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Available at: http://www.pmf.ni.ac.rs/filomat

A Class of Constacyclic Codes over the Ring Z4[u, v]/〈u2, v2,uv − vu〉
and Their Gray Images

Habibul Islama, Om Prakasha,∗
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Abstract. In this paper, we study (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes
over the ring Z4 + uZ4 + vZ4 + uvZ4 where u2 = v2 = 0,uv = vu. We define some new Gray maps and
show that the Gray images of (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes are cyclic,
quasi-cyclic and permutation equivalent to quasi-cyclic codes overZ4. Further, we determine the structure
of (1 + 2u + 2v)-constacyclic codes of odd length n.

1. Introduction

In the study of the error-correcting, one of the primary targets is to find the codes with good error-
correcting capability. It is well known that the error-correcting capability of the linear code varies propor-
tionally with its minimum distance. Therefore, to obtain good codes, we have to find the codes with a larger
minimum distance as much as possible. In this regard, cyclic codes play a crucial role in achieving the
goal. The constacyclic code is one of the prominent generalizations of cyclic code, and it can be efficiently
implemented by shift constant. Hence, the constacyclic code is the most popular in the area of science
and technology. Many times it has been observed that the constacyclic code is an excellent choice instead
of a cyclic code to obtain some codes with better parameters. In 2009, Abualrub and Siap [3] studied the
constacyclic codes over the ring of 4 elements F2 + uF2. In 2011, Karadeniz and Yildiz [14] investigated
(1 + u)-constacyclic codes over F2 + uF2 + vF2 + uvF2 while in 2012, Kai et al. [13] proved that the Gray
images of the (1+u)-constacyclic codes of length n over F2 +uF2 +vF2 +uvF2 are distance preserving binary
quasi-cyclic codes of length 4n and index 2. Further, they have obtained some optimal binary linear codes
as the Gray images of (1 + u)-constacyclic codes. Later on, in 2014, Yu et al. [22] presented several examples
of p-ary linear optimal codes as the Gray images of (1 − uv)-constacyclic codes over Fp + uFp + vFp + uvFp.
Recently, many mathematicians have been studying cyclic and constacyclic codes over the ring Z4 and its
extensions to get some new techniques and optimal codes [1, 4–6, 10, 11, 17, 19–21].
On the other side, in 20107, Boucher et al. [7] introduced the concept of the skew cyclic codes into the
coding theory. They characterized the skew cyclic codes of length n as the ideals of the skew polynomial
ring F[x;θ]/〈xn

− 1〉, where θ is a non-trivial automorphism on the finite field F. As an application, they
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have presented some linear codes which are better than the best known codes. Later, in 2011, Siap et al.
[18] studied the skew cyclic codes of arbitrary length n over the finite field F, where these codes are the
left F[x;θ]-submodules of F[x;θ]/〈xn

− 1〉. Recently, many authors have been studied the properties of the
skew cyclic and skew constacyclic codes over finite rings, refer [8, 9, 12].
In this paper, we consider the finite commutative ring Z4 + uZ4 + vZ4 + uvZ4 where u2 = v2 = 0,uv = vu
and study a class of (1 + 2u + 2v)-constacyclic codes. The motive of the study is to find some known codes
like cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes overZ4 as the Gray images of the
class of (1 + 2u + 2v)-constacyclic codes over Z4 + uZ4 + vZ4 + uvZ4.
Presentation of the paper is organized as follows: In Section 2, we discuss some basic concepts. Section 3
includes some new Gray maps and investigates theirZ4-images. The structures of (1+2u+2v)-constacyclic
codes are obtain in Section 4 while Section 5 contains some results on constacyclic codes with Nechaev’s
permutation. Section 6 introduces skew (1 + 2u + 2v)-constacyclic codes and Section 7 discusses their Z4-
images. Further, in Section 8, we give some results on skew constacyclic codes with Nechaev’s permutation
and conclude the article in Section 9.

2. Preliminary

Through out the article, R denotes the ringZ4 + uZ4 + vZ4 + uvZ4 where u2 = v2 = 0,uv = vu. Note that
R is a finite commutative non chain extension of Z4 and isomorphic to the ring Z4[u, v]/〈u2, v2,uv − vu〉.
Also, R is local with unique maximal ideal 〈2,u, v〉 and quotient ring R/〈2,u, v〉 � Z2. Recall that a non
empty subset C of Rn is said to be a linear code of length n if C is an R-submodule of Rn and elements of C
are called codewords. Let λ be a unit in R. A linear code C of length n over R is said to be a λ-constacyclic
code if τλ(c) = (λcn−1, c0, . . . , cn−2) ∈ C whenever c = (c0, c1, . . . , cn−1) ∈ C. Note that the λ-constacyclic codes
become cyclic if λ = 1 and negacyclic if λ = −1. The operator τλ is known as λ-constacyclic shift operator.
Observe that the units (1 + 2u), (1 + 2v), (1 + 2uv), (1 + 2u + 2v), (1 + 2u + 2uv), (1 + 2v + 2uv), (1 + 2u + 2v + 2uv)
are satisfying λn = 1 if n is an even integer and λn = λ if n is an odd integer but in our further calculations,
we use the operator τλ with λ = (1 + 2u + 2v). Similarly, one may obtain the results for any of the above
other units represented by λ. Let C be a λ-constacyclic code of length n over R. We identify each codeword
c = (c0, c1, . . . , cn−1) ∈ C with a polynomial c(x) = c0 + c1x + · · · + cn−1xn−1 in Rn,λ = R[x]/〈xn

− λ〉 by the
correspondence c = (c0, c1, . . . , cn−1) 7→ c(x) = c0 + c1x + · · · + cn−1xn−1 (mod 〈xn

− λ〉). Therefore, the code C
can be considered as a subset of Rn as well as of Rn. In polynomial representation, one can easily verify the
following result.

Lemma 2.1. A linear code C of length n over R is λ-constacyclic code if and only if C is an ideal of Rn,λ.

Definition 2.2. Let C be a linear code of length n = st overZ4. We define quasi-cyclic shift operator πs : Zn
4 −→ Z

n
4

by

πs(e0 | e1 | · · · | es−1) = (σ(e0) | σ(e1) | · · · | σ(es−1)), (1)

where ei ∈ Zt
4 for all i = 0, 1, . . . , (s − 1) and σ is the cyclic shift operator. Then C is said to be a quasi-cyclic code of

index s if C is invariant under the map πs, i.e. πs(C) = C.

3. Gray maps and Z4-images of λ-constacyclic codes

In this section, we define three distinct Gray maps and discuss the Gray images of λ-constacyclic code
of R. Towards this, we first define

φ1 : R −→ Z2
4

as

φ1(a + ub + vc + uvd) = (a + 3b + 3c + 3d, a + b + c + 3d), (2)
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for all a, b, c, d ∈ Z4. The map φ1 is linear but not bijective. Also, it can be extended to Rn as follows:

φ1 : Rn
−→ Z2n

4

defined by

φ1(r0, r1, . . . , rn−1) = (a0 + 3b0 + 3c0 + 3d0, a1 + 3b1 + 3c1 + 3d1, . . . , an−1 + 3bn−1 + 3cn−1 + 3dn−1,

a0 + b0 + c0 + 3d0, a1 + b1 + c1 + 3d1, . . . , an−1 + bn−1 + cn−1 + 3dn−1),

where ri = ai + ubi + vci + uvdi ∈ R for all i = 0, 1 . . . , (n− 1). Recall that the Lee weight of any c ∈ Z4 is given
by min{| c |, | 4 − c |}, that is, the Lee weights of 0, 1, 2, 3 are 0, 1, 2, 1, receptively. The Lee weight for r ∈ R
is define as wL(r) = wL(φ1(r)) and for r̄ = (r0, r1, . . . , rn−1) ∈ Rn is wL(r̄) =

∑n−1
i=0 wL(ri). Then the Lee distance

for the code C is define by d(C) = min{dL(r̄1, r̄2) | r̄1 , r̄2, r̄1, r̄2 ∈ C}, where dL(r̄1, r̄2) = wL(r̄1 − r̄2). Now,
dL(r̄1, r̄2) = wL(r̄1 − r̄2) = wL(φ1(r̄1 − r̄2)) = wL(φ1(r̄1) − φ1(r̄2)) = dL(φ1(r̄1), φ1(r̄2)), for all r̄1, r̄2 ∈ Rn. Hence, φ1
is a distance preserving map from Rn (Lee distance) to Z2n

4 (Lee distance).

Lemma 3.1. Let φ1 be the Gray map defined in equation (2), τλ be the λ-constacyclic shift operator and σ be the
cyclic shift operator. Then φ1τλ = σφ1.

Proof. Let r = (r0, r1, · · · , rn−1) ∈ Rn, where ri = ai + ubi + vci + uvdi for i = 0, 1, . . . ,n − 1. Now,

φ1τλ(r) = φ1(λrn−1, r0, . . . , rn−2)
= (an−1 + bn−1 + cn−1 + 3dn−1, a0 + 3b0 + 3c0 + 3d0, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−1 + 3bn−1 + 3cn−1 + 3dn−1, a0 + b0 + c0 + 3d0, . . . , an−2 + bn−2 + cn−2 + 3dn−2).

On the other side,

σφ1(r) = σ(a0 + 3b0 + 3c0 + 3d0, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2, an−1 + 3bn−1 + 3cn−1 + 3dn−1,

a0 + b0 + c0 + 3d0, . . . , an−2 + bn−2 + cn−2 + 3dn−2, an−1 + bn−1 + cn−1 + 3dn−1)
= (an−1 + bn−1 + cn−1 + 3dn−1, a0 + 3b0 + 3c0 + 3d0, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−1 + 3bn−1 + 3cn−1 + 3dn−1, a0 + b0 + c0 + 3d0, . . . , an−2 + bn−2 + cn−2 + 3dn−2).

Hence, φ1τλ = σφ1.

Theorem 3.2. Let C be a λ-constacyclic code of length n over R. Then φ1(C) is a cyclic code of length 2n over Z4.

Proof. Let C be a λ-constacyclic code of length n over R. Then τλ(C) = C. By Lemma 3.1, we have
φ1τλ(C) = φ1(C) = σ(φ1(C)). This shows that φ1(C) is a cyclic code of length 2n over Z4.

Again, we define a map

φ2 : R −→ Z2
4

by

φ2(a + ub + vc + uvd) = (a + 2b + 2c + 2d, 2a + 2b + 2c + 2d), (3)

for all a, b, c, d ∈ Z4.

Lemma 3.3. Let φ2 be the Gray map defined in equation (3), τλ be the λ-constacyclic shift and π2 be the quasi-cyclic
shift operator defined in equation (1). Then φ2τλ = π2φ2.
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Proof. Let r = (r0, r1, · · · , rn−1) ∈ Rn, where ri = ai + ubi + vci + uvdi for i = 0, 1, . . . ,n − 1. Now,

φ2τλ(r) = φ1(λrn−1, r0, . . . , rn−2)
= (an−1 + 2bn−1 + 2cn−1 + 2dn−1, a0 + 2b0 + 2c0 + 2d0, . . . , an−2 + 2bn−2 + 2cn−2 + 2dn−2,

2an−1 + 2bn−1 + 2cn−1 + 2dn−1, 2a0 + 2b0 + 2c0 + 2d0, . . . , 2an−2 + 2bn−2 + 2cn−2 + 2dn−2).

On the other hand,

π2φ2(r) = π2(a0 + 2b0 + 2c0 + 2d0, a1 + 2b1 + 2c1 + 2d1, . . . , an−1 + 2bn−1 + 2cn−1 + 2dn−1,

2a0 + 2b0 + 2c0 + 2d0, 2a1 + 2b1 + 2c1 + 2d1, . . . , 2an−1 + 2bn−1 + 2cn−1 + 2dn−1)
= (an−1 + 2bn−1 + 2cn−1 + 2dn−1, a0 + 2b0 + 2c0 + 2d0, . . . , an−2 + 2bn−2 + 2cn−2 + 2dn−2,

2an−1 + 2bn−1 + 2cn−1 + 2dn−1, 2a0 + 2b0 + 2c0 + 2d0, . . . , 2an−2 + 2bn−2 + 2cn−2 + 2dn−2).

Hence, φ2τλ = π2φ2.

Theorem 3.4. Let C be a λ-constacyclic code of length n over R. Then φ2(C) is a quasi-cyclic code of length 2n with
index 2 over Z4.

Proof. Let C be a λ-constacyclic code of length n over R. Then τλ(C) = C. By Lemma 3.3, we have
φ2(τλ(C)) = φ2(C) = π2(φ2(C)). This implies φ2(C) is a quasi-cyclic code of length 2n with index 2 over
Z4.

Further, we define a map

φ3 : R −→ Z2
4

by

φ3(a + ub + vc + uvd) = (a + b + c + d, a + 3b + 3c + d) (4)

for all a, b, c, d ∈ Z4.

Lemma 3.5. Let φ3 be the Gray map defined in equation (4), τλ be the λ-constacyclic shift and π2 be the quasi-
cyclic shift operator defined in equation (1). Then φ3τλ = ξπ2φ3 where ξ is the permutation on Z2n

4 define by
ξ(s1, s2, . . . , s2n) = (sε(1), sε(2), . . . , sε(2n)) with ε = (1,n + 1) of {1, 2, . . . , 2n}.

Proof. Let r = (r0, r1, · · · , rn−1) ∈ Rn, where ri = ai + ubi + vci + uvdi for i = 0, 1, . . . ,n − 1. Now,

φ3τλ(r) = φ1(λrn−1, r0, . . . , rn−2)
= (an−1 + 3bn−1 + 3cn−1 + dn−1, a0 + b0 + c0 + d0, . . . , an−2 + bn−2 + cn−2 + dn−2,

an−1 + bn−1 + cn−1 + dn−1, a0 + 3b0 + 3c0 + d0, . . . , an−2 + 3bn−2 + 3cn−2 + dn−2).

On the other hand,

π2φ3(r) = π2(a0 + b0 + c0 + d0, a1 + b1 + c1 + d1, . . . , an−1 + bn−1 + cn−1 + dn−1,

a0 + 3b0 + 3c0 + d0, a1 + 3b1 + 3c1 + d1, . . . , an−1 + 3bn−1 + 3cn−1 + dn−1)
= (an−1 + bn−1 + cn−1 + dn−1, a0 + b0 + c0 + d0, . . . , an−2 + bn−2 + cn−2 + dn−2,

an−1 + 3bn−1 + 3cn−1 + dn−1, a0 + 3b0 + 3c0 + d0, . . . , an−2 + 3bn−2 + 3cn−2 + dn−2).

Now, applying the permutation ξ on the both sides, we have φ3τλ = ξπ2φ3.

Theorem 3.6. Let C be a λ-constacyclic code of length n over R. Then φ3(C) is a permutation equivalent to a
quasi-cyclic code of length 2n with index 2 over Z4.
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Proof. Let C be a λ-constacyclic code of length n over R. Then τλ(C) = C. By Lemma 3.5, we have
φ3τλ(C) = φ3(C) = ξπ2(φ3(C)). This shows that φ3(C) is permutation equivalent to a quasi-cyclic code of
length 2n with index 2 over Z4.

We denote the permutation version of the map φ1 by (φ1)π and define as follows:

(φ1)π(r) = (φ1)π(r0, r1, . . . , rn−1)
= (a0 + 3b0 + 3c0 + 3d0, a0 + b0 + c0 + 3d0, . . . , an−1 + 3bn−1 + 3cn−1 + 3dn−1,

an−1 + bn−1 + cn−1 + 3dn−1), (5)

where ri = ai + ubi + vci + uvdi ∈ R for all i = 0, 1, . . . , (n − 1). We know that the codes obtained by φ1 and
(φ1)π are permutation equivalent and have the same parameters.

Lemma 3.7. Let (φ1)π be the map defined in equation (5) and σ be the cyclic shift operator. Then (φ1)πσ = σ2(φ1)π.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + vci + uvdi ∈ R for all i = 0, 1, . . . ,n − 1. Now,

(φ1)πσ(r) = (φ1)π(rn−1, r0, . . . , rn−2)
= (an−1 + 3bn−1 + 3cn−1 + 3dn−1, an−1 + bn−1 + cn−1 + 3dn−1, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−2 + bn−2 + cn−2 + 3dn−2).

On the other side,

σ2(φ1)π(r) = σ2(a0 + 3b0 + 3c0 + 3d0, a0 + b0 + c0 + 3d0, . . . , an−1 + 3bn−1 + 3cn−1 + 3dn−1,

an−1 + bn−1 + cn−1 + 3dn−1)
= (an−1 + 3bn−1 + 3cn−1 + 3dn−1, an−1 + bn−1 + cn−1 + 3dn−1, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−2 + bn−2 + cn−2 + 3dn−2).

Hence, (φ1)πσ = σ2(φ1)π.

Theorem 3.8. Let C be a cyclic code of length n over R. Then φ1(C) is permutation equivalent to a 2-quasicyclic
code of length 2n over Z4.

Proof. Let C be a cyclic code of length n over R. Then σ(C) = C, and therefore by Lemma 3.7, (φ1)πσ(C) =
(φ1)π(C) = σ2((φ1)π(C)). This shows that φ1(C) is permutation equivalent to a 2-quasicyclic code of length
2n over Z4.

Remark 3.9. Note that to get the Theorem 3.8, we have used the permutation version of the Gray map φ1. Analo-
gously, we can use the permutation version of Gray maps φ2 and φ3 defined in equation (3) and (4), respectively for
similar results.

4. Structures of λ-constacyclic codes over R

Here every element r = a + ub + vc + uvd ∈ R can be written as r = (a + ub) + v(c + ud) = s + vt where
s = (a + ub), t = (c + ud) ∈ Z4 + uZ4. Now, we define the map Ψ1 : R −→ Z4 + uZ4 by Ψ1(s + vt) = s
mod v. The map Ψ1 is a ring homomorphism and can be extended to the polynomial ring R[x]/〈xn

− 1〉
as Ψ1(

∑n−1
i=0 cixi) =

∑n−1
i=0 Ψ1(ci)xi. Let C be a cyclic code of length n over R. Consider the restriction of

Ψ1 to the ideal C. Then ker(Ψ1) = vI, where I is an ideal of (Z4 + uZ4)[x]/〈xn
− 1〉. Further, Ψ1(C) is an

ideal of (Z4 + uZ4)[x]/〈xn
− 1〉. Let D be an ideal of (Z4 + uZ4)[x]/〈xn

− 1〉. Again, we define the map
Ψ2 : Z4 + uZ4 −→ Z4 by Ψ2(a + ub) = a mod u. The map Ψ2 is also a ring homomorphism and can be
extended to the polynomial ring (Z4 + uZ4)[x]/〈xn

− 1〉 as previously. Moreover, ker(Ψ2) = uJ, where J
is an ideal of Z4[x]/〈xn

− 1〉 and also Ψ2(D) is an ideal of Z4[x]/〈xn
− 1〉. Therefore, for an odd integer

n, by Theorem 1 of [1], Ψ2(D) = 〈11 + 2a1〉 where 11, a1 ∈ Z4[x] such that a1 | 11 | (xn
− 1) mod 4. Thus,

D = 〈11 + 2a1 + up1,u(12 + 2a2)〉 where 1i, ai ∈ Z4[x] such that ai | 1i | (xn
− 1) mod 4 for i = 1, 2. Hence, by

the above discussion, we can characterize the cyclic codes of odd length over R as follows.
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Theorem 4.1. Let n be an odd integer and C be a cyclic code of length n over R. Then C is an ideal of R[x]/〈xn
− 1〉

given by

C = 〈11 + 2a1 + up1 + vp2 + uvp3,u(12 + 2a2) + vp4 + uvp5, v(13 + 2a3) + uvp6,uv(14 + 2a4)〉,

where ai, 1i, pi ∈ Z4[x] such that ai | 1i | (xn
− 1) mod 4 for i = 1, 2, 3, 4.

Theorem 4.2. Let n be an odd integer. Then the map α : R[x]/〈xn
− 1〉 −→ R[x]/〈xn

−λ〉 define by α( f (x)) = f (λx)
is a ring homomorphism.

Proof. Let s1(x) = s2(x) mod 〈xn
−1〉. Then s1(x)−s2(x) = h(x)(xn

−1) ⇐⇒ s1(λx)−s2(λx) = h(λx)(λnxn
−1) ⇐⇒

s1(λx) − s2(λx) = λh(λx)(xn
− λ) ⇐⇒ s1(λx) = s2(λx) mod 〈xn

− λ〉. This shows that α is well define and
one-to-one. Rest part is easy to verify.

Corollary 4.3. A linear code C of odd length n is cyclic over R if and only if α(C) is a λ-constacyclic code over R.

Proof. Simple consequence of Theorem 4.2.

Corollary 4.4. Let ω be a map define by ω : Rn
−→ Rn as ω(c0, c1, . . . , cn−1) = (c0, λc1, . . . , λn−1cn−1). Then a linear

code C of odd length n over R is cyclic if and only if ω(C) is λ-constacyclic code of length n over R.

Proof. Simple consequence of Theorem 4.2.

Theorem 4.5. Let C be a λ-constacyclic code of odd length n over R. Then C is an ideal of R[x]/〈xn
− λ〉 given by

C = 〈11(y) + 2a1(y) + up1(y) + vp2(y) + uvp3(y),u(12(y) + 2a2(y)) + vp4(y) + uvp5(y),
v(13(y) + 2a3(y)) + uvp6(y),uv(14(y) + 2a4(y))〉,

where ai(x), 1i(x), pi(x) ∈ Z4[x] such that ai(x) | 1i(x) | (xn
− 1) mod 4 for i = 1, 2, 3, 4 and y = λx.

Proof. Follows from Theorem 4.1 and Corollary 4.4.

Theorem 4.6. Let C be a λ-constacyclic code of length n over R given by C = 〈a(x) + ub(x) + vc(x) + uvd(x)〉, where
a(x), b(x), c(x), d(x) ∈ Z4[x] with degree less than n. Then φ1(C) is a cyclic code of length 2n over Z4 generated by
the polynomials [a(x) + 3b(x) + 3c(x) + 3d(x)] + xn[a(x) + b(x) + c(x) + 3d(x)], [3a(x) + 3c(x)] + xn[a(x) + 3c(x)],
[3a(x) + 3b(x)] + xn[a(x) + 3b(x)] and [3a(x)] + xn[3a(x)].

Proof. First, we define the polynomial version of Gray map φ1 of equation (2) as

φ1 : R[x]/〈xn
− λ〉 −→ Z4[x]/〈xn

− 1〉 ×Z4[x]/〈xn
− 1〉

φ1[a(x) + ub(x) + vc(x) + uvd(x)] = [a(x) + 3b(x) + 3c(x) + 3d(x), a(x) + b(x) + c(x) + 3d(x)].

Here, for ri ∈ Z4[x], we have

φ1[(r1 + ur2 + vr3 + uvr4)(a + ub + vc + uvd)]
= r1(a + 3b + 3c + 3d, a + b + c + 3d) + r2(3a + 3c, a + 3c) + r3(3a + 3b, a + 3b) + r4(3a, 3a).

Result follows from the fact that the vector (a, b) ∈ Z4[x]/〈xn
− 1〉 × Z4[x]/〈xn

− 1〉 represents the vector
(a + bxn) in Z4[x]/〈x2n

− 1〉.
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Theorem 4.7. Let C be a λ-constacyclic code of length n over R given by C = 〈a(x) + ub(x) + vc(x) + uvd(x)〉, where
a(x), b(x), c(x), d(x) ∈ Z4[x] with degree less than n. Then φ2(C) is a quasi-cyclic code of length 2n overZ4 generated
by the polynomials [a(x) + b(x) + c(x) + d(x)] + xn[a(x) + 3b(x) + 3c(x) + d(x)], [a(x) + c(x)] + xn[3a(x) + c(x)],
[a(x) + b(x)] + xn[3a(x) + b(x)] and [a(x)] + xn[a(x)].

Proof. Same as the proof of Theorem 4.6.

Theorem 4.8. Let C be a λ-constacyclic code of length n over R given by C = 〈a(x) + ub(x) + vc(x) + uvd(x)〉, where
a(x), b(x), c(x), d(x) ∈ Z4[x] with degree less than n. Then φ3(C) is a permutation equivalent to quasi-cyclic code of
length 2n over Z4 generated by the polynomials [a(x) + 2b(x) + 2c(x) + 2d(x)] + xn[2a(x) + 2b(x) + 2c(x) + 2d(x)],
2[a(x) + c(x)][1 + xn], 2[a(x) + b(x)][1 + xn] and 2a(x)[1 + xn].

Proof. Same as the proof of Theorem 4.6.

Example 4.9. In reference to the Theorem 4.5, let n = 9, 11(x) = (x3 + 3), 12(x) = 13(x) = (x2 + x + 1), 14(x) =
(x + 3), a1(x) = (x + 3), a2(x) = a3(x) = a4(x) = 1 and pi(x) = 0 for i = 1, 2, . . . , 6. Then C = 〈λ(x3 + 2x + 1),u(x2 +
λx + 3λ), v(x2 + λx + 3λ),uvλ(x + 1)〉 is a λ-constacyclic code of length 9 over R. Further, φ1(C) is a linear code
with parameter [18, 4927, 2].

5. Constacyclic codes with Nechaev’s permutation

Definition 5.1. Let n be an odd positive integer and ε = (1,n + 1)(3,n + 3) . . . , (2i + 1,n + 2i + 1) . . . , (n− 2, 2n− 2)
of {0, 1, 2, . . . , 2n − 1}. The Nachaev’s permutation π is defined by π(c0, c1, . . . , c2n−1) = (cε(0), cε(1), . . . , cε(2n−1)).

Lemma 5.2. Let φ1 be the Gray map defined in equation (2), π be the Nechaev’s permutation and ω be the map
defined in Corollary 4.4. Then φ1ω = πφ1.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + vci + uvdi for i = 0, 1, . . . ,n − 1. Then

φ1ω(r) = φ1(r0, λr1, r2, . . . , λrn−2, rn−1)
= (a0 + 3b0 + 3c0 + 3d0, a1 + b1 + c1 + 3d1, a2 + 3b2 + 3c2 + 3d2, . . . , an−1 + 3bn−1 + 3cn−1 + 3dn−1).

On the other hand,

πφ1(r) = π(a0 + 3b0 + 3c0 + 3d0, a1 + 3b1 + 3c1 + 3d1, . . . , an−1 + 3bn−1 + 3cn−1 + 3dn−1,

a0 + b0 + c0 + 3d0, a1 + b1 + c1 + 3d1, . . . , an−1 + bn−1 + cn−1 + 3dn−1)
= (a0 + 3b0 + 3c0 + 3d0, a1 + b1 + c1 + 3d1, a2 + 3b2 + 3c2 + 3d2, . . . , an−1 + 3bn−1 + 3cn−1 + 3dn−1).

Hence, φ1ω = πφ1.

Theorem 5.3. Let C be a cyclic code of odd length n over R and G = φ1(C). Then π(G) is a cyclic code of length 2n
over Z4.

Proof. Since C is a cyclic code, by Corollary 4.4, ω(C) is a λ-constacyclic code of length n over R. Further,
by Theorem 3.2, φ1(ω(C)) is a cyclic code of length 2n over Z4. Also, by Lemma 5.2, we have φ1(ω(C)) =
πφ1(C) = π(G). Hence, π(G) is a cyclic code of length 2n over Z4.

Lemma 5.4. Let φ2 be the Gray map defined in equation (3), π be the Nechaev’s permutation and ω be the map
defined in Corollary 4.4. Then φ2ω = πφ2.

Proof. Same as the proof of Lemma 5.2.

Theorem 5.5. Let C be a cyclic code of odd length n over R and G = φ2(C). Then π(G) is a quasi-cyclic code of
length 2n with index 2 over Z4.
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Proof. Same procedure follows as the proof of Theorem 5.3. Here, we use the Corollary 4.4, Lemma 5.4 and
Theorem 3.4.

Lemma 5.6. Let φ3 be the Gray map defined in equation (4), π be the Nechaev’s permutation and ω be the map
defined in Corollary 4.4. Then φ3ω = πφ3.

Proof. Same as the proof of Lemma 5.2.

Theorem 5.7. Let C be a cyclic code of odd length n over R and G = φ2(C). Then π(G) is permutation equivalent to
a quasi-cyclic code of length 2n with index 2 over Z4.

Proof. Same procedure follows as the proof of Theorem 5.3. Here, we use the Corollary 4.4, Lemma 5.6 and
Theorem 3.6.

6. Skew λ-constacyclic codes

In order to start discussion of the skew λ-constacyclic codes over R, first we define an automorphism
θ on R by θ(u) = v, θ(v) = u, θ(a) = a for all a ∈ Z4. It is clear that θ is an automorphism on R of order
2. It is easy to check that R[x;θ] =

{
a0 + a1x + · · · + anxn

| ai ∈ R ∀ i = 1, 2, . . . ,n} is a skew polynomial
ring under usual addition of polynomials and multiplication of polynomials, denoted by ∗, is define with
respect to (axs) ∗ (bxt) = aθs(b)xs+t. Clearly R[x;θ] is a non-commutative ring and 〈xn

− λ〉 is a two sided
ideal in R[x;θ] if n is an even integer. Therefore, for any even integer n, Rn,λ,θ = R[x;θ]/〈xn

− λ〉 is a
non-commutative ring. Moreover, Rn,λ,θ is a left R[x;θ]-module with respect to the left multiplication
define by r(x)(1(x) + 〈xn

− λ〉) = r(x) ∗ 1(x) + 〈xn
− λ〉, where r(x), 1(x) ∈ R[x;θ]. We identify each vector

r = (r0, r1, . . . , rn−1) ∈ Rn with a polynomial r(x) in Rn,λ,θ by the following correspondence

r = (r0, r1, . . . , rn−1) 7−→ r0 + r1x + · · · + rn−1xn−1 (mod 〈xn
− λ〉) = r(x).

Definition 6.1. A non-empty subset C of Rn is said to be a skew λ-constacyclic code if
1. C is an R-submodule of Rn, and
2. for any c = (c0, c1, . . . , cn−1) ∈ C,
τλ,θ(c) = (θ(λcn−1), θ(c0), . . . , θ(cn−2)) ∈ C.

Theorem 6.2. Let C be a linear code of length n over R. Then C is a skew λ-constacyclic code if and only if C is a left
R[x;θ]-submodule of Rn,λ,θ.

Proof. Straightforward.

Theorem 6.3. Let n be an odd integer. Then the map β : R[x;θ]/〈xn
− 1〉 −→ R[x;θ]/〈xn

− λ〉 define by β( f (x)) =
f (λx) is a module homomorphism.

Proof. Same as the proof of Theorem 4.2.

Corollary 6.4. A linear code C of odd length n over R is skew cyclic if and only if β(C) is a skew λ-constacyclic code
of length n over R.

Corollary 6.5. Let ω be the map as defined in Corollary 4.4. Then C is a skew cyclic code of odd length n over R if
and only if ω(C) is a skew λ-constacyclic code of length n over R.

Theorem 6.6. Let C be a skew λ-constacyclic code of odd length n. Then C is a λ-constacyclic code of length n over
R.

Proof. Same as the proof of Theorem 22 of [9].

Theorem 6.7. Let C be a skew λ-constacyclic code of even length n over R. Then C is a λ-quasi-twisted code of index
2 over R.

Proof. Same as the proof of Theorem 23 of [9].
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7. Z4-images of skew λ-constacyclic codes

Lemma 7.1. Let τλ,θ be the skew λ-constacyclic shift, φ1 be the Gray map defined in equation (2) and σ be the cyclic
shift operator. Then φ1τλ,θ = σφ1.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = a + ubi + vci + uvdi for i = 0, 1, . . . , (n − 1). Now, we have
λrn−1 = (1+2u+2v)(an−1+ubn−1+vcn−1+uvdn−1) = an−1+(2an−1+bn−1)u+(2an−1+cn−1)v+(2bn−1+2cn−1+dn−1)uv
and hence, θ(λrn−1) = an−1 + (2an−1 + cn−1)u + (2an−1 + bn−1)v + (2bn−1 + 2cn−1 + dn−1)uv. Therefore,

φ1τλ,θ(r) = φ1(θ(λrn−1), θ(r0), . . . , θ(rn−2))
= (an−1 + bn−1 + cn−1 + 3dn−1, a0 + 3b0 + 3c0 + 3d0, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−1 + 3bn−1 + 3cn−1 + 3dn−1, a0 + b0 + c0 + 3d0, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2).

On the other hand,

σφ1(r) = σ(a0 + 3b0 + 3c0 + 3d0, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2, an−1 + 3bn−1 + 3cn−1 + 3dn−1,

a0 + b0 + c0 + 3d0, . . . , an−2 + bn−2 + cn−2 + 3dn−2, an−1 + bn−1 + cn−1 + 3dn−1)
= (an−1 + bn−1 + cn−1 + 3dn−1, a0 + 3b0 + 3c0 + 3d0, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−1 + 3bn−1 + 3cn−1 + 3dn−1, a0 + b0 + c0 + 3d0, . . . , an−2 + bn−2 + cn−2 + 3dn−2).

Thus, φ1τλ,θ = σφ1.

Theorem 7.2. Let C be a skew λ-constacyclic code of length n over R. Then φ1(C) is a cyclic code of length 2n over
Z4.

Proof. Let C be a skew λ-constacyclic code of length n over R. Then τλ,θ(C) = C and hence by Lemma 7.1,
we have φ1τλ,θ(C) = φ1(C) = σ(φ1(C)). This shows that φ1(C) is a cyclic code of length 2n over Z4.

Lemma 7.3. Let τλ,θ be the skew λ-constacyclic shift, φ2 be the Gray map defined in equation (3) and π2 be the
quasi-cyclic shift operator defined in equation (1). Then φ2τλ,θ = π2φ2.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = a + ubi + vci + uvdi for i = 0, 1, . . . ,n − 1. Now,

φ2τλ,θ(r) = φ2(θ(λrn−1), θ(r0), . . . , θ(rn−2))
= (an−1 + 2bn−1 + 2cn−1 + 2dn−1, a0 + 2b0 + 2c0 + 2d0, . . . , an−2 + 2bn−2 + 2cn−2 + 2dn−2,

2an−1 + 2bn−1 + 2cn−1 + 2dn−1, 2a0 + 2b0 + 2c0 + 2d0, . . . , 2an−2 + 2bn−2 + 2cn−2 + 2dn−2).

Also, from the proof of Lemma 3.3, we have

π2φ2(r) = (an−1 + 2bn−1 + 2cn−1 + 2dn−1, a0 + 2b0 + 2c0 + 2d0, . . . , an−2 + 2bn−2 + 2cn−2 + 2dn−2,

2an−1 + 2bn−1 + 2cn−1 + 2dn−1, 2a0 + 2b0 + 2c0 + 2d0, . . . , 2an−2 + 2bn−2 + 2cn−2 + 2dn−2).

Hence, φ2τλ,θ = π2φ2.

Theorem 7.4. Let C be a skew λ-constacyclic code of length n over R. Then φ2(C) is a quasi-cyclic code of length 2n
with index 2 over Z4.

Proof. Let C be a skew λ-constacyclic code of length n over R. Then τλ,θ(C) = C. By Lemma 7.3, we have
φ2τλ,θ(C) = φ2(C) = π2(φ2(C)). Hence, φ2(C) is a quasi-cyclic code of length 2n with index 2 over Z4.

Lemma 7.5. Let φ3 be the Gray map defined in equation (4), τλ,θ be the skew λ-constacyclic shift and π2 be the
quasi-cyclic shift operator defined in equation (1). Then φ3τλ,θ = ξπ2φ3 where ξ is the permutation onZ2n

4 define by
ξ(s1, s2, . . . , s2n) = (sε(1), sε(2), . . . , sε(2n)) with ε = (1,n + 1) of {1, 2, . . . , 2n}.
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Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = a + ubi + vci + uvdi for i = 0, 1, . . . , (n − 1). Now,

φ3τλ,θ(r) = φ3(θ(λrn−1), θ(r0), . . . , θ(rn−2))
= (an−1 + 3bn−1 + 3cn−1 + dn−1, a0 + b0 + c0 + d0, . . . , an−2 + bn−2 + cn−2 + dn−2,

an−1 + bn−1 + cn−1 + dn−1, a0 + 3b0 + 3c0 + d0, . . . , an−2 + 3bn−2 + 3cn−2 + dn−2).

On the other hand, from the proof of Lemma 3.3, we have

π2φ3(r) = (an−1 + bn−1 + cn−1 + dn−1, a0 + b0 + c0 + d0, . . . , an−2 + bn−2 + cn−2 + dn−2,

an−1 + 3bn−1 + 3cn−1 + dn−1, a0 + 3b0 + 3c0 + d0, . . . , an−2 + 3bn−2 + 3cn−2 + dn−2).

Hence, by applying the permutation ξ on the both side, we get φ3τλ,θ = ξπ2φ3.

Theorem 7.6. Let C be a skew λ-constacyclic code of length n over R. Then φ3(C) is permutation equivalent to a
quasi-cyclic code of length 2n with index 2 over Z4.

Proof. Let C be a skew λ-constacyclic code of length n over R. Then τλ,θ(C) = C. Also, by Lemma 7.5, we
have φ3τλ,θ(C) = φ3(C) = ξπ2(φ3(C)). This shows that φ3(C) is permutation equivalent to a quasi-cyclic
code of length 2n with index 2 over Z4.

Lemma 7.7. Let (φ1)π be the map defined in equation (5) andρ be a skew cyclic shift operator. Then (φ1)πρ = ρ2(φ1)π.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + vci + uvdi ∈ R for all i = 0, 1, . . . ,n − 1. Now,

(φ1)πρ(r) = (φ1)π(θ(rn−1), θ(r0), . . . , θ(rn−2))
= (an−1 + 3bn−1 + 3cn−1 + 3dn−1, an−1 + bn−1 + cn−1 + 3dn−1, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−2 + bn−2 + cn−2 + 3dn−2).

On the other side,

ρ2(φ1)π(r) = ρ2(a0 + 3b0 + 3c0 + 3d0, a0 + b0 + c0 + 3d0, . . . , an−1 + 3bn−1 + 3cn−1 + 3dn−1,

an−1 + bn−1 + cn−1 + 3dn−1)

= (θ2(an−1 + 3bn−1 + 3cn−1 + 3dn−1), θ2(an−1 + bn−1 + cn−1 + 3dn−1), θ2(a0 + 3b0 + 3c0 + 3d0),

θ2(a0 + b0 + c0 + 3d0), . . . , θ2(an−2 + 3bn−2 + 3cn−2 + 3dn−2), θ2(an−2 + bn−2 + cn−2 + 3dn−2)).

Since, the order of the automorphism is 2, so θ2(a) = a for all a ∈ R. Therefore, we have

ρ2(φ1)π(r) = (an−1 + 3bn−1 + 3cn−1 + 3dn−1, an−1 + bn−1 + cn−1 + 3dn−1, . . . , an−2 + 3bn−2 + 3cn−2 + 3dn−2,

an−2 + bn−2 + cn−2 + 3dn−2).

Hence, (φ1)πρ = ρ2(φ1)π.

Theorem 7.8. Let C be a skew cyclic code of length n over R. Then φ1(C) is permutation equivalent to a skew
2-quasicyclic code of length 2n over Z4.

Proof. Let C be a skew cyclic code of length n over R. Then ρ(C) = C. By Lemma 7.7, we have (φ1)πρ(C) =
(φ1)π(C) = ρ2((φ1)π(C)). This implies that φ1(C) is permutation equivalent to a skew 2-quasicyclic code of
length 2n over Z4.

Remark 7.9. It is noted that if we use the permutation version of Gray maps φ1 and φ2, then the similar results as
of Theorem 7.8 can be obtained.



H. Islam, O. Prakash / Filomat 33:8 (2019), 2237–2248 2247

8. Skew constacyclic codes with Nechaev’s permutation

Based on the results of the section 5, we have the following results for the skew constacyclic codes
together with the Nechaev’s permutation.

Theorem 8.1. Let C be a skew cyclic code of odd length n over R and G = φ1(C). Then π(G) is a cyclic code of length
2n over Z4.

Proof. LetCbe a skew cyclic code of odd length n over R. Then by Corollary 6.5,ω(C) is a skewλ-constacyclic
code of length n over R. Also, by Theorem 7.2, φ1(ω(C)) is a cyclic code of length 2n overZ4. Moreover, by
Lemma 5.2, we have φ1(ω(C)) = π(φ1(G)) = π(G). Hence the result.

Theorem 8.2. Let C be a skew cyclic code of odd length n over R and G = φ2(C). Then π(G) is a quasi-cyclic code of
length 2n with index 2 over Z4.

Proof. Procedure is same as the proof of Theorem 8.1.

Theorem 8.3. Let C be a skew cyclic code of odd length n over R and G = φ3(C). Then π(G) is permutation
equivalent to a quasi-cyclic code of length 2n with index 2 over Z4.

Proof. Procedure is same as the proof of Theorem 8.1.

9. Conclusion

In this paper, we consider the (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes over R.
We have obtained cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes overZ4 as the Gray
images of (1 + 2u + 2v)-constacyclic as well as of skew (1 + 2u + 2v)-constacyclic codes over R, respectively.
We have incorporated an example in Section 4. It is our believe that some better linear codes over Z4 can
be obtained as the Gray images of these class of (1 + 2u + 2v)-constacyclic codes over R in future.
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