Filomat 33:8 (2019), 2219-2235
https://doi.org/10.2298/FIL1908219L

Published by Faculty of Sciences and Mathematics,
University of Ni§, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Periodic Solution of the DS-I-A Epidemic Model
with Stochastic Perturbations

Songnan Liu?, Xiaojie XuP

#School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin 300071, China.
bCollege of Science, China University of Petroleum (East China), Qingdao 266580, China.

Abstract. The paper introduces DS-I-A model with periodical coefficients. First of all, we show that
there is a unique positive solution of the stochastic model. Furthermore we deduce the conditions under
which the disease will end and continue. At last, we draw a conclusion that there exists nontrivial positive
periodic solution for the stochastic system by stochastic Lyapunov functions. Simulations are also carried
out to confirm our analytical results.

1. Introduction

Human immunodeficiency virus (HIV) infection is characterized by three different phases, namely
the primary infection, clinically asymptomatic stage (chronic infection), and acquired immunodeficiency
syndrome (AIDS) or drug therapy. Mathematical modeling is useful for understanding the spread of
HIV/AIDS. Thus various models have been developed to describe the spread of this disease according to
its characteristics, see [1]-[5]. Many works have focused on the epidemic models with bilinear incidence
whereas Anderson and May and De Jong et al. pointed out that the epidemic models with standard
incidence provide a more natural description for humankind and gregarious animals [6]-[7]. Among these
models, the following DS-I-A model proposed by Hyman et al. [5] describes HIV spreads in multi-groups
of susceptibilities:

G = e -su) - B, 1<ksn,

aew BaSk(t)I(t)

w o= Z N I, @
MO -y - oA

in which N(t) = Y;_; Sk(t) + I(t), Si(t)(i = 1,2,...,n) denote the n individuals susceptible to infection sub-
groups, I(t) the infected individuals; A(f) the AIDS cases; ysg(k = 1,2,...,n) the input flow into the n
susceptible subgroups; p the natural mortality rate; y the removal rate coefficient of the infected individu-
als and 0 the sum of natural mortality rate and mortality due to illness; ax(k = 1,2, ...,n) the susceptibility
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of susceptible individuals in subgroup I and [%(S;(t)ak the standard incidence ratio of susceptible subgroups

Sk. Since the dynamics of group A has no effect on the disease transmission dynamics, thus we only consider

B = u(SY - Sk(t) - ’%{f;’(t) 1<k<n,
d L BarSk(HI(t) 2
= ZW = (p+ I,

k=1

The threshold conditions can be calculated which determine whether an infectious disease will spread
in susceptible population when the disease is introduced into the crowed, according to research the disease
free equilibrium Eo(SY, 59, ..., S9,0) of system (2) in [8].

And they obtain reproductive number

n
BY Sy
k=1
(+7)) S
k=1

where Ry < 1, Ey is local asymptotic stabile and disease extinct. When Ry > 1, then Ey is unstable and
the disease will persistent existence (see [5]). The effective contact rate of infected individual in subgroup
Setk =1,2,...,n)is axf(k = 1,2,...,n). So for initial time (S; = S?), the average effective contact rate of

ﬁiaksg

k=1

Ry =

infected individual in subgroup Si(k = 1,2,...,n) is the average disease period of infected

o #ﬂ'
s
k=1
individuals. So R is basic reproductive number.

It is well recognized fact that real life is full of randomness and stochasticity. Hence the epidemic models
are always affected by the environmental noise (in cite [9]-[16]). In [17]-[22], the stochastic models may be
more convenient epidemic models in many situations. To establish the stochastic differential equation(SDE)

model, we naturally use the equation in the form of differential

BaiSk(t)I(E)

asu(t) = [u(s = 840 - =g

Jat, 1<k<n. 3)
Here [t, t + At) is a small time interval and d- for the small change. For example dSi(t) = Si(t +dt) — Si(t), 1 <
k < n and the change dSk(t) is described by (3). Consider the effective contact rate constant of infected
individual Bay, 1 < k < n in the deterministic model. The total number of newly increased I in the small
interval [t,t + dt) is
Z‘Baksk(t I(f)

N(t)

Now suppose that some stochastic environment factors acts simultaneously on each subgroups in the
disease. In this case, fax, 1 < k < n changes to a random variable fay, 1 <k < n. More precisely

Baydt = Boydt + oxdBi(t) 1<k <n.

Here dBi(t) = Bi(t + dt) — Bi(t)(k = 1,2,...,n) is the increment of a standard Brownian motion. And
Br(t)(k = 1,2,...,n) are independent standard Brownian motions with Bi(0) = 0(k = 1,2,...,n) and a]f >
0(k =1,2,...,n) denote the intensities of the white noise. Thus the number of newly increasing I that each
subgroups Sk, 1 < k < n infected in [t,t + dt) is normally distributed with mean Badt and variance aidt,

wherek=1,2,...,n
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Therefore we replace paydt in equation (3) by E;q;dt = Baydt + o4dB(t) to get

ﬁaksk(f)l(f)]dt _ Se(BI(E)
N(b) TTNO

dSi(t) = [u(S] - Sk(t) - dBi(t), 1<k<n.

Note that ﬁ;idt now denotes the mean of the stochastic number of S; infected in the infinitesimally small
time interval [t,t + dt). Similarly, the first equation of (2) becomes another SDE. That is, the deterministic
infectious diseases model (2) becomes the It6 SDE

_ ay Sk(DI(E) Se(OI(H)
dSi(t) = [y(SO Sk(t) - B Pdt — oy kNm( dBu(H), 1<k<n,

_ B Sk(H)I(t) Sk(B)I(t) 4)
ity = Z NOBRG +yI(t)]dt+Z N0 dBi(b),

Other parameters are the same as in system (2). On the other hand, many infectious of humans fluctuate over
time and often show seasonal patterns of incidence. Taking account of periodic variation in epidemic models
and studying the existence of periodic solutions are important and interesting to predict and control the
spread of infectious diseases. Many results on the periodic solution of epidemic models have been reported
[23-25] by using Has'minskii theory of periodic solutions and constructing suitable Lyapunov functions.
Motivated by above facts, in this paper, we will consider the following stochastic DS-I-A model:

aSut) = [OSY0 - Sy(0) ~ T — o) 2 By <t>, 1<k<n,
B(H)ax(t)Sk(t)I(t) Sk(H)I(t) ()
dI(t) Z T — (u(®) + y(O))I(®) ]dt+Z 0, D 2R ABi(t),

in which the parameter functions p, Sg, o B, ok, v, k=1,2,...,n, are positive, non-constant and continuous
functions of period T. This paper is organized as follows. In Section 2, we show there is a unique positive
solution of system (5) by the same way as mentioned in Ref.[26]-[28]. In Section 3, we establish sufficient
conditions for extinction of disease. The condition for the disease being persistent is given in Sections 4.
In Section 5, we verify that there exists nontrivial positive periodic solution of system (5). In Section 6,
outcomes of numerical simulations are also reported in support of analytical results.

Throughout this paper, unless otherwise specified, let (Q, 7, {F¢}i=0, P) be a complete probability space
with a filtration {¥¢},>0 satisfying the usual conditions(i.e. it is right continuous and ¥ contains all P -null
sets). Denote

={xeR":x;>0foralll <i<nj.

If f(t) is an integral function on [0, o0), define {(f)r = % fOT f(s)ds. If f(t) is a bounded function on [0, o),
define f! = infieo0) f(£), f* = SUP;[p o) f (£)- We consider the general d-dimensional stochastic differential
equation

dx(t) = f(x(t), Hdt + g(x(t), dB(), fort > o 6)

with initial value x(ty) = xy € R", where B(t) denotes d-dimensional standard Brownian motions defined
on the above probability space.
Define the differential operator £ associated with Eq.(6) by

2

0
T  —
L= + Lfi(x, t) Z[g (x, g(x, D prva
If £ acts on a function V € C*(R" x R;;R,), then

LV(x,t) = Vilx, 1) + Vilx, 1) f(x, 1) + %tmc[gT(x, HVa(x, Hg(x, )]
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where V; = %—‘t’, V, = (gTVI/ . g—j;) and V,, = (%)dxd. By Itd’s formula, if x(¢) is a solution of Eq.(6), then
dV(x(t), t) = LV(x(t), t)dt + Vi (x(t), £)g(x(t), t)dB(t).

In Eq.(6),we assume that f(0,t) = 0 and g(0,¢) = 0 for all t > 5. So x(t) = 0 is a solution of Eq.(6), called
the trivial solution or equilibrium position.

By the definition of stochastic differential, the equation (6) is equivalent to the following stochastic
integral equation

t d t
x(t) = xp + f f(x(s),s)ds + Z f gr(x(s),8)dB,(s), fort >ty (7)
to 7 Jho

2. Existence and uniqueness of positive solution

In this section we first show that the solution of system (5) is positive and global. To get a unique
global(i.e. no explosion in a finite time) solution for any initial value, the coefficients of the equation are

required to satisfy the linear growth condition and the local lipschitz condition. However, the coefficients

of system (5) do not satisfy the linear growth condition, as the item %E:;I(f) is nonlinear. So the solution of
system (5) may explore in finite time. In this section, we show that the solution of system (5) is positive and

global by using the Lyapunov analysis method.

Theorem 2.1. There is a unique positive solution X(t) = (S1(t), Sa(t), ..., Su(t), I(t)) of system (5) on t > 0O for any
initial value (S1(0),S2(0), ..., S4(0),1(0)) € R™, and the solution will remain in R with probability 1, namely,
(S1(t), Sa(t), ..., Su(t), I(t)) € R™*! forall t > 0.

Proof. Since the coefficients of system (5) are locally Lipschitz continuous, then, for given initial value
(51(0), $2(0), ..., S4(0),1(0)) € R™*1. There is a unique local solution (Si(t), Sa(t), - .., Su(t), I(t)) on t € [0, T,),
where 7, is the explosion time [12]. To show the solution is global, we only need to verify that 7, = oo a.s.
Let my > 0 be sufficiently large so that every component of X(0) lies within the interval [1/my, m,]. For each
m > my, we define the stopping time

Ty = inf{t € [0, T.) : min{S1(¢), S2(t), ..., Su(t), I(£)} £ — or max{Si(t), S2(t),...,Su(t), I(t)} = m}

SR

where we set inf ¢ = oo(as usual ¢ denotes the empty set) throughout the paper. According to the definition,
Ty, is increasing when m — oo. Set 7, = lim 7,, then 7, < 7, a.s. In the following, we need to prove that
m—o0

Teo = o0 a.s., then 7, = oo and (S1(t), S2(b), - - ., Su(t), I(t)) € R as. for all t > 0. In other words, to complete
the proof all we need to show is that 7., = oo a.s. If this assertion is violated then there exists a pair of
constants T > 0 and ¢ € (0, 1) such that

P{te < T} > €.

Hence there is an integer m; > m such that
Pltw < T} > ¢, forall m > mj.

For t < t,,, we can see, for each m,

d) S+ D) = [u®) (SUD) - Si(t) — (u(t) + yE)(B]dt
k=1 k=1
= [u(®) St - uO) Silt) + 18) = yOI(B)]at
k=1 k=1
<

y(t)ng“dt - p(t)(ZSk(t) +I(t)dt.
k=1 k=1
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Therefore

ZSO“, if Zsk(()) +100) < Zs,(j“

Zsk(t)+1(t)< 0 ! 5t

SK0)+1(0), if Y Si(0) +1(0) 2 Y S
k=1 k=1

k=1

Let C := max{ZSgu, ZSk(O) + I(0)}. Define a C>-function V : R"*! — R, by
k=1 k=1
V(S1,S2,...,5u,1) = Z(Sk —1-InSY)+(I-1-InI).
k=1

The non-negativity of this function can be see from u — 1 —logu > 0, Yu > 0. Let m > mg and T > 0 be
arbitrary then by It6’s formula one obtains

dV(S1,82,...,Su1) = LV(S1, ..., Sn, Dt — Tiy ox()(Si(t) — 1) i dBi(t)

- Sk(t)
+k;ok<t>(1<t> =D B0,
where
R 1 ﬁ(t)ak(t)sk(t)l()
Lv = ;(1‘s<t> R O s v (‘E)

" B(B)(£)Sk(B)I(E) Lol () xn o) S

X[;—N@ —<u(t>+y<t>)1<t>1+2 5 Nz(t)+k:1 > N
- u(t)ZSO(t u(t><28k<t>+1t>) YOI — f>Zs(t)+<"+1>“<f> (8)

B POa®SK) | - Z(t) Iz(t) - op(h) Si(t)

r) + @ Z W) - Z N() L 2 N2(t)+k:1 2 N2(t)

< yqugu +(n+ Dt +y + ﬁuza;' + Z(o;)z =M,
k=1 k=1 k=1

where M is a positive constant which is independent of S1(t), Sz(t), . . ., Sx(t), I(t) and t. The remainder of the
proof follows that in ref. [29].

Remark 2.2. From Theorem (2.1) there is a unique global solution (S1(t), Sa(t), ..., Sx(t), I(t)) € R almost surely
of system (5), for any initial value (S1(0), S2(0), . .., Sx(0), Ip) € R, Hence

AQY Skt + 1) < p()Y_Sdt = p(H(Y | Silt) + 11,
k=1 k=1 k=1

and

Y oS+ 1) < Y S+ e b)Y 5i0) +10) ~ S
k=1 k=1 k=1 k=1

n n n n
IfZ‘Sk(O) +1(0) < ZSQ", then Zsk(t) +I(t) < 252” a.s.. Thus the region
k=1 k=1 k=1 k=1

= {(51,52,... e R, ZSk(t +1(t) < ZSO”}

is a positively invariant set of system (5).
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3. Extinction

The other main concern in epidemiology is how we can regulate the disease dynamics so that the disease
will be eradicated in a long term. In this section, we shall give a sharp result of the extinction of disease in
the stochastic model (5).

Theorem 3.1. Assume | ={1,2,...,n},and ] = N1 @ Na, where Ny = {il(c})? > *a}, and N, = {il(c})* < *a’}.

(B (@) w9
;‘ 202 ;(ﬁ o= —)
IfR; = — (H‘{'WTZ

ie.,

< 1, then the disease I(t) will die out exponentially with probability one,

InI(t)
t

limsup

t—o0

<S(u+ Ry -1) <0 as.

Proof. Making use of the Itd’s formula to InI(t), one has

n

ﬁ(t)I(t)Zak(t)Sk(t)
- L o () SpO(1)
dinl = [—= — (u(t) + y(E)I(E) |dt — ,z(tz K D d
- Sk(t)
+;ak(t)mdB ()
B0 Y S,
t) S&(t
- [ ~ Okz()Nk;(t)) _(H(t)+y(t))]dt+zok(t)1\’;—((t’?d3k(t)
k=1 k=
3 AOBCAGERO) : Si()
) (ﬁ(t)ak(t) N " T N dt—(y(t)+y(t))dt+Zak(t "N B
S50 @) S0 50 ©)
< [ﬁuag Nk(t)_ 5 Nkz(t)]dt (y(t)+yt))dt+z }(‘Nk(t)dBk()
k=1
LG @P S s | V2Bl gl
- 5 re P (o) 1 N
—(ut) + y(O)dt + ng i’l‘g)) dBy(b)
- Z(\/_N(t) 2] )dt+; TR dt — (u(t) + (b))t
S
+Z kag)) dBi(t).
k=1
Let % =z, k=1,2,...,n,and 0 < zx <1, we can obtain
flzx) = (ﬂ”a;‘zk—gzi)
= 3_‘% 2 — fzzilkak)z + <ﬁzzz({;§>2
Case 1: When \}2 \rzﬁltk that is (ok)2 > f'ay, then f(zx) <f )2) we obtain:
U2 ( A 1\2
flapy < LT (10)

2(0})
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wherek=1,2,...,n

Case 2: When —\lf \Fzzialkl, that is (01)? < B“ay, then f(z) < f(1), we can obtain:
(@)
flz) < prag - —=,
wherek=1,2,...,n.
Assume | ={1,2,...,n},and | = N; @N2, where Ny = 2> B'al}, and Np =
ﬁu)Z (gl)z
dInl < Z l)z Z(ﬁ” ot - )dt (y(t)+)/(t))dt+Zak—dBk(t)
i€N; jENz
Integrating (12) from 0 to t and dividing by ¢, we obtain
InI(t) - InI(0 LSyt
IO IO < iR —1)+Z BB,

An application of the strong law of large numbers (in [12]) we can obtain

limlft%dB(t)—O 1<k<n as
; ; N k =U, S K=<

t—o0

2225

(11)
{il(o})* < p“a¥} then

(12)

(13)

(14)

Taking the superior limit on both side of (13) and combining with (14), one arrives at

lim sup w <(u+rRy-1)<0 as,

t— oo

which implies that lim;_,« I(f) = 0 a.5. Thus the disease I(t) will tend to zero exponentially with probability

one.

By system (5) and (1), it is easy to see that when lim;_ I(f) = 0 a.s., then lim;_,., A(t) = 0 a.s. This

completes the proof.

4. Persistence

Definition 4.1. System (5) is said to be persistence in the mean if

1(r)
hgéonf Wdr >0 as..

We define a parameter

n 284.50)5)3
R% — Z <([Ll ﬁak k) >T

n 2 n :
k=1 o O 0
(u+ F)rp+y+ k§:1 > >T<sz:1 ST

Theorem 4.2. Assume that Ry > 1, then for any initial value (51(0),S2(0),...,
(S1(8), Sa(t), - .., Su(t), I(t)) of system (5) has the following property:

n 62
(u+y+) )R =D
liminf = f = - ,
t—00 N(V) n <(H2,8ak52)%>%

1,, u
A

o ) S
k=1

wherek =1,2,...,n

(15)

5,(0),Ip) € I* the solution

(16)
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Proof.

o[y

H(H ) (S8 = Su(B) = () + yENIE) = u(®)) i)
k=1 k=1

() Sk + 1(5) = yOI(E)
k=1

u()) S3E) — pON(E) - y(OI(H)
k=1

s BOaMIE)  op®) ()
LS =g O TG T2 e
wherek=1,2,...,n,
t BSk(t
. B >kz_;ak< )Si(t) 20 50
Li=InD = -—=g——+ (u) + 7)) + 2 > N
Hence we define
U(S1, S, ..., Sp 1) = —InI(t) — Z cr In Si(t) + Z a [Z Sk(t) + I(t)]
k=1 k=1 k=1
with . X
(U2BorSY)7 )3 (U2BarS))3 )3
Cr = - ;o A= , ,
Gt TR SDr (Wt ) S
k=1 k=1

inwhichk=1,2,...,n
Using Itd’s formula and Basic inequality Z2*¢ > V/abc one can write

_ _y PO@®S() | Y GHBSH <
Lu = Z OB GCARICD Maoyr e ILUCLC

ﬁ(t)l(t)chak(t) ; 20 2o
— N+ chw(t) "2 Nz((t)) + u(t) Zak<zs°<t> Zamtﬂ(t)
k=1 k=

OGN0 2(t) 52(”
N - T2 N2
B()ax(t)Si(t) S0t S
< Z N (y(t)+y(t)+;T)— ) 50 —kzz;aky(t)N(t)
ﬁ(t)l(t)chak ; o2() n
—_— Xckw(t) + ) t)Zak@sO(t)) - Zaky(tﬂ(t)
k=1 k=1
_ BHax(HS(t) sy i 2()
= sz[ NG 5 k#(t)N(t)]+(u(t)+y(t)+Z
(t)I(t)chak(t) , n

— ST+ ch(ﬂ(f) + —) + u( f)Zak(ZSo(t)) - ak)/(t)l(t)

k=1 k=1 =1
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< 3) (@BOR DS (Da)* + chm(t )+ ) ). S0
k=1

k=1

iy <t>2ckak(t>

Hu) + () +Z 20 N0

ﬁ(t)chak t)

= Ro(t) + — 55— I(0).

Define the T—periodic function w(f) which satisfies
w'(t) = (Ro)r — Ro(t)-

By cx, ar, k=1,2,...,1n, we obtain

(2B 3 )3

o2 3 0 ’
(pt= >T<”Z ST
k=1

ap+Por = alu) SHr =
k=1

inwhichk=1,2,...,n
Then we get

ﬁ“chaZ
Ro)yr + —75—1(t)
1 —3<(y2ﬁak50> & AWPparSY)

LU + w(t))

IA

IA

+

S ) S S Py SHr
k=1 k=1

k=1

n((2paS) 2 P ZC"“"

- _Z <”+7/+Zz

S k>T<uZSO>T

N(t

L= S 1)

2 0y143
e Y Iy QP

_1]

BT G Dy by + O >T<uZSO>T

n
ﬁ"ZCkaz

+— N(t) I(t)

P ﬁ“wa

ety + ZEMRS -0+ —yg O

IA

in which Rj is defined in (15).

2227

(17)
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Thus we can obtain

n
u u
aQ
2 ‘szk

n O_k . =) n . I n
AU + w(t) < —(u+y + ;?T(RO — 1)+ I ;‘Ok ~B(t) - ;ak—dBk(t) (18)
As w(t) is a T—periodic function so we obtain:

t
Ro(t)dt
(Ro)r = lim fo;
f—+00 t

and integrating (17) from 0 to t and dividing by f, we can get

_ " Ro(t)dt
w(t) tw(O) Ry - I, (;()

Integrating (18) from 0 to t and dividing by ¢, we can get

. o s u il
nHO-hi0 - < <#+V+Z >T(R _1)t+ﬁzw"tf NG

I( ) (19)
r
Z Ny B - Z N(r) By (9.
Since ZSk(t) + I(t) < C, we can obtain
k=1
n n n
W) = —InI(t) - ch In Si(t) + Z a [2 S(t) + I(t)]
k=1 k=1 \k=1
> —Ini(t)- ) celnSk(t) (20)
J=t
> —-InC- chlnC =M.
k=1
An application of the strong law of large numbers (in [12]) we can obtain
. ' Si(r) .
- <i< S.. 21
tlggt N()dB(t) 0 1<i<n as (21)
. ' 1)
- — 22
}H?o f ), NP = 22
Taking the superior limit on both side of (19) and combining with (20), (21) and (22) one arrives at
n O']%
<u +y+ ) 2Ry - 1)
I(r) k=1
lim 1r1f
t—o0 N(T’) n
BY cua
k=1

Therefore, by the condition R > 1, we have assertion (16). This complete the proof of Theorem (4.2).
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5. Existence of nontrivial positive periodic solution of system (1.5)

Definition 5.1. A stochastic process x(t, ®) is said to be periodic with period T if its finite dimensional distributions
are periodic with period T, i.e., for any positive integer m and any moments of time t1, to, . . ., t,,, the joint distributions
of the random variables x(t14k1, @), . . ., X(tmekr, @) are independent of k (k = £1,+2,---).

Consider the following periodic stochastic equation
dx(t) = f(t, x(£))dt + g(t, x(£))dB(), x € R", (23)
where functions f and g are T—periodic in ¢.

Lemma 5.2. ([30]). Assume that system (23) admits a unique global solution. Suppose further that there exists a
function V(t,x) € C? in R which is T—periodic in t, and satisfies the following conditions

inf V(t,x) > c0oas R — oo, (24)
|x|>R

and
LV(t,x) < =1 outside some compact set, (25)

where the operator L is defined by
LV(t,x) = Vi(t,x) + Vi(t,x)f(t,x) + %tmce(gT(t, x)Vi(t, x)g(t, x)). (26)

Then the system (23) has a T—periodic solution.

By Theorem (2.1), we can obtain that system (5) has a unique globally positive solution
(S1(t), Sa(t), ..., Su(t), I(t)) € R™! on t > 0 for any initial value (S1(0), S2(0), ..., S,(0),1(0)) € R"*!. Based on
this result we will give conditions which guarantees the existence of periodic solutions.

Theorem 5.3. Assume that Rf, > 1 (defined by Section 4), then system (5) admits a nontrivial positive T—periodic
solution.

Proof. Since the coefficients of (5) are constants, it is not difficult to show that they satisfy (5.1), (5.2). For
all initial value (51(0), S2(0), ..., 5,(0),Ip) € I, the solution of (5) is regular by Theorem (2.1). It is clear
that coefficients of system (5) satisfy the local Lipschitz condition. According to Lemma (5.2), to prove this
result, it only need to construct a C>—periodic function V(x, t) and a compact set such that (24) and (25) are
satisfied. Defining a C>—function

V(S1,Ss,...,5n, 1, 1) = M(U + w(t)) - Z In Sy — 1n(ng” - Zsk -,
k=1 k=1 k=1

in which U(¢) is defined by section 4. And the following condition for M > 0 is satisfied

n u\2

)
_ k uo_ _
M/\+Z Dt =2, 27)
k=1
n O-]%
A= (lu+)/+Z?>T(RfJ—1) > 0.
k=1
It is easy to check that

llmlnf V(Sl/SZ/---/Sn/I/ t) = +oo.
PR RS (GRS SQ”

t—+o00
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In addition, V(Sl,Sz,...,Sn,L t) is a continuous function on Uy. Therefore V(Sl,Sz,...,Sn,I, t) has a
minimum value point (51,52, ...,S,,1,t) in the interior of I"". Then we define a nonnegative C2—function V:
I'" - R as follows

V(Sll SZ/ crcy Sn/ I/ t) = V(Sll 52/ cery Sn/I/ t) - V(S_ll S_Z/ crcy S_Tl/ I_/ t)

The differential operator L acting on the function V leads to

. By cuat B1)Y () L
%\ /ps k=1 k=1 p()Se(t)
Lv < M[—(y+7/+z?>T(RO—1)+ N I(t)]+ NG I(t)—Z S0
o0 PO YOI -
2: 2 e OO -
252<t>—N<t>
k=1 ;
ﬁuzckak ﬁuza n l 0l n (011)2
< [ (u+ +Z}—>ms Sl 10|+ I(t) - s —k 4 k
wry ' N(t) L 54(0) 2
k=1
+n+ Dt — —; )/[I(t)
ng“—N(t)
Mzckak+zak] o .
I
= -MA+ —L I(t) - ng(k) - O + 1) +Z
=t Y s - N() =1
k=1

Consider the bounded open subset
D = {(S1,S,...,S,,) €T%,0 < Zsk+1< Zsol‘ 1<i<nl,

and & > 0(i = 1,2,3) are sufficiently small constants. In the set I \ D, we can get €;(i = 1,2, 3) sufficiently
small such that the following conditions hold

‘ulsol
- +K<-1 k=1,2,. (28)
1
e = (ne1)?. (29)
& =& (30)

B [MZCWZ + Zai‘J nep < 1. (31)
k=1 k=1
T — ﬁ“ (Mcha(;: + ZO{Z] -2. (32)
k=1 k=1

K-—<-1. (33)



For the purpose of convenience, we can divide I \ D into the following 2n + 2 domains,
Dr={0<S<¢e}, k=1,2,...,n

D1 ={0<I<é&p,e1<51<k<n}

Clearly, D =D;UD,UD3 U...

S. Liu, X. Xu / Filomat 33:8 (2019), 2219-2235

n n n
Do ={ea ST <Y S0 =3, ) S0 —e5< ) Se+1).

k=1 k=1

equivalent to show it on the above 1 + 2 domains.
Case 1: If (51,S5,,...,5,,1) € Dy, (k=1,2,...,n), then

LV <

IN

<

n n
u u
M E CrQy + E a;
‘Llls[)l

k=1 k=1
-MA + NG 1) - 55

n (Uu)z
+(n + Dt + ;
10! k=1
X — E5%
S
K- %

e "

In view of (28), one has
LV <-1 forany (51,52,...,5.,1)€ Dy, (k=1,2,...,n).
Case 2: If (Sl, SQ, ey Sn, 1) € Dn+1, then

k=1
U D,42. Next we will prove that LV(S3, S, ...,

‘B“ MZCkak + Zak n (Gu 2
LV < -MA+—FEL I(t) + (n + D" + Z ;
k=1
B Mchak + Zak 2 u 5
< -MA+—FL & +(n+ 1" +Z 5
According to (29) and (31) one can see that
n u 2
LV < -MA +p* [Mchak Z ]nsl +(n+ 1" +Z >
Combining with (27), one has for sufficiently small ¢,
LV <-1 for any (51,52, e ,Sn,l) €D,yq.
Case 3: If (51, S2,...,5,,1) € Dy42, then
n n
g MZCkCYZ + Zak o ) e
LV < —MA+ = B i 4 Dyt + Z o Y
k=1 ngu _ N(t)
k=1
< K-—2
ZSO” ~N()
< K- &
< R-2

2231

S,,I) < =1 on D¢, which is

(34)

(35)

(36)
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In view of (33), one has
LV <=1 forany (51,52,...,54,1) € Dyso.
Obviously, from (34), (35), and (36) one can obtain that for a sufficiently small €;(i = 1,2, 3),
LV <-1 forany (Sy,S,...,S,1I) € DC.

Therefore, there is a T—periodic solution of system (5) according to Lemma (5.2).

6. Simulation

In this section, we will test our theory conclusion by simulations. In the following simulations, we all
use the Milstein’s Higher Order Method in [31].

Example 6.1. Assume that the parametric values in the model (5) are given by a1(t) = 1.2 + 1.1sin(t), ax(t) =
1+ 09sin(t), $9(t) = 1.5 + 1.3sin(t), S9(t) = 1.4 + 1.2sin(t), u(t) = 1.2 + 1.1sin(t), y(t) = 1.4 + 1.1sin(t) and

e - L (Bra)T
B = 1.5+sin(t). The condition of Theorem (3.1) is R = mz 200 < 1. Ifwe choose 01 = 5+4.4 cos(t), 02 =
0y)T
k=1 k
2.5 + 2.4 sin(t), we can have
1\2
(ﬁl{)Z(a%l)z (a].)
R Y- 2
1
Ry = <1,
W+t

then by Theorem (3.1), we can obtain that I(t) will tends to zero exponentially with probability one.
Using the Milstein’s Higher Order Method (in [31]), we give the simulations shown in Fig.1 to support our
results.

Figure 1: Computer simulation of the path S, S,,I for the SDE DS-I-A epidemic model (5) for 61 = 5 + 4.4 cos(t), 0, =
2.5 + 2.4sin(t). We employ the Milstein’s Higher Order Method with initial value (51(0), S2(0), I(0)) = (0.8,0.8,2).
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Example 6.2. Assume that the parametric values in the deterministic model (2) are given by ai(t) = 1.2 +
1.1sin(t), ax(t) = 1 + 0.9sin(t), S(l’(t) = 1.5 + 1.3sin(t), Sg(t) = 1.4 + 1.2sin(f), u(t) = 1.2 + L.1sin(t), y(t) =
1.4 + 1.1sin(t) and p = 3 + 1.2sin(t). Then computer simulation of the path S1, S,, 1 for the SDE DS-I-A epidemic
model (5).

The condition of Theorem (4.2) is R}, > 1. If we choose o1(t) = 0.4 + 0.2sin(t), 02(t) = 0.4 + 0.2sin(t) then by
Theorem (4.2), the solution (S1(t), Sa(t), I(t)) of system (5) with any initial value (S1(0), S2(0), 1(0)) = (0.8,0.8,2) e I"".
That is to say, the disease will proceed. For

n 284,.50)5)3
R = Z ((W"BauS) 3 )y -

no -2 n
=1 o Tk 0
Wt Pty + ;7>T<p;sk>T

Using the Milstein’s Higher Order Method (in [31]), we give the simulations shown in Fig.2 to support our results.

Figure 2: Computer simulation of the path S, S,, I for the SDE DS-I-A epidemic model (5) for 1 = 0.4 + 0.2sin(t), 0, =
0.4 + 0.2 sin(f). We employ the Milstein’s Higher Order Method with initial value (51(0), S»(0),1(0)) = (0.8,0.8, 2).

7. Conclusion

In this paper, the sufficient condition of extinction is given in the almost sure situation, and this value is
less than the value of the corresponding deterministic system. At some level, we can consider that the large
white noise will control the disease to prevail, which never happen in the deterministic system. Besides,
as the solutions of stochastic differential equations are stochastic processes, it is absolutely impossible for
stochastic differential equations with periodic coefficients to have periodic solutions. In order to show the
stochastic system has the similar property as the deterministic system, we show the transition probability
function of the solution is periodic. Thus, we discuss the long time behaviour of system (5) and get following
results.

(1) Assume | = {1,2,...,n}, and | = N1 D N,, where N; = {i|(c})* > p“a’}, and N, = {i|(c})* < p“a¥}.

12
(B )
Yt L )
If Ry := = : m J]j; < 1, then the disease I(t) will die out exponentially with
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probability one, i.e.,

lim sup @ <{u+yrRy-1) <0 as.
t—oo
@) If
n (u2BayS° %>3
Ry:=Y (W pak nk) Y 37)
St Doty + Y Y 0
2 2 k
k=1 k=1
then
n g]%
t (ty+ ) 2R~ 1)
1) k=1
liminf - dr >
toeo f )y N(1) 1L
Y e
k=1

and there exists a T—periodic solution of (5).

Some interesting topics deserve further consideration. On the one hand, one may propose some more
realistic but complex models, such as considering the effects of impulsive perturbations on system (5). On
the other hand, it is necessary to reveal that the methods used in this paper can be also applied to investigate
other interesting epidemic models. We leave these as our future work.
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