖zn − xn‖.
From ‖zn − xn‖ → 0 and lim supn→∞ βn < 1, we get

‖PUTxn − xn‖ → 0 as n→∞. (14)

Using the same proof as in Theorem 3.1, we can show that the sequence {xn} generated by (8) converges strongly
to PΩx0.

4. Numerical Examples

We finish my paper by giving some numerical experiment results for supporting our main methods.
Consider H = R2 with the Euclidean norm, that is, ‖(x, y)‖2 =

√
x2 + y2. For our numerical examples, we let

U := {(x, y) ∈ R2 : x ≤ 2,−2 ≤ y ≤ 2}

and
V := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}.

Then U and V are nonempty, closed and convex subsets of R2 with the value of d(U,V) = 2. We also see
that U0 = {(−2, y) : 0 ≤ y ≤ 2}, and V0 = {(0, y) : 0 ≤ y ≤ 2}.

Example 4.1. Define two mappings S : U→ V and T : U→ V by

S(x, y) =


(
arctan(−x),−1 − y

)
if (x, y) ∈ U and y < −1;(

−2 − x, 5+2y
7

)
if (x, y) ∈ U and y ≥ −1.

and

T(x, y) =

(
−2 − x,

3 − |y|
2

)
for all (x, y) ∈ U.
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Table 1: Numerical result of algorithm of Theorem 3.1

n xn yn zn ‖xn − (−2, 1)‖
0 (-2.0000, 2.0000) (0.0000, 1.1964) (0.0000, 0.7500) 1.0000
1 (-2.0000, 1.7596) (0.0000, 1.1550) (0.0000, 0.7830) 0.7596
2 (-2.0000, 1.5993) (0.0000, 1.1712) (0.0000, 0.7004) 0.5993
3 (-2.0000, 1.4599) (0.0000, 1.1314) (0.0000, 0.7701) 0.4599
...

...
...

...
...

113 (-2.0000, 1.0136) (0.0000, 1.0039) (0.0000, 0.9932) 0.0136
114 (-2.0000, 1.0134) (0.0000, 1.0038) (0.0000, 0.9933) 0.0134
115 (-2.0000, 1.0133) (0.0000, 1.0038) (0.0000, 0.9934) 0.0133

Table 2: Numerical result of algorithm of Theorem 3.2

n xn yn zn ‖xn − (−2, 1)‖
1 (-2.0000, 2.0000) (0.0000, 1.2041) (0.0000, 0.7143) 1.0000
2 (-2.0000, 1.3571) (0.0000, 1.0729) (0.0000, 0.8980) 0.3571
3 (-2.0000, 1.1275) (0.0000, 1.0364) (0.0000, 0.9363) 0.1275
...

...
...

...
...

7 (-2.0000, 1.0004) (0.0000, 1.0001) (0.0000, 0.9998) 0.0004
8 (-2.0000, 1.0001) (0.0000, 1.0000) (0.0000, 1.0000) 0.0001

Note that S and T are best proximally nonexpansive mappings such that S(U0) ⊂ V0 and T(V0) ⊂ U0. Moreover, we
can see that the map S is not nonexpansive because it is not a continuous mapping.

Define the real sequences αn = 1
n100+6 and βn = 1

n200+6 for all n ∈ N ∪ {0}. We now choose the initial point
x0 = (−2, 2). Then we obtain the following tables of numerical experiment for a common best proximity point in U
(see Table 1 and Table 2).

We observe from Table 1 and Table 2 that the sequence {xn}, generated by our algorithms, converges to (−2, 1)
which is the common best proximity point of the maps S and T. Moreover, we see that the convergence speed of
algorithm of Theorem 3.2 is faster than that of algorithm of Theorem 3.1 under the same control conditions.

Example 4.2. In Jacob et al. (Algorithm 3.1) [16], we choose x0 = (−2, 2) and αn = 1
n+6 . Define the mapping

T̃ : U→ V by

T̃(x, y) =


(
arctan(−x),−1 − y

)
if (x, y) ∈ U and y < −1;(

−2 − x, 5+2y
7

)
if (x, y) ∈ U and y ≥ −1.

For algorithm of Theorem 3.2, we choose x0 = (−2, 2), αn = 1
n+6 and βn = 1

n2+6 . Define two mappings S : U→ V and
T : U→ V by

S = T = T̃.

Then we obtain the following tables of this numerical experiment for a common best proximity point in U (see Table 3
and Table 4).

The stopping rule for both algorithms is ‖xn+1−xn‖ < 10−4. So, from Table 3 and Table 4, we see that our algorithm
of Theorem 3.2 requires less number of iterations than the corresponding algorithm of Jacob et al. [16]. Therefore the
performance of approximation solution of our proposed algorithms is better than that. However, the performance of
our studied algorithms depend on those control parameters.
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Table 3: Numerical example of algorithm of Jacob et al. [16]

n xn ‖xn − (−2, 1)‖
0 (-2.0000, 2.0000) 1.0000
1 (-2.0000, 1.9317) 0.9317
2 (-2.0000, 1.8684) 0.8684
3 (-2.0000, 1.8104) 0.8104
...

...
...

246 (-2.0000, 1.0280) 0.0280

Table 4: Numerical example of algorithm of Theorem 3.2

n xn ‖xn − (−2, 1)‖
1 (-2.0000, 2.0000) 1.0000
2 (-2.0000, 1.6938) 0.6938
3 (-2.0000, 1.4814) 0.4814
...

...
...

20 (-2.0000, 1.0001) 0.0001

5. Conclusion

The best proximity point problem plays an important role for studying the existence of various nonlinear
equations in several fields. Existence problems of best proximity points for contractive type mappings were
wild studied by many authors but there are a few papers paying attention on approximation methods for
best proximity points. In this work, we purposed two new algorithms for finding a common best proximity
point of some generalized nonexpansive mappings in a real Hilbert space. We analyzed convergence
behavior of the proposed methods under some control conditions, see Theorem 3.1 and 3.2. Moreover, we
also gave some numerical examples supporting our main results and comparisons of our two algorithms
and the known existing algorithm in our literature.
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