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Abstract. In this article, we introduce a new index transform associated with the cone function Pi
√
τ− 1

2
(2
√

x),
named as Mehler-Fock-Clifford transform and study its some basic properties. Convolution and translation
operators are defined and obtained their estimates under Lp(I; x−

1
2 dx) norm. The test function spaces Gα

and Fα are introduced and discussed the continuity of the differential operator and MFC-transform on
these spaces. Moreover, the pseudo-differential operator (p.d.o.) involving MFC-transform is defined and
studied its continuity between Gα and Fα.

1. Introduction

The transform of integrable function f is defined first by F. G. Mehler [9] in 1881 as:

F(τ) = (M f )(τ) =

∫
∞

1
f (x)Piτ− 1

2
(x)dx, τ > 0, (1)

and its inversion defined by V. A. Fock [2] in 1943 as:

f (x) = (M−1F)(x) =

∫
∞

0
τ tanh(πτ)Piτ− 1

2
(x)F(τ)dτ, x > 1, (2)

where Piτ− 1
2
(x) is cone function (associated Legendre function of zero order) and it is represented in terms

of Gaussian hypergeometric function 2F1 as:

Piτ− 1
2
(x) = 2F1

(
1/2 + iτ, 1/2 − iτ; 1; (1 − x)/2

)
.

Therefore the (1) is known as Mehler-Fock transform and (2) is as its inversion. The theory and properties of
Mehler-Fock transform have been studied by C. Nasim [10], Srivastava et al. [19], Yakubovich et al.[21–23],
Lebedev [7, 8], Sneddon [18] and Prasad et al.[16] etc. In this paper we modified the cone function obtained
a new integral transform and we named it as Mehler-Fock-Clifford (MFC) transform.
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Initially the idea of Clifford type integral transform was first evolved by English Mathematician W. K.
Clifford on taking the kernel Bessel-Clifford function

Cϑ(x) = x−ϑ/2 Jϑ(2
√

x),

where Jϑ is the Bessel function of order ϑ, which satisfies the differential equation(
xD2

x + (ϑ + 1)Dx + 1
)
u(x) = 0.

The theory and properties of Hankel-Clifford transform have already been studied by the several researchers
viz [12, 14, 15] etc. As per this argument the Legendre-Clifford function according to [1, p.156] is defined as

Pi
√
τ− 1

2

(
2
√

x
)

=

√
2
π

cosh(π
√
τ)

∫
∞

0

cos(
√
τt)√

(2
√

x + cosh t)
dt, (3)

and it satisfies the differential equation(
x(4x − 1)D2

x +
12x − 1

2
Dx +

(
τ +

1
4

))
u(x) = 0.

Now we define the Mehler-Fock-Clifford (MFC) transform as

F(τ) = (MC f )(τ) =

∫
∞

1
4

f (x)Pi
√
τ− 1

2

(
2
√

x
) dx
√

x
, τ > 0 (4)

and its inversion

f (x) = (MC−1F)(x) =
1
2

∫
∞

0
tanh(π

√
τ)Pi

√
τ− 1

2

(
2
√

x
)
F(τ)dτ, x >

1
4
. (5)

The kernel Pi
√
τ− 1

2

(
2
√

x
)

is an eigen function of the operator

Ax = x(4x − 1)D2
x +

(12x − 1)
2

Dx, (6)

and satisfies the property

AxPi
√
τ− 1

2

(
2
√

x
)

= (−1)
(
τ +

1
4

)
Pi
√
τ− 1

2

(
2
√

x
)
. (7)

The series representation of the differential operator Ak
x is as follows:

Ak
x =

2k∑
j=1

qk
j(x)D j

x, (8)

where qk
2k(x) =

(
x(4x − 1)

)k
and the intermediate terms qk

j(x), for 1 ≤ j < 2k, are polynomials of jth degree.
Also, adjoint of the operator Ax is obtained as:

A∗x = D2
xx(4x − 1) −Dx

(12x − 1
2

)
.

We recall from [11, pp. 171-173], the asymptotic behaviours of P
−

1
2

(
2
√

x
)

near to x = 1
4 and infinity are as

P
−

1
2

(
2
√

x
)
∼ 1 as x→

1
4
, (9)
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and

P
−

1
2

(
2
√

x
)
∼

1
√

2π

ln(2
√

x)
x1/4

as x→∞. (10)

From [3], we define the symmetric function D(x, y, z) ≥ 0 as:

D(x, y, z) =

∫
∞

0
tanh(π

√
τ)Pi

√
τ− 1

2
(2
√

x)Pi
√
τ− 1

2
(2
√

y)Pi
√
τ− 1

2
(2
√

z)dτ, (11)

where

D(x, y, z) =

 1
π (16

√
xyz + 1 − 4x − 4y − 4z)−

1
2 for z ∈ Ix,y,

0 otherwise;

and

Ix,y =:
(
4
√

xy − [(4x − 1)(4y − 1)]
1
2 , 4
√

xy + [(4x − 1)(4y − 1)]
1
2

)
.

Now using the inversion of MFC-transform, then we have

Pi
√
τ− 1

2
(2
√

x)Pi
√
τ− 1

2
(2
√

y) =

∫
∞

1
4

D(x, y, z)Pi
√
τ− 1

2
(2
√

z)
dz
√

z
(12)

and ∫
∞

1
4

D(x, y, z)
dz
√

z
= 1. (13)

The translation operator is defined as:

(Tx f )(y) =

∫
∞

1
4

D(x, y, z) f (z)
dz
√

z
. (14)

From (12) and (14), we see that

Pi
√
τ− 1

2
(2
√

x)Pi
√
τ− 1

2
(2
√

y) = (TxPi
√
τ− 1

2
(2
√

z))(y).

Simultaneously convolution operator is defined as:(
f ∗ 1

)
(x) =

∫
∞

1
4

(
Tx f

)
(z)1(z)

dz
√

z
,

=

∫
∞

1
4

∫
∞

1
4

D(x, y, z) f (y)1(z)
dy
√

y
dz
√

z
. (15)

By Lp(I;ω(x)dx), I = (1/4,∞), 1 ≤ p ≤ ∞we denote the weighted Lp-space with the norm

‖ f ‖Lp(I;ω(x)dx) =


(∫
∞

1
4
| f (x)|pω(x)dx

) 1
p

, for 1 ≤ p < ∞,

ess. sup
x∈I
| f (x)|, for p = ∞.

Plancherel’s and Parseval’s relations have been obtained as:∫
∞

1
4

f (x)1(x)
dx
√

x
=

1
2

∫
∞

0
tanh(π

√
τ)

(
MC f

)
(τ)

(
MC1

)
(τ) dτ,
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and ∫
∞

1
4

| f (x)|2
dx
√

x
=

1
2

∫
∞

0
tanh(π

√
τ)

∣∣∣(MC f
)
(τ)

∣∣∣2 dτ,

or

‖ f ‖
L2(I;x−

1
2 dx)

= ‖(MC f
)
‖L2(R+; 1

2 tanh(π
√
τ)dτ).

Thus, the MFC-transform is isometrically-isomorphism operator from L2(I; x−
1
2 dx) onto L2(R+; 1

2 tanh(π
√
τ)

dτ).

The article is organized as follows: Section 1 is introductory, in which Mehler-Fock-Clifford (MFC) trans-
form is introduced with cone function Pi

√
τ− 1

2
(2
√

x). The convolution and translation operators are defined
and Parseval’s as well as Plancherel’s relations are obtained. Section 2 consists of some useful results like
MFC-transform of translation and convolution operators, relation between differential operator Ax and its
adjoint A∗x, some estimates of the kernel of MFC-transform. Moreover estimates of translation and convo-
lution operators are also obtained in Lebesgue space. In Section 3, the test function spaces Gα and Fα are
defined and discussed the continuity of MFC-transform on these spaces. Section 4 includes the pseudo-
differential operator (p.d.o.) associated with the MFC-transform. Moreover, continuity of the p.d.o. is
discussed between the spaces Gα and Fα. An another integral representation of p.d.o. is obtained. Further
an estimate of the p.d.o. is also discussed.

2. Preliminary Results and Some Estimate

Theorem 2.1. If f , 1 ∈ L1(I; x−
1
2 dx), then the MFC-transform of the translation and convolution operators are

respectively as follows:

(i) (MC(Tx f ))(τ) = Pi
√
τ− 1

2
(2
√

x)(MC f )(τ)

ii) (MC( f ∗ 1))(τ) = (MC f
)
(τ)(MC1)(τ). (16)

Proof. (i) From (4) and (14), we have

(MC(Tx f ))(τ) =

∫
∞

1
4

∫
∞

1
4

Pi
√
τ− 1

2
(2
√

y)D(x, y, z) f (z)
dy
√

y
dz
√

z
,

using (12), we readily yield

(MC(Tx f ))(τ) = Pi
√
τ− 1

2
(2
√

x)
∫
∞

1
4

Pi
√
τ− 1

2
(2
√

z) f (z)
dz
√

z
,

= Pi
√
τ− 1

2
(2
√

x)(MC f )(τ).

Hence (i) is proved.
(ii) From (4), (15) and by Fubini’s theorem, we have

(MC( f ∗ 1))(τ) =

∫
∞

1
4

∫
∞

1
4

( ∫
∞

1
4

Pi
√
τ− 1

2
(x)D(x, y, z)

dx
√

x

)
f (y)1(z)

dy
√

y
dz
√

z
,

using (12), we get

(MC( f ∗ 1))(τ) = (MC f )(τ)(MC1)(τ).

This completes the proof of (ii).
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The relation between the differential operator Ax and its adjoint A∗x is as:

A∗x
(
x−

1
2 f (x)

)
= x−

1
2 Ax f (x), (17)

thus

A∗x
(
x−

1
2 Pi
√
τ− 1

2
(2
√

x)
)

= x−
1
2 AxPi

√
τ− 1

2
(2
√

x). (18)

Further it can be extended upto finite times and we obtained

(A∗x)n
(
x−

1
2 Pi
√
τ− 1

2
(2
√

x)
)

= x−
1
2 An

xPi
√
τ− 1

2
(2
√

x).

Applying operator Ax on (11) and using (7), we have

AxD(x, y, z) =

∫
∞

0
tanh(π

√
τ)

(
(−1)

(
τ +

1
4

)
Pi
√
τ− 1

2
(2
√

x)
)
Pi
√
τ− 1

2
(2
√

y)Pi
√
τ− 1

2
(2
√

z)dτ

=

∫
∞

0
tanh(π

√
τ)Pi

√
τ− 1

2
(2
√

x)
(
(−1)

(
τ +

1
4

)
Pi
√
τ− 1

2
(2
√

y)
)
Pi
√
τ− 1

2
(2
√

z)dτ

= AyD(x, y, z).

Similarly,

AxD(x, y, z) = AzD(x, y, z).

Therefore

AxD(x, y, z) = AyD(x, y, z) = AzD(x, y, z).

On repeating k times, we have

Ak
xD(x, y, z) = Ak

yD(x, y, z) = Ak
zD(x, y, z).

Lemma 2.2. If f , 1 ∈ L1(I; x−
1
2 dx), then

(i)
(
MC(Ar

x f )
)
(τ) = (−1)r

(
τ +

1
4

)r(
MC f

)
(τ), ∀ r ∈N0, (19)

(ii) Ax( f ∗ 1) = Ax f ∗ 1 = f ∗ Ax1.

Proof. From (4), we have(
MC(Ax f )

)
(τ) =

∫
∞

1
4

Pi
√
τ− 1

2
(2
√

x)Ax f (x)
dx
√

x
.

Using (18) and (7), we get(
MC(Ax f )

)
(τ) =

∫
∞

1
4

(−1)
(
τ +

1
4

)
Pi
√
τ− 1

2
(2
√

x) f (x)
dx
√

x
,

= (−1)
(
τ +

1
4

)(
MC f

)
(τ).

Continuing in this way, we have the desired result.
This completes the proof (i).

Now using (16) and (19), we have(
MCAx( f ∗ 1)

)
(τ) = (−1)

(
τ +

1
4

)(
MC f

)
(τ)

(
MC1

)
(τ),

=
(
MC(Ax f )

)
(τ)

(
MC1

)
(τ),

=
(
MC(Ax f ∗ 1)

)
(τ).
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Applying inverse MFC-transform (5), we get

Ax( f ∗ 1) = Ax f ∗ 1.

Similarly

Ax( f ∗ 1) = f ∗ Ax1.

Therefore

Ax( f ∗ 1) = Ax f ∗ 1 = f ∗ Ax1.

Hence (ii) is proved.

Some properties of kernel Pi
√
τ− 1

2
(2
√

x):

(i) For every positive integer m there exists M > 0 such that∣∣∣∣∣∣ dm

dxm Pi
√
τ− 1

2
(2
√

x)

∣∣∣∣∣∣ ≤M cosh(π
√
τ). (20)

Proof. Differentiating (3) m times with respect to x, we have

dm

dxm Pi
√
τ− 1

2
(2
√

x) = (−1)m

√
2
π

cosh(π
√
τ)

∫
∞

0

m∑
k=1

Ck

(2
√

x + cosh(t))
2k+1

2 x
2m−k

2

cos(
√
τt)dt,

where Ck are positive constants. Now∣∣∣∣∣∣ dm

dxm Pi
√
τ− 1

2
(2
√

x)

∣∣∣∣∣∣ ≤ C cosh(π
√
τ)

m∑
k=1

1

x
2m−k

2

∫
∞

0
2

2k+1
2 e−

2k+1
2 tdt

≤ M cosh(π
√
τ),

where C > 0 and M > 0 are constants.

(ii) As per [1, (6), p. 155], Pi
√
τ− 1

2
(2
√

x) can also be represented as:

Pi
√
τ− 1

2
(2
√

x) =
1
π

∫ π

0
[2
√

x + (4x − 1)1/2 cos(ξ)]−
1
2 +i
√
τdξ,

and ∣∣∣Pi
√
τ− 1

2
(2
√

x)
∣∣∣ ≤ P

−
1
2
(2
√

x). (21)

Using asymptotic behaviours of P
−

1
2
(2
√

x), (9), (10) and (21), we have∣∣∣Pi
√
τ− 1

2
(2
√

x)
∣∣∣ ≤ C, (22)

where C > 0 is a constant.
(iii) The function Pi

√
τ− 1

2
(2
√

x) satisfies the following estimate

∣∣∣∣∣ dm

dτm Pi
√
τ− 1

2

(
2
√

x
)∣∣∣∣∣ ≤ eπ

√
τm!

√
2
π

m∑
l=0

m−l∑
s=0

Csτ
−(2(m−l)−s)/2

l∑
r=0

C′rτ
−(2l−r)/2, (23)

where Cs and C′r are positive constants.



A. Prasad, S. K. Verma / Filomat 33:8 (2019), 2457–2469 2463

Proof. Differentiating (3) m times with respect to τ, we have

dm

dτm Pi
√
τ− 1

2

(
2
√

x
)

=

√
2
π

m∑
l=0

(
m
l

)
dm−l

dτm−l
cosh(π

√
τ)

∫
∞

0

dl

dτl
cos(
√
τt)

1√
(2
√

x + cosh t)
dt,

Now, assuming p(τ) = cos(tτ) and q(τ) =
√
τ and invoking Faá di Bruno’s formula [5] for the lth derivatives

of the composite function p(q(τ)) = cos(t
√
τ), we have

dl

dτl
cos(t

√
τ) =

∑ l!
b1!b2! · · · bl!

tr cos
(
t
√
τ + r

π
2

)  1
2τ

1
2−1

1!

b1
 1

2

(
1
2 − 1

)
τ

1
2−2

2!


b2

· · ·

×

 1
2

(
1
2 − 1

)
· · ·

(
1
2 − l + 1

)
τ

1
2−l

l!


bl

,

where l ∈N0 and the sum is taken over all distinct non-negative integral solutions b1, b2 · · · bl, satisfying the
following conditions:

b1 + 2b2 + · · · + lbl = l and b1 + b2 + · · · + bl = r.

Thus ∣∣∣∣∣∣ dl

dτl
cos(t

√
τ)

∣∣∣∣∣∣ ≤ l!
l∑

r=0

Crtrτ−(2l−r)/2, (24)

where Cr are positive constants.
Similarly, we obtain∣∣∣∣∣∣ dm−l

dτm−l
cosh(π

√
τ)

∣∣∣∣∣∣ ≤ (m − l)!eπ
√
τ

m−l∑
s=0

Csτ
−(2(m−l)−s)/2, (25)

where Cs > 0 are constants. From (24) and (25), we have∣∣∣∣∣ dm

dτm Pi
√
τ− 1

2

(
2
√

x
)∣∣∣∣∣ ≤ eπ

√
τ

√
2
π

m∑
l=0

m!
m−l∑
s=0

Csτ
−(2(m−l)−s)/2

l∑
r=0

Crτ
−(2l−r)/2

∫
∞

0

tr√
(1 + cosh t)

dt

the last integral converges for every r ∈N0 . Hence we get inequality (23).

Theorem 2.3. If f ∈ Lp(I; x−
1
2 dx), 1 ≤ p < ∞, then Tx f ∈ Lp(I; x−

1
2 dx) such that

‖Tx f ‖
Lp(I;x−

1
2 dx)
≤ ‖ f ‖

Lp(I;x−
1
2 dx)

.

Proof. From (14) and using Hölder’s inequality, we have

|(Tx f )(y)| ≤
( ∫ ∞

1
4

D(x, y, z)| f (z)|p
dz
√

z

) 1
p
( ∫ ∞

1
4

D(x, y, z)
dz
√

z

) 1
q
.

Using (13), we get∫
∞

1
4

|(Tx f )(y)|p
dy
√

y
≤

∫
∞

1
4

| f (z)|p
dz
√

z

∫
∞

1
4

D(x, y, z)
dy
√

y
.

Again using (13), we have

‖(Tx f )‖
Lp(I;x−

1
2 dx)
≤ ‖ f ‖

Lp(I;x−
1
2 dx)

.

Hence we obtained the Theorem.
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Theorem 2.4. If f , 1 ∈ Lp(I; x−
1
2 dx), 1 ≤ p < ∞ then f ∗ 1 ∈ Lp(I; x−

1
2 dx) such that

‖ f ∗ 1‖
Lp(I;x−

1
2 dx)
≤ ‖ f ‖

Lp(I;x−
1
2 dx)
‖1‖

L1(I;x−
1
2 dx)

. (26)

Proof. From (15) and using Hölder’s inequality, we have

|( f ∗ 1)(x)| ≤
( ∫

∞

1
4

∫
∞

1
4

D(x, y, z)| f (y)|p|1(z)|
dy
√

y
dz
√

z

) 1
p
( ∫

∞

1
4

∫
∞

1
4

D(x, y, z)|1(z)|
dy
√

y
dz
√

z

) 1
q

.

Using (13), we have

|( f ∗ 1)(x)|p ≤

∫ ∞

1
4

∫
∞

1
4

D(x, y, z)| f (y)|p|1(z)|
dy
√

y
dz
√

z

 ( ∫ ∞

1
4

|1(z)|
dz
√

z

) p
q

.

Again using (13), we obtain

∫ ∞

1
4

|( f ∗ 1)(x)|p
dx
√

x


1
p

≤

∫ ∞

1
4

| f (y)|p
dy
√

y


1
p
∫ ∞

1
4

|1(z)|
dz
√

z

 .
Hence completes the desired result.

Generalized Minkowski inequatlity: The genralized Minkowski inequality for suitable function h is defined
as [ ∫ b

a

∣∣∣∣ ∫ d

c
h(x, y)dy

∣∣∣∣pdx
] 1

p
≤

∫ d

c

[ ∫ b

a
|h(x, y)|pdx

] 1
p dy, 1 ≤ p < ∞. (27)

Theorem 2.5. The MFC-transform is a bounded linear operator from L1(I; x−
1
2 dx) into Lq(R+; e−ατdτ), 1 ≤ q < ∞,

α > 0.

Proof. Let f ∈ L1(I; x−
1
2 dx). From (4), we have

‖MC f ‖Lq(R+;e−ατdτ) =

(∫
∞

0
|MC f |qe−ατdτ

) 1
q

=

∫ ∞

0

∣∣∣∣∣∣
∫
∞

1
4

f (x)Pi
√
τ− 1

2

(
2
√

x
) dx
√

x

∣∣∣∣∣∣q e−ατdτ


1
q

.

Using generalized Minkowski inequality (27) and (22), we get

‖MC f ‖Lq(R+;e−ατdτ) ≤ C
1
2

∫
∞

1
4

| f (x)|
dx
√

x

(∫
∞

0
e−ατdτ

) 1
q

,

for α > 0 the integral converges. Thus

‖MC f ‖Lq(R+;e−ατdτ) ≤ C′‖ f ‖
Lp(I;x−

1
2 dx)

,

where C′ > 0 is a constant. Hence proved.
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3. Test function spaces

Definition 3.1. An infinitely differentiable complex valued function ϕ(x) for x ∈ I is said to be in the space Fα, such
that

γα,k(ϕ) = sup
x∈I
|λ−α (x)x−

1
2 Ak

xϕ(x)| < ∞,

where α > 0, k ∈N0, Ax is the differential operator defined as (6) and λ−α (x) is the continuous function given by

λ−α (x) =

e−
α

4x−1 , x ∈ ( 1
4 ,

1
2 ]

e−α(4x−1), x ∈ [ 1
2 ,∞).

Definition 3.2. An infinitely differentiable complex valued function ψ(x) for x ∈ I is said to be in the space Gα, such
that

Γα,k(ψ) = sup
x∈I
|λ+
α (x)x−

1
2 Ak

xψ(x)| < ∞,

where α > 0, k ∈N0, Ax is the differential operator defined as (6) and λ+
α (x) is the continuous function given by

λ+
α (x) =

e
α

4x−1 , x ∈ ( 1
4 ,

1
2 ]

eα(4x−1), x ∈ [ 1
2 ,∞).

For every ϕ ∈ Gα, we have

γα,k(ϕ) = sup
x∈I
|λ−α (x)x−

1
2 Ak

xϕ(x)|

= sup
x∈I
|(λ−α (x))2λ+

α (x)x−
1
2 Ak

xϕ(x)|

≤ C Γα,k(ϕ) < ∞.

where C > 0 is a constant.
Moreover, Pi

√
τ− 1

2
(2
√

x) < Gα. Hence Gα is proper subset of Fα and the topology of Gα is stronger than
that induced on it by Fα. So, F ′α ⊂ G′α.

Remark 3.3. (i) The differential operator Ax is continuous linear mapping from Gα onto itself.
(ii) The differential operator Ax is continuous linear mapping from Fα onto itself.
(iii) The differential operator Ax is continuous linear mapping from Gα into Fα.

Theorem 3.4. The MFC-transform is continuous linear mapping from Gα into Fα.

Proof. Consider ϕ ∈ Gα, and using (4) and (8), we have

Ak
τ(MCϕ)(τ) =

2k∑
m=1

qk
m(τ)

∫
∞

1
4

Dm
τ Pi

√
τ− 1

2
(2
√

x)ϕ(x)
dx
√

x
.

Using (23) and Definition 3.1, we have

γα,k(MCϕ) ≤ Γα,0(ϕ) sup
τ∈I

∣∣∣∣∣∣τ− 1
2λ−α (τ)eπ

√
τ

2k∑
m=1

m!q2k
m (τ)

m∑
l=0

m−l∑
s=0

Csτ
−(2(m−l)−s)/2

l∑
r=0

C′rτ
−(2l−r)/2

∣∣∣∣∣∣
×

∫
∞

1
4

1

x−
1
2λ+

α (x)

dx
√

x

Now using Definition 3.2, then for α > 0 and sufficiently large constant M′ > 0, we have

γα,k(MCϕ) ≤M′ Γα,0(ϕ) < ∞.

Hence proved.
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4. Pseudo-differential operators

The theory of pseudo-differential operators (p.d.o.) have been first developed in 1960 to treat the
problems of partial differential equations. The theory of p.d.o. already discussed by using the theory of
integral transforms like Fourier transforms, Hankel transforms, Fourier-Jacobi transforms, etc. in the work
of [4, 6, 13, 15, 17, 20]. Motivated by them here we define p.d.o. in terms of the Mehler-Fock-Clifford
transform.
Let a partial differential operator P(x,Ax) on I is

P(x,Ax) =

m∑
r=0

ar(x)Ar
x, (28)

where ar(x) are functions defined on I and Ax is the differential operator as (6). If we replace Ax by monomial
(−1)(τ + 1

4 ) in (28), we obtain

P(x, τ) =

m∑
r=0

ar(x)(−1)r
(
τ +

1
4

)r

. (29)

Now from (28), we have

P(x,Ax) f (x) =

m∑
r=0

ar(x)
[
MC

−1
MC

(
Ar

x f
)]

(x).

Using (19), we have

P(x,Ax) f (x) =

m∑
r=0

ar(x)
[
MC

−1
(
(−1)r

(
τ +

1
4

)r

MC f
)]

(x).

From (5) and (29), we get

P(x,Ax) f (x) =
1
2

∫
∞

0
tanh(π

√
τ)Pi

√
τ− 1

2
(2
√

x)P(x, τ)(MC f )(τ)dτ. (30)

If we replace P(x, τ) by more general symbol σ(x, τ) in (30), which is no longer polynomial in τ only, the
operator so obtained is called pseudo-differential operator associated with MFC-transform.

Definition 4.1. The symbol class Sm is the collection of infinitely differentiable complex valued function σ(x, τ) for
(x, τ) ∈ (I × R+). The function σ(x, τ) ∈ Sm iff for µ, ν, l ∈ N0, and m ∈ R+ there exists a constant C = Cµ,ν,l > 0
such that

(1 + x)l
|Dν

xDµ
τσ(x, τ)| ≤ C e−mτ. (31)

Definition 4.2. For the symbol σ(x, τ) ∈ Sm, the pseudo-differential operator associated with MFC-transform is
defined as

(
Pσϕ

)
(x) =

1
2

∫
∞

0
tanh(π

√
τ)Pi

√
τ− 1

2
(2
√

x)σ(x, τ)(MCϕ)(τ)dτ. (32)

Theorem 4.3. The pseudo-differential operator is the continuous linear mapping from Gα into Fα.
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Proof. From (8) and (32), we have

Ak
x(Pσϕ)(x) =

1
2

∫
∞

0
tanh(π

√
τ)

2k∑
j=1

q2k
j (x)D j

x[Pi
√
τ− 1

2
(2
√

x)σ(x, τ)](MCϕ)(τ)dτ

=
1
2

∫
∞

0
tanh(π

√
τ)

2k∑
j=1

q2k
j (x)

j∑
r=0

(
j
r

)
Dr

xPi
√
τ− 1

2
(2
√
τ)D j−r

x σ(x, τ)(MCϕ)(τ)dτ.

=
1
2

∫
∞

0
tanh(π

√
τ)

2k∑
j=1

q2k
j (x)

j∑
r=0

(
j
r

)
Dr

xPi
√
τ− 1

2
(2
√
τ)D j−r

x σ(x, τ)
(5

4
+ τ

)−n

×

n∑
s=0

(
n
s

)
(−1)s

[
(−1)s

(
τ +

1
4

)s]
(MCϕ)(τ)dτ. (33)

Now

(−1)s
(
τ +

1
4

)s

(MCϕ)(τ) =

∫
∞

1
4

(−1)s
(
τ +

1
4

)s

Pi
√
τ− 1

2
(2
√

y)ϕ(y)
dy
√

y

=

∫
∞

1
4

(
As

yPi
√
τ− 1

2
(2
√

y)
)
ϕ(y)

dy
√

y

=

∫
∞

1
4

Pi
√
τ− 1

2
(2
√

y)(A∗y)s
(
y−1/2ϕ(y)

)
dy.

Using (17) and (22), we have∣∣∣∣∣∣(−1)s
(
τ +

1
4

)s

(MCϕ)(τ)

∣∣∣∣∣∣ ≤ C Γα,s(ϕ)
∫
∞

1
4

1
λ+
α (y)

dy,

where C > 0 is a constant. Invoking Definition 3.2, the last integral converges. Therefore there exists C′ > 0,
such that∣∣∣∣(−1)s

(
τ +

1
4

)s
(MCϕ)(τ)

∣∣∣∣ ≤ C′ Γα,s(ϕ). (34)

Now from (20), (31), (33) and (34), we have

γα,k
(
Pσϕ

)
≤ sup

x∈I

∣∣∣∣∣x− 1
2λ−α (x)C (1 + x)−l

2k∑
j=1

2 jq2k
j (x)

∣∣∣∣∣ n∑
s=0

(
n
s

)
C′Γα,s(ϕ)

× M
∫
∞

0
e−mτ cosh(π

√
τ)

(5
4

+ τ
)−n

dτ.

Thus integral converges for any m > 0 and supremum exists finitely. Hence

γα,k(Pσϕ) ≤ C′′Γα,s(ϕ),

where C′′ > 0 is a constant.

An integral representation of p.d.o.:
If we consider a function 1x(y) associated with the symbol σ(x, τ) as

1x(y) =
1
2

∫
∞

0
tanh(π

√
τ)Pi

√
τ− 1

2
(2
√

x)Pi
√
τ− 1

2
(2
√

y)σ(x, τ)dτ, (35)
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then from (32), (4) and using Fubini’s theorem, the pseudo-differential operator can be defined as

(Pσϕ)(x) =

∫
∞

1
4

(
1
2

∫
∞

0
tanh(π

√
τ)Pi

√
τ− 1

2
(2
√

x)Pi
√
τ− 1

2
(2
√

y)σ(x, τ)dτ
)
ϕ(y)

dy
√

y
.

Now using (35), the integral is reduced as

(Pσϕ)(x) =

∫
∞

1
4

1x(y)ϕ(y)y−
1
2 dy. (36)

This is another integral representation of the p.d.o.

Theorem 4.4. If 1x(y) is defined as (35), then

|1x(y)| ≤ C′ (1 + x)−l, (37)

where C′ > 0 is a constant.

Proof. From (35), (22) and (31), we have

|1x(y)| ≤ C
1
2

∫
∞

0
(1 + x)−le−mτdτ,

where C > 0 is constant. Clearly the integral is convergent for m > 0, therefore

|1x(y)| ≤ C′ (1 + x)−l,

where C′ > 0 is a constant.

Now we obtain an estimate of p.d.o. defined as (32). From (36) and (37), we have

|(Pσϕ)(x)| ≤ C′(1 + x)−l
∫
∞

1
4

|ϕ(y)|y−
1
2 dy

≤ C′(1 + x)−l
‖ϕ‖

L1(I;x−
1
2 dx)

,

where C′ > 0 is certain constant and l ∈N0.

‖(Pσϕ)‖L∞(I) ≤ C′′‖ϕ‖
L1(I;x−

1
2 dx)

,

where C′′ > 0 is a constant.

Special Case: If we consider symbol σ(x, τ) in such a way that it can be represented explicitly as σ(x, τ) =
V(x)W(τ), provided V(x) , 0, then p.d.o. defined as (32) is represented as

(Pσϕ)(x) =
1
2

∫
∞

0
Pi
√
τ− 1

2
(2
√

x) tanh(π
√
τ)V(x)W(τ)(MCϕ)(τ)dτ. (38)

Now by application of inverse MFC-transform, (38) reduces to(
MC

[
Pσϕ

V

])
(τ) = W(τ)(MCϕ)(τ). (39)

Further, if we suppose W(τ) = (MCψ)(τ) in (39) then from (16), we have(
MC

[
Pσϕ

V

])
(τ) =MC(ϕ ∗ ψ)(τ).

Invoking inverse MFC-transform, we obtain

(Pσϕ)(x) = V(x)(ϕ ∗ ψ)(x).
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Furthermore, by using Hölder’s inequality and (26), we have

‖Pσϕ‖L1(I;x−
1
2 dx)

≤ ‖ψ ∗ ϕ‖
Lp(I;x−

1
2 dx)
‖V‖

Lq(I;x−
1
2 dx)

≤ ‖ψ‖
L1(I;x−

1
2 dx)
‖ϕ‖

Lp(I;x−
1
2 dx)
‖V‖

Lq(I;x−
1
2 dx)

,

where p, q > 1 and 1/p + 1/q = 1.
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[3] H. J. Glaeske, A. P. Prudnikov, K. A. Skórnik, Operational calculus and related topics, Chapman & Hall/CRC, 2006.
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