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Griiss-Landau Inequalities for Elementary Operators and Inner Product
Type Transformers in Q and Q* Norm Ideals of Compact Operators
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Abstract. For a probability measure y on Q and square integrable (Hilbert space) operator valued functions
{A}}eq, {B,}ieq, we prove Griiss-Landau type operator inequality for inner product type transformers

' fg AXB, du(t) - fo Ardu()X fo By du)
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1 2\
(f B;X*XB, du(t) — ‘Xf B, du(t) ) ,
Q Q
for all X € B(H) and for all n € [0, 1].

Let p > 2, ® to be a symmetrically norming (s.n.) function, ®"” to be its p-modification, o"" is a s.n.
function adjoint to ®” and -1 o0 to be a norm on its associated ideal € q)(p)*('}{) of compact operators. If
X € € p-(H)and {a,}, isasequencein (0,1],suchthat}.,”; a, = 1and }.;7, ||azgl/zA,,fIIZ+||oc;l/2B;‘Zf||2 < 400
for some families {A,}>, and {B,} , of bounded operators on Hilbert space H and for all f € H, then

i a,'A,XB, - i A X i B, J i Ol AP - i A, ZXJ i a7l By - i B;
n=1 n=1 n=1 =1 p— ' ~

if at least one of those operator families consists of mutually commuting normal operators.
The related Griiss-Landau type |[|-[l,» norm inequalities for inner product type transformers are also
provided.
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1. Introduction

A well known Griiss-Landau inequality says that for a probability measure y on Q and measurable

complex functions f and g on QO
2
Ufgdu—ffdufgdu < flflzdu— ffdu flglzdu— fgdu
Q Q Q Q Q Q Q
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Specially, if f and g are real bounded functions on Q, then the rightmost side of (1) can be further estimated
by

1/2

R<((CD—Lfdu)(Lfdu—¢)(F—fggdu)(fogdu—y)) <31(®—¢)(F—V), (2)

where ¢ := infessq f(= — supess,(—f)), @ := supess, f, y := infessg gand I := supess, g.

The first special case of inequalities (1) and (2), for the normalized Lebesgue measure on Q := [g, b] (i.e.
du(t) := ), was essentially proved by G. Griiss in [4]. E. Landau in his paper [11] reformulated those
results in the above presented form, also providing an explicit application of Cauchy-Schwarz inequality to
prove (1). An alternative application of Cauchy-Schwarz inequality, based on Korkine type identities given
in [13, (7.1) p. 243], was used in [13] to prove (1), which immediately implies (2). A refined form of (1) was
given in [9, Lemma 2.1] in the case of finite set ), including the case of operator valued functions f and g,
while some other generalization of Griiss-Landau inequalities (1) and (2) where presented in [7, 8, 12] and
the references therein.

Let H be a separable, complex Hilbert space and let B(H) and C () denote the spaces of all bounded
and all compact linear operators, respectively. Each “symmetric gauge”or “symmetrically norming” (s.n.)
function @, defined on sequences of complex numbers, gives rise to a symmetric or a unitary invariant
(ui.) norm |-[lo on operators. Basic examples of s.n. functions are trace s.n. function ¢!, defined by
fl(()tn);"zl) £ Yot IAnl and (B(H) or) operator norm ¢ defined by (M) ) = sup, . A4l Any such
norm is unitarily invariant (u.i.) and it is defined on the naturally associated norm ideal Cq(H) of Coo(H).
If @ is a s.n. function, then its adjoint s.n. function will be denoted by ®*. For any p > 0 a s.n. function ®
could be p-modified and its modification ®” represent a new s.n. functions (only) for p > 1. The proof of
the triangle inequality for norms induced by this type of s.n. functions, and other properties, can be seen in
preliminary section in [6]. Also, the corresponding ideals of compact operators will be denoted by €\ (H)
and its dual by (?q)(p)*(?-( ).

Schatten-von Neumann trace classes €, (H) = €, (H) represent classical examples of norm ideals
associated to degree p-modified (i.e. its s.n. function ¢') norms. €;(H) is also known as the class of nuclear
operators, while C;(#) is known as the Hilbert-Schmidt class. Norm in €,(H) will be denoted simply by
I-llp- For p > 2, all norms ||-||» are also known as Q-norms, as ®” = (@2)? and @2 is also a s.n. function,
while its dual norms |[|-[|»+ are commonly known as Q*-norms. Norm dual to some classes of p-modified
ones are characterized in [6, Th. 2.1].

If (€, 9, u) is a space Q with a measure y on o-algebra I, then we will refer to a function A: Q —
B(H): t = A; as to a weakly*-measurable if t — (A;g,h) is a measurable for all g,h € H. If, in addition,
those functions are integrable, then there is the unique (known as Gel’'fand or weak"-integral and denoted
by fQ Ay du(t)) operator in B(H), satisfying

< f A,dy(t)h,k>: f (Adykydu(t)  forall bk e H. 3)
Q Q

Thus, it also complies with the definition of Pettis integral. For a more complete account about weak”-
integrals the reader is referred to [2, p.53], [5, p.320] and [7, Lemma 1.2]. For every h € H, the function
t — ||A¢h| is also measurable, and, if additionally fQ | Ash|? du(t) < +oo for all h € H, then there exists weak*-
integral [, AiA, du(t) € B(H), satisfying ( J, AA, du(t) h,h> = Jo IAhI? du(t) for all h € H, as shown in [5,
Ex. 2]. Such families {A};eq will be simple called square integrable (s.i.). By L2(Q, u, B(H)) will be denoted
the Banach space of all weakly*-measurable functions A: Q — B(H): t — A, such that fQ I Ah|? du(t) < +o0
for all h € H, endowed by the norm [|All>(, ) = fQ AA, dy(t‘)Hl/2 for any A € L2(Q, u, B(H)). For a

more general class of norms and its associated Banach spaces of weakly*-measurable operator valued (o.v.)
functions see [5, Th. 2.1].
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(o9

In a discrete case, a family {A,}>”, in B(H) will be called a strongly square summable (s.s.s.) if
Yoy A < +oco forallh e H.If a family {A}ieq (resp. {A,} ;) consists of mutually commuting normal
operators, i.e., those satisfying AjA, = A /A; for all 5, € Q) (resp. A, A}, = A A}, for all m,n € IN), we will
refer to it as to a m.c.n.o. family. The terminology used in this paper is closely related to the that one used
in [10], and a more detailed introduction therein may contribute to the comfort of the reader of this article
itself. For a more complete account on the theory of norm ideals, the reader is referred to [1, 3, 14].

We also need to emphasize that throughout this paper we will treat (address to) every unnumbered line
in a multline formula as (to) a part of the consequent numbered one.
2. Main results

The next theorem extends operator Griiss-Landau inequality (2.14) in [9, Cor. 2.1] from elementary
operators to the settings of i.p.t. transformers, by taking QO := {1,...,N} and u({n}) := a, forn =1,...,n,
with Y5 ; @, =1 for some N € Nand ay, ..., ay € (0,1].

Theorem 2.1. Let u be a probability measure on Q, {A}}icq, {B,}icq to be in L2(Q, u,B(H)), f,g € H,X € B(H)
and 1 € [0,1]. Then

‘L<AtXBtf’g>d‘U(t)_<LAtd‘u(t)XL Btdy(t)f,g>
< ( fo <AtAIg,9>du(t)—<' fQ A du(t) Zg, g>)( fQ (B:X'XB,f, f)dy(t)—<'x L By du(t)

2n
Q Q Q

2

Zf,f>), @

211 2\
< f AtA’[dy(t)—‘ f Az du(t) ( f B;X*XBtdy(t)—‘X f B, du(t) ) (5)
Q Q Q Q
*12,
‘( f AXBy du(t) - f A du(t)X f Btdy(t)) !
Q Q Q
21" 2\
< fg BtBtdy(t)—‘ fQ B, du(t) ( fQ AXXA du(h) — |X fg A du(t) ) ©)

Proof. To prove (4), we note that

kA Az, gy du®) = (| f, A; du)| 9, 9) Jo(AXByf, gydu(t) - { J, Ardu()X [, Brdu(f, g)
TolAXB)g, praut) - ([, Ardu®X [, Bidu®) g, f) [ (BXXB,f, Hdu(t) - (|X [, B,duo| [, )

>0.
This is a direct consequence of the fact that
Jo AA du) - | [ A dy(t)f * Jo AXBrdu(t) - [, Ardu®)X [, By dzp(t)
Joy AXByy du(®) = (f, Ardp(HX [, Brdp(t)) Jo, B;X"XB, du(t) - X [ B,dut)|
1 [ (A — A)(As — A (As — A)X(Bs — By)
=32 fQ (B, - B X"(A — Ai)*  (B.— By X" X(B, - B»] At > (s, 1) @
1 [ A -A 0][(As — A} XBs— XB
= E LZ »(XBS _ Xét)* O] [( 0 t) 0 t] d(ALl X lLl)(S, t)

2

[(As — A} XBs — XBt]

_1f
C2Je|l O 0

d(ux p)(s,t) >0
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on H & H, if we take Cs; := (A5 — At)/\/z, Dy = (Bs — Bt)/\/i, Xt =X foralls,t € Qand 0 :=1in [5, Th.
3.1(a)]. To justify equality in (7), we rely on the following Korkine type identity for i.t.p. transformers:

L A XBy du(t) - L A du(HX fQ Bydu(t) = fQ du(s) fQ AXBy du(t) - fQ fQ A XBg du(s)du(t)

=3 | (= a0x@ = B x i, ®

presented in [7, (2.2)]. Specially, by taking X := I and B, := Aj (resp. X'X instead of X and A, := B))
for t € Q in (8), we get [ AAidu(t) — [ A, du(®) [, A;du(®) = 3 (A, — A)A, — A)d(u X p)(s,t) (resp.
|, BiX*XBdu(t)— [, By du()X'X [ B,du(t) = } [,(B; - B)'X'X(B, — B,)d(u X p1)(s, t)), which based on (8),
implies (7) and completes the proof of (4).

First, to prove the case 11 := 1 in (5), we start from (4) to get

K( fg AXB; du(t) - fQ A du(®)X fQ Btdy(t))f,g>
<<( fg AA du(t) - fQ Az du(t) 2)g,g><( fQ B’[X*XBtdy(t)—'X fQ B, du(t)
fQ AA du(t) - fQ A duto| <( fQ B;X*XBtdy(t)—‘X fQ B, du(t)

where we used the very definition (3) of weak" (or Gel’fand) integral to estimate the middle expression
in (4), to justify the last inequality in (9). Now, by taking g := (fQ A XBydu(t) - fQAt d[u(i.‘)XfQ By dy(t)) f
we actually obtain (5) for n := 1. So it suffices to consider the remaining case 1 € (0,1), which follows

immediately from the operator monotonicity of the function ¢ - #7 on [0, o), when applied to the already
proven case 77 := 1.

As ([, AXBydu(t) - [, Ardu(t)X [, By dy(t))* = [ BX"Ardu(t) — [, B; du(®) X" [ A; du(t), it is suffices to
take A, := By, B, := A}, for t € O, and X" instead of X in (5), to get (6). [J

2

1o

)f f >II9 I?, ©)

<

In the case of bounded self-adjoint families {A;};eq and {B:}:cq, inequality (5) can be upgraded to the
more widely known form of Griiss-Landau inequality.

Theorem 2.2. Let under conditions of Theorem 2.1, {Atleq and {Bilieq be families of self-adjoint operators, which
satisfy ¢ < Ay < @ for some self-adjoint @, ® € B(H) commuting with A; for every t € Q and satisfying p® = Do,
as well as y < B; < T for some self-adjoint y, T € B(H) commuting with B, for every t € Q and satisfying yI =Ty.
Then

‘ fQ AsB:du(t) - fQ Ardu(t) fQ B: du(t)
Afdut) ~ Atdw)z ,, B du(t) - Btduwz n (10)
Q Q Q Q

(0= [ aawo) [ aduor-o)|(r- [ Bidu)) ([ Biducr-y)

i — olIPUT = )21
< P - eI =), (11)

2n

<

<
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Proof. We start the proof by the following identities:

[ adur-| [ 4, f (As — APd( x )Gs, ) (12)
Ry A

[0 25 - [ 252
- fQ (At—CD)(At—(p)dy(t)+(q);(p)2— f — ®) du(t) f — @) du( t)—(?)2 (14)
:(cp— fQ Atdy(t))( fg Afdy(t)—(p)— L (@ — A)(Ar — @) du(d), (15)

where (12) and the second equality in (13) are based on Korkine type equality (8) applied this time on the
family {At — q#}te() instead of {A}ieq, while (14) and (15) checks directly. As ® — A; and A; — ¢ are positive,

mutually commuting operators, then (® — A;)(A; — ) > 0 and consequently fQ((I) —A)Ar —@)du(t) =2 0
Therefore, a straightforward calculation shows

fQ Al du(t) - 2<(<1>— fQ Atdu(t))( f Atdu(t)—w)

(- ] (252 < 052 0
Q

and similarly,

fQ dey(t)—‘ fQ Btdy(t)2<(l'— fg Btdy(t))( fo Btd[u(t)—)/)<¥.

As (10) is just a special case X := [ in (5) of Theorem 2.1, the final inequalities in (11) follows by the
monotonicity of operator norm on positive operators and operator monotonicity of function ¢ +— " on
[0,00). O

Remark 2.3. The commutativity requirement that @ and ® (resp. y and I') both commute with all A; (resp. By) for
t € Qand that @ = Qg (resp. yI' = T'y), in Theorem 2.2, is obviously satisfied if o, ®,y,T € B(H) are of the form
@:=dl,®:=DI,y:=cland I := CI for somec,C,d,D € R.

Now, we are in a position to complement [7, Th. 2.6].

Corollary 2.4. If @ is a s.n. function and 6 > 0, then, under conditions of Theorem 2.1, for all X € € o) (H)

H f AXB, du(t) - f A du(hX f By dy(
Q Q Q

2

®

2 2
< l f AA; dy(t)—’ f H f B:X*XB, dy(t)—‘X f By dy(t) ) (16)
Q Q Q Q 072
2
Q Q Q o®
2 2
< f B;‘Btdy(t)—' f B, du( f AXXA: du(b) - [X° f A du(t) (17)
Q Q Q Q @02
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Proof. We will rely on the monotonicity of singular values combined by the monotonicity of all 6 modifica-
tions of u.i. norms, which says that if 0 < A < B for A, B € Co(H), then sY(A) < sY(B) for all n € N, as well
as |Allye < |IBllye for all 6 > 0. So (16) follows from the case 77 := 1 in (5), as

2 2
Q Q Q @ Q Q Q PN
2 2
< fAtAj du(t) - ‘f Ajdu(t) f BiX*XB, du(t) - ’Xf By du(t) (18)
Q Q Q Q 012

Here, the equality in (18) is based on the very definition of 6/2-modification ||| of the norm ||-[l. The
proof of (17) follows immediately from the already proven inequality (16), as

2 2
‘fAtXBtdy(t)—fAtdy(t)Xf B du(t) = fB;X*A:dy(t)—fB’;dy(t)X*f A du(t)
Q Q Q @ Q Q Q o
2 2
< fBIBtdy(t)—'f B, du(t) fAtXX*A:d‘u(t)— X*fA:d‘u(t) (19)
Q Q Q Q 0

Equality in (19) is a simple consequence of B* property of u.i. norms, combined with the weak" integral
property ( fQ C; dy(t)) = fQ C; du(t), for weak” integrable families {C}ieq. O

Remark 2.5. Previous Corollary 2.4 extends inequality (2.17) in [9, Th. 2.2] in the settings of i.t.p. transformers,
when they act on ideals of compact operators. Namely, it is enough to take 0 := p, Q = {1,...,N}, u({n}) == a,
forn=1,...,N, where N € Nand Y,_, a, = 1 for some a,, € (0,1], to get inequality (2.17) in [9, Th. 2.2] from
inequality (16).

In the case of Hilbert-Schmidt norm (i.e. if ® := ¢! and O := 2), then the lefthand side in (16) and (17)
can be written in the more transparent form.

Theorem 2.6. Let X € Cy(H) and 1 to be a probability measure on Q. If {A}}ieq, {B}heq are in L2(Q, i, B(H)) then

H f A, XB, du(t) - f Ardu(t)X f By du(t)
Q Q Q

2

2|[/2 2
< f AP dut) - f A du(t) X\/ f IB: 2 dpu(t) — f Bdu)| ||, (0)
0 Q Q Q )
while, if {A }eq, {B,}eq are in L2(Q, u, B(H)), then
H L A, XB, du(t) - fQ Ardu()X fQ B, dut) 2
2 22
< \/ [ aeaun-| [ aduofx| | [ rao-| [ saof| . e
0 Q HIlJa Q

Proof. As [l o is @ nuclear norm ||-[|; for @ := £' and 0 := 2, then it will suffice to recognize that in the



M. Lazarevi¢ / Filomat 33:8 (2019), 2447-2455 2453

righthand side of (16) we have

fg B:X*XBtdp(t)—‘X L By du(t) 1=tr( L BIX*XBtdy(t)—( L Btdy(t))*X*X fQ B,dy(t)) (22)
- f tr(B;X*XBt)dy(t)—tr(X"X f B, du(t) f B;dy(t))
Q Q Q

2
= f tr(X*XBtB’;)dy(t)—tr(X*X f B; du(t) ) (23)
Q Q

2 2
fQ B: du(t) ):tr(x*x( fQ BtB;dy(t)—' fQ B du(t) )) (24)

2

_ tr( f XXB,B; dy(t)) - tr(x*x
Q

n1/2 2172
:tr(( f Bi? du(t) — f B; du(t) ) x*x( f B,B; du(t) - f By du(t) ) ) (25)
Q Q Q Q
2 1/22
_ %12 _ *
_Hx( fQ B;I? du(t) ' fQ B; du(t) ) 2 (26)

Equality in (22) justifies by the positivity of fQ B;X*XB, du(t)— |X fQ B; dy(t)|2 = % sz |X(B, — Bt)lzd(yxy)(s, f),
based on the already used Korkine type identity (8). First equalities in (23) and (24) follow by the alternative
definition of weak" (Gel'fand) integrals, given in [7, Lemma 1.2], while the second equality in (23) is a
consequence of the operator’s commutativity under trace, as X*XB; € C(H) and B; € B(H) for all € Q.
Equality in (25) is again based on the commutativity under trace, while equality in (26) is due to the basic
Hilbert-Schmidt norm property ||Y||§ =tr(Y*Y) for all Y € Cy(H).

To prove inequality (21), we use again B* property of u.i. norms and weak" integrals, combined with
already proven inequality (20), to get

‘ f A XB, du(t) - f Ardu(h)X f By du(t) :‘ f BIXA du(t) - f B du(H X' f A;dy(t)H
Q Q Q 2 Q Q Q 2
S |1L/2 12

x( [ ko -| [ Aduc)

Q Q

12

2
fg B du(t) - fg B, du(t )

2 2
:H(fg A du(®) - fQ Ardu(t) ) X fQ |Bi[* du(t) - fQ B:du(t)

Inequalities (20) and (21) are still true for arbitrary ||-||,» norms, whenever p > 2 and at least one of
families {At}ieq, {Btteq is m.c.n.o. family, as we show in the next theorem, which also complements (the
case p > 2 of) the Griiss-Landau type inequality [7, Th. 2.4] for Schatten norms ||-|, .

<

2
1/2

O

2

Theorem 2.7. Let u be a probability measure on Q, @ to be a s.n. function, p > 2, X € B(H) and let both families
{A}}teq and {B,}ieq be in L2(Q, w,B(H)). If, in addition, {B;}ieq is a m.c.n.o. family, such that

x\/ 1B, duct) - | [, B, dy(t))z € Cun(H), then [ AXB,du(t) — [ A, du(t)X [ B,du(t) € Cp(H) and

H fg AXB,du(t) - fQ A, du(t)X fQ Btdlu(t)Hq)(p)

2
fQ A3 du(t) - fo A dyu(t)

1/2 5

<

2 _
X\/L B, 1> duf(t) LBtdy(t)

. @7
o
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Alternatively, if {At}teq is a m.c.n.o. family, such that \/fQ |A, 12 du(t) - UQ A, dy(t)|2X € Cym (H), then it also
follows that [, A,XB,du(t) - [, A, du(t)X [, B, du(t) € Coo(H) and

‘ f AXB,du(t) - f A du(h)X f Btdu(t)H ”
Q Q - °

\/ fQ AR du(t) - fQ A du(t) fQ B dw)_‘ fQ 5 )

Proof. To prove (27), we first apply (16) case 0 := p, and we proceed by an application of [7, Th. 2.1] to X*X
instead of X, |- ”<b‘§ , instead of [|-[|, in the special case <7" := %, := B,, for all t € (), to get the estimate

H f B;X*XB, du(t) - f B; du(t) XX f Btdy(t)‘
Q Q Q

n1/2
2 _ + 2 _
( [ P - | Biducy ) XX( [ P - | Bty
N1/212
pfoeonon
Q Q

(28) can be proved by analogy, by the use of (17) instead of (16). [

2 2 1/2
< X (28)

)

o
1/2
<

2
) q)(%)
Q

1/2

)

2

= HX( 1B, dps(t) -
o5 Q

o»

A special case of the previous Theorem 2.7 in the discrete setting says:

Corollary 2.8. Let a, € (0,1] for n € N such that Y, o, = 1, ® to be a s.n. function, p > 2, X € B(H) and let
{a,jl/ZC;};":l and {a;mDn};":l be s.s.i. families. If {D, } is additionally a m.c.n.o. family, such that

X(Er2y a5 1D, = L D) € Con(H), then Y2 ;' C, XD, = Yoy C,X Loy D, € Copn(H) and

ia;lchDn—ichiDn ianll(::tlz_‘ic:l XJia;lanlz— iDn
n=1 n=1 n=1 n=1 n=1 n=1

n=1
1/2
Alternatively, if {C,}, is a m.c.n.o. family, such that (Z:’:l G2 = Lo, € 2) X € €y (H), then also

n=1

Ym0 C, XD, = 130 C, X Y700 D, € Con(H) and
HZ a;'C,XD, - Y C, XY D, J Y @GR - ‘Z c Y aID, P - ‘Z D,
n=1 n=1 n=1 n=1 n=1 n=1 n=1

Proof. It is enough to apply Theorem 2.7 special case ) := N, u({n}) := a,, Ay := a,'C, and B, := a,‘lan, for
all n € IN, to get the proclaimed inequalities (29) and (30). O

1/2

2 2

. (29)
o?

<
)

1/2
. (30)

2 2
< X
o

o

Remark 2.9. Similarly to the situation discussed in Remark 2.5, the previous Corollary 2.8 extends inequalities

(2.21) (in the case ¢ := ||):‘,“1’:1 alALA, — |):’,j:1 A,,|2”1/2) and (2.22), when q := p, in [9, Th. 2.2], in the settings of
elementary operators.

To complement the case 1 < p < 2 of [7, Th. 2.4], let us first note that €1 (H) C Co(H) for all s.n.
function ®, as the nuclear norm is the maximal one amongst all ui. norms. So, if 2 < p < +oo, then
Co(H) C C)(H) C Cyin(H) and €y (H) C Cyyp-1)(H) C Co(H), following the duality argument. Thus, we
are now in a position to further complement [7, Th. 2.4] for € () ideals, as follows.
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Theorem 2.10. Let a,, € (0,1] for n € IN such that Y,,>a, = 1, ® to be a s.n. function, p > 2 and let
{a,'2A nleq and {a 1/ZB*} be s.s.i. families such that one of them is a m.c.n.o. family. If X € Cyp-(H) then
Yooy a,lenXBn p A,,Xz,nz1 B,, € € v+(H) and we have

3 a;lA, XB, - i A,,Xi B, i a; VA, P - Z a; B - Z B*
= n=1 n=1 n=1

Proof. First, note that using identity (8) for Q := N, u({n}) := &, for n € N, applied to a,,'A, and a,'B,, we
obtain

(o9 ~ (9] [e9] 1 (e8] ~ ~ ~ ~
2 a,'A,XB, — 2 AnXZ B, =3 Z apan(a A, — a; A )X(a,'B,, — a,'B,).
n=1 n=1 n=1

mn=1

o)

(31)

q)(p

As the above identity also implies Y, la;,* A, — [L;2; A | I Y nt @ty lagt A, — a;t A, l* and
{a _1/2A nly. iss.s.s. family, then we also have that {v/a,,a, (o, 1A, —alA )}m .1 18 8.8.s. family, i.e. for every
feHwe have Yozt mnll (@t A,y — 0 A fIP < +o0. Similarly, we have that {y/a,a,(a;,' By, — a; ' By)I™

1
is s.s.s. family. e
Therefore, we can apply the first inequality in (6) in [10, Lemma 2.1] to s.s.s. families
Waman(ay,' A,y — a AN ) and (Vs (a;,' By, — a;,' Byl ), to obtain inequality in
azlAnXBn - Z AVIXZ Bn H Z aman(a aﬁlAn)X(O%le - 0(;13”) o
n=1 n=1 mmn=1
1/2
H amanla, A, — a;lAnIZ) ( Z amayla, B, — a;leqlz) o
mn= 1 mn=1 @
oo 2 1/2 ) ) 2 1/2
= (Z AR =Y A, ) X(Z o' B - Y B, ) , (32)
n=1 n=1 n=1 n=1 o

which proves (31). AsYo2 a,'A,XB,— Y021 Ay X Yoe1 By = 3 Yo net amatn(@t Ay —a A X (' B, —a, ' B,) €
Cm+(H) can also be concluded from the part of the proof presented in (32), this altogether ends the proof. [
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