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Abstract. Let D = {z ∈ C, |z| < 1} and A(p) be the set of meromorphic functions in D possessing only
simple pole at the point p with p ∈ (0 , 1).
The aim of this paper is to give a criterion by mean of conditions on the parameters α, β ∈ C, λ > 0
and 1 ∈ A(p) for functions in the class denoted Pα,β ;h(p ; λ) of functions f ∈ A(p) satisfying a differential
Inequality of the form ∣∣∣∣∣α( z

f (z)

)′′
+ β

( z
1(z)

)′′∣∣∣∣∣ ≤ λµ, z ∈ D

to be univalent in the discD, where µ = ( 1−p
1+p )2 .

1. Introduction

LetM be the set of meromorphic functions in the region ∆ = {ζ ∈ C, |ζ| > 1} ∪ {∞} with the following
Laurent development

F(ζ) = ζ +

∞∑
n=0

bnζ
−n, ζ ∈ ∆. (1.1)

Let Σ be the subset ofM consisting of univalent functions. A is the set of analytic functions f in the unit
discD normalized by the conditions f (0) = f ′(0)− 1 = 0. The subset ofA consisting of univalent functions
is denoted by S. If f ∈ A, then the function F defined by

F(ζ) =
1

f ( 1
ζ )

(1.2)

belongs to M and f is univalent in D if and only if F is univalent in ∆. In [1], Aksentév proved that a
function F inM is univalent if its derivative F′ satisfies the differential Inequality:∣∣∣∣∣F′(ζ) − 1

∣∣∣∣∣ < 1, ζ ∈ ∆. (1.3)
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If F and f are as in (1.2) then the condition (1.3) is equivalent to∣∣∣∣∣( z
f (z)

)2

f ′(z) − 1
∣∣∣∣∣ < 1, z ∈ D. (1.4)

Hence, by virtue of the Aksentv̀e criterion, a criterion for a function f ∈ A with f (z)
z , 0 for |z| < 1 to be

univalent is stated as follows:∣∣∣∣∣U f (z)
∣∣∣∣∣ < 1, z ∈ D, (1.5)

where U f (z) :=
(

z
f (z)

)2

f ′(z) − 1.

Ozaki and Nunokawa proved in [11], without using the theorem of Aksentév, that functions inA satisfying
(1.4) are univalent.
For λ ∈ (0 , 1], letU(λ) be the subclass ofU =U(1) defined by

U(λ) = { f ∈ A,
∣∣∣∣∣U f (z)

∣∣∣∣∣ < λ, z ∈ D}. (1.6)

The classes U(λ) have been extensively studied by many authors and the results obtained cover a wide
range of properties (starlikeness, convexity, coefficients properties, radius properties, etc.). For more details
on this subjects see [4] - [8] and references therein.
In their article [7], Obradović and Ponnusamy considered the subclass Pα,β;1(λ) of functions f in A such
that f (z)

z , 0 for z ∈ D and satisfying the differential inequality∣∣∣∣∣α ( z
f (z)

)′′
+ β

( z
1(z)

)′′∣∣∣∣∣ ≤ λ, z ∈ D (1.7)

where α , 0, β are given complex numbers and 1 is a given function inA with 1(z)
z , 0 inD. One of their

main results was the following theorem:

Theorem 1.1. Let 1 ∈ A with 1(z)
z , 0 inD and K = supz∈D |(

z
1(z) )

21′(z) − 1|. Then we have

Pα,β;1(2λ |α| − 2 K |β|) ⊂ U(λ). (1.8)

In particular, we have

Pα,β;1(2 |α| − 2 K |β|) ⊂ U(1). (1.9)

Let p ∈ (0 , 1) and A(p) be the set of meromorphic functions in D normalized by f (0) = f ′(0) − 1 = 0
and possessing only simple pole at the point p. Each function f inA(p) has a Laurent expansion of the form

f (z) =
m

z − p
+

m
p

+
( m

p2 + 1
)
z +

∞∑
n=2

anzn, z ∈ D \ {p}, m , 0, (1.10)

where m is the residue of f at p (m , 0). Our investigations will concern functions in A(p) satisfying the
condition∣∣∣∣∣1 +

p2

m

∣∣∣∣∣ < 1. (1.11)

In a recent paper [2], Bhowmik and Parveen introduced, for 0 < λ ≤ 1, a meromorphic analogue of the
classU(λ), namely the classUp(λ) consisting of functions f inA(p) satisfying

|U f (z)| ≤ λµ, z ∈ D, (1.12)
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where

U f (z) =
( z

f (z)

)2

f ′(z) − 1, z ∈ D and µ =
(1 − p

1 + p

)2

(1.13)

They obtained some results for the classUp(λ), in particular they proved the following theorem :

Theorem 1.2. (Theorem 1, [2]) Let f be of the form (1.10). If∣∣∣∣∣( z
f (z)

)2

f ′(z) − 1
∣∣∣∣∣ ≤ (1 − p

1 + p

)2

, z ∈ D

, then f is univalent inD.

Note that Ponnusamy and Wirths have proved by elegant method (Theorem 2, [12]), that functions in
Up(λ) are univalent on the closure of the discD.

The main object of the present paper is to give, for the class A(p), an analog result to the Theorem 1.1
obtained for the classA.

2. Main Results

We start by some ”round trip” results between the classesA(p) andA.

Proposition 2.1. Let f (z) = m
z−p + m

p +
m+p2

p2 z +
∑
∞

n=2 anzn be a function inA(p) such that f (z)
z , 0 inD and

−c be an omitted value by f . Let 1 be defined by

1(z) =
c f (z)

c + f (z)
. (2.1)

Then 1 ∈ A and we have

1(p) = c, 1′(p) = −
c2

m
= −
12(p)

m
, (2.2)

U1(p) = −1 −
p2

m
, (2.3)

and

lim
z→p

U f (z) = U1(p) = −1 −
p2

m
. (2.4)

Proof. Since f is holomorphic in D \ {p}, 1 is also holomorphic in D \ {p}. It is easy to check that
1(0) = 1′(0) − 1 = 0.
For the value of 1(p), we have

1(p) = lim
z→p
1(z) = lim

z→p

c f (z)
c + f (z)

= lim
z→p

c (z − p) f (z)
c(z − p) + (z − p) f (z)

=
c m
m

= c.

To conclude that 1 ∈ A, we have to prove that 1′(p) exists.
We have, by (2.1, that

lim
z→p

1(z) − 1(p)
z − p

= lim
z→p

1(z) − c
z − p

= lim
z→p

−c2

c(z − p) + (c − p) f (z)
=
−c2

m
.
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Thus 1′(p) exists and its value gives (2.2). Now, taking (2.2) in the expression of U1, we get

U1(p) = −
(p

c

)2 c2

m
− 1 = −1 −

p2

m
.

To prove (2.4), we have by a little calculation

U f (z) = U1(z), z ∈ D \ {p}. (2.5)

Thus we have
lim
z→p

U f (z) = U1(p)

which yields, by (2.3), the desired result. �

Remark 2.2. We obtain from (2.4) that a necessary condition for f inA(p) to be inUp(λ) is that |1 +
p2

m | ≤ λµ,
where m is the residue of f at p.

Proposition 2.3. Let p ∈ (0 , 1) and 1 ∈ A such that 1′(p) , 0 and 1(z) − 1(p) has no zero in D \ {p}. We
suppose also that 1 satisfies the following condition

|12(p) − 1′(p)p2
| < |12(p)|. (2.6)

Then, the function f defined by

f (z) =
−1(p)1(z)
1(z) − 1(p)

belongs toA(p) and satisfies (1.11). If in addition 1 is univalent, then f is also univalent.

Proof. It is obvious that f is holomorphic inD \ {p} and that f (p) = ∞. We get by a simple calculation

lim
z→p

(z − p) f (z) = −
12(p)
1′(p)

.

From (2.6) we have 1(p) , 0. Hence the limit above shows that f has a simple pole with residue m = −
12(p)
1′(p)

at the point p. By the condition (2.6) we have∣∣∣∣∣1 − p212(p)
1′(p)

∣∣∣∣∣ < 1

and hence f satisfies the condition (1.11).
It is easy to verify that f is univalent if 1 is univalent.

�

Remark 2.4. The condition (2.6) is satisfied when 1 ∈ U(1);

Let Pα,β ;h(p ; λ) be the set of functions f inA(p) of the form (1.10) such that f (z)
z , 0 inD and satisfying

the condition∣∣∣∣∣α ( z
f (z)

)′′
+ β

( z
h(z)

)′′∣∣∣∣∣ ≤ λµ, z ∈ D (2.7)

and

|1 +
p2

m
| ≤ λµ, (2.8)
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where α , 0, β are given complex numbers and h is a given function inA(p) with h(z)
z , 0 inD.

We observe that P1,0 ;h(p ; λ) doesn’t depend on the function h and thus will be simply noted P(p ; λ).
The particular case where λ = 2 has been considered by Bhowmik and Parveen in [3].

We need the following Lemma:

Lemma 2.5. Let 0 < λ < µ−1. If f belongs toUp(λ) then, f is univalent inD.

Proof. Let −c be an omitted value for f and let 1 =
c f

c + f . As seen above we have

U1(z) = U f (z)

and hence 1 ∈ U(λµ). Since λµ < 1, 1 belongs to U(1) and thus it is univalent. This implies that f is
univalent. �

Theorem 2.6. Let h ∈ A(p) be such that h(z)
z , 0 for z ∈ D and

K = sup
z∈D

∣∣∣∣∣( z
h(z)

)2

h′(z) − 1
∣∣∣∣∣ < +∞.

If f ∈ Pα,β;h(p; 2λ |α| − 2 K |β|
µ ), then f ∈ Up(λ). If in addition λ < µ−1, the function f is univalent in the

discD. In particular, we have

Pα,β;h(p ; 2µ |α| − 2 K
|β|

µ
) ⊂ Up(1).

Proof. Let f ∈ Pα,β;h(p ; 2λ |α| − 2 K |β|
µ ). Let 1 and k be defined by

1 =
c f

c + f
and k =

d h
d + h

(2.9)

where −c and −d are omitted values respectively by f and h. By Proposition 2.1, 1 and k belong to A. A
little calculation shows that 1(z)

z , 0 and k(z)
z , 0 inD and

z
1(z)

=
z

f (z)
+

z
c

and
z

k(z)
=

z
h(z)

+
z
d
, (2.10)

which gives( z
1(z)

)′′
=

( z
f (z)

)′′
,

( z
k(z)

)′′
=

( z
h(z)

)′′
. (2.11)

Since f belongs to Pα,β;h(p ; 2 λ |α| − 2 K |β|
µ ), we have by (2.11)

1 ∈ Pα,β;k( 2λµ |α| − 2 K |β|). (2.12)

Applying (2.5) to h and k, we obtain

sup
z∈D

∣∣∣∣∣( z
k(z)

)2

k′(z) − 1
∣∣∣∣∣ = K. (2.13)

Moreover (2.12) and (2.13) give, by applying Theorem 1.1 to 1 and k,

1 ∈ U(λµ)
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which gives from (2.5) and (2.8) that f ∈ Up(λ).
If now 0 < λ < µ−1, then f is univalent by Lemma 2.5 .
The second assertion of the theorem follows by taking λ = 1 in the first one. �

Let p ∈ (0 , 1) and let h(z) = z
(z−p)(z− 1

p )
. A little calculation yields

sup
∣∣∣∣∣( z

h(z)

)2

h′(z) − 1| = 1 and
( z

h(z)

)′′
= 2, z ∈ D

Corollary 2.7. Let 0 < p < 1 and f ∈ A(p) with f (z)
z , 0 for z ∈ D. Let α , 0 and β be two complex

numbers. If f satisfies∣∣∣∣∣α ( z
f (z)

)′′
+ β

∣∣∣∣∣ ≤ 2
(
λµ |α| −

|β|

2

)
, z ∈ D (2.14)

then f ∈ Up(λ). If in addition 0 < λ < µ−1, then f is univalent inD.

Proof. Let h(z) = z
(z−p)(z− 1

p )
. We have, as shown above, that

sup
∣∣∣∣∣( z

h(z)

)2

h′(z) − 1
∣∣∣∣∣ = 1 and

( z
h(z)

)′′
= 2.

Now, if f satisfies (2.14) then f ∈ P
α,

β
2 ;h(p ; 2 (λ |α| − |β|

2µ )) and hence, by taking K = 1 in the first statement
of Theorem 2.6, we get the desired conclusion. �

If we take |α| = 1 and β = 0 in Corollary 2.7, we obtain the following

Corollary 2.8. Let 0 < p < 1 and f ∈ A(p) with f (z)
z , 0 for z ∈ D. If f satisfies∣∣∣∣∣( z

f (z)

)′′∣∣∣∣∣ ≤ 2λµ, z ∈ D, (2.15)

then f ∈ Up(λ), in other words, we have P(p; 2λ) ⊂ Up(λ). If in addition 0 < λ < µ−1, then functions in
P(p; 2λ) are univalent .

Corollary 2.9. If 0 < λ ≤ 2, then P(p;λ) ⊂ Up(1) and hence functions in P(p;λ) are univalent.

Proof. Since µ−1 > 1, 0 < λ
2 < µ

−1. Hence, the desired conclusion follows by applying Corollary 2.8 to λ
2 . �

Remark 2.10. If we take λ = 2 in Corollary 2.9, we obtain Theorem 2 in [3].

We need the two followings lemmas :

Lemma 2.11. Let 1 ∈ Pα, β; k(λ). Then there exists a Schwarz function w inD such that

z
1(z)
− 1 = −

β

α

( z
k(z)

+
k′′(0)

2
z − 1

)
−
1′′(0)

2
z +

λz
α

∫ 1

0

w(tz)
t

(1 − t)dt.

Proof. The proof can be extracted of the proof of Theorem 1.3 ([7], p.186). �

Lemma 2.12. Let h ∈ A(p), −c be an omitted value for h and k = c h
c+h . Then,

1 −
z

k(z)
−

k′′(0)
2

z = 1 −
z

h(z)
−

h′′(0)
2

z, z ∈ D. (2.16)
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Proof. We have
z

k(z)
=

z
h(z)

+
z
c

(2.17)

and

k′′(0) = h′′(0) −
2
c

(2.18)

Taking (2.17) and (2.18) in the left side of (2.17), we get the desired conclusion. �

The following theorem is an analogue result of Corollary 1.8 in [7].

Theorem 2.13. Let f ∈ Pα,β;h(p ; λ) and M = supz∈D |1 −
z

h(z) −
h′′(0)

2 z|. Then∣∣∣∣∣ z
f (z)
− 1

∣∣∣∣∣ ≤ ∣∣∣∣∣ βα
∣∣∣∣∣M +

| f ′′(0)|
2
|z| +

λµ

2|α|
|z|2. (2.19)

Proof. Let −c and −d be omitted values by f and h, respectively.Furthermore let 1 and k be defined by

1 =
c f

c + f
, and k =

d h
d + h

,

respectively. We have

z
f (z)
− 1 =

z
1(z)
− 1 −

z
c

(2.20)

and
1′′(0)

2
=

f ′′(0)
2
−

1
c
. (2.21)

Since f ∈ Pα,β;h(p , λµ), we have 1 ∈ Pα, β; k(λµ). Applying Lemma 2.11, we obtain

z
1(z)
− 1 = −

β

α

( z
k(z)

+
k′′(0)

2
z − 1

)
−
1′′(0)

2
z +

λµz
α

∫ 1

0

w(tz)
t

(1 − t)dt, (2.22)

where w is a Schwarz function inD. Taking (2.22) in (2.20), we obtain

z
f (z)
− 1 = −

β

α

( z
k(z)

+
k′′(0)

2
z − 1

)
−
1′′(0)

2
z −

z
c

+
λµz
α

∫ 1

0

w(tz)
t

(1 − t)dt. (2.23)

Now, taking (2.21) in (2.23), we get

z
f (z)
− 1 = −

β

α

( z
k(z)

+
k′′(0)

2
z − 1

)
−

f ′′(0)
2

z +
λµz
α

∫ 1

0

w(tz)
t

(1 − t)dt. (2.24)

The last equality gives us, using the fact that |w(z)| ≤ |z| inD,

∣∣∣∣∣ z
f (z)
− 1

∣∣∣∣∣ ≤ ∣∣∣∣∣ βα
∣∣∣∣∣ sup

z∈D

∣∣∣∣∣ z
k(z)

+
k′′(0)

2
z − 1

∣∣∣∣∣ +
| f ′′(0)|

2
|z| +

λµ

2|α|
|z|2. (2.25)

We have, by Lemma 2.12,

sup
z∈D

∣∣∣∣∣ z
k(z)

+
k′′(0)

2
z − 1

∣∣∣∣∣ = sup
z∈D

∣∣∣∣∣ z
h(z)

+
h′′(0)

2
z − 1)

∣∣∣∣∣ = M (2.26)

Taking (2.26) in (2.25), we get the desired result.
�

As a consequence of Theorem 2.13, we have the following corollary:



E. Ould Beiba / Filomat 33:8 (2019), 2269–2276 2276

Corollary 2.14. If z is a given point inD then, we have

(1)
∣∣∣∣∣ z

f (z) − 1
∣∣∣∣∣ ≤ ( 1

p +
λµp2

2 )|z| + λµ
2 |z|

2, ∀ f ∈ P(p;λ);

(2)
∣∣∣∣∣ z

f (z) − 1
∣∣∣∣∣ ≤ 1

p +
λµp2

2 +
λµ
2 , ∀ f ∈ P(p;λ).

Proof. Let f ∈ P(p;λ). Taking α = 1, β = 0 and h(z) =
pz

pz2+(1+p2)z+p , the formula (2.24) gives

z
f (z)
− 1 = −

f ′′(0)
2

z + λµz
∫ 1

0

w(tz)
t

(1 − t)dt. (2.27)

Putting z = p in the last equality, we obtain

f ′′(0)
2

=
1
p

(1 + λµp
∫ 1

0

w(tp)
t

(1 − t)dt). (2.28)

Since w is a Schwarz function, the modulus of the integral in (2.28) is majored by p2

2 and hence we have

|
f ′′(0)

2
| ≤

1
p

+
λµp2

2
. (2.29)

Now, taking (2.29) in (2.19), where α, β and h as above, we obtain the estimation

|
z

f (z)
− 1| ≤ (

1
p

+
λµp2

2
)|z| +

λµ

2
|z|2. (2.30)

This achieves the proof of (1). The estimation (2) is an immediate consequence of (1). �
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