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Abstract. In this paper, we define the concept of almost everywhere statistical convergence of a sequence
of fuzzy numbers and prove that a sequence of fuzzy numbers is almost everywhere statistically convergent
if and only if its statistical limit inferior and limit superior are equal. To achieve this result, new represen-
tations for statistical limit inferior and limit superior of a sequence of fuzzy numbers are obtained and we
show that some properties of statistical limit inferior and limit superior can be easily derived from these
representations.

1. Introduction

Fridy and Orhan [13] prove that a sequence (xn) of real numbers is statistically convergent if and only if
its statistical limit inferior and superior are equal. However, in fuzzy analysis this idea is not valid. Until
now, two kinds of statistical convergence have been studied for sequences of fuzzy numbers. One of them
is statistical convergence with respect to the supremum metric, which is defined by Nuray and Savaş [15].
The other is levelwise statistical convergence, which is defined by Aytar and Pehlivan [6]. Aytar et al. show
that a sequence (un) of fuzzy numbers may not be statistically convergent while its statistical limit inferior
and limit superior are equal. In this case the question that arises here is whether the choice of convergence
is true.

In this paper we answer the above question. We define new concept of statistical convergence, called
almost everywhere statistical convergence, for sequences of fuzzy numbers. Then we prove that a sequence
(un) of fuzzy numbers is almost everywhere statistically convergent to fuzzy numbers µ if and only if
statistical limit inferior and limit superior are equal to µ.

To accomplish this objective we give new representations for statistical limit inferior and limit superior
by means of the nested intervals families{
[st − lim inf u−n (λ), st − lim inf u+

n (λ)] : λ ∈ [0, 1]
}

and
{
[st − lim sup u−n (λ), st − lim sup u+

n (λ)] : λ ∈ [0, 1]
}

(1)

,respectively. By using this construction, the statistical limit inferior and limit superior can be easily
calculated. Furthermore, we obtain a necessary condition under which the nested interval families in (1)
can determine a fuzzy number.
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2. Definitions and Notation

The concept of statistical convergence of sequences was first introduced by Fast [11] and further studied
by Šalát [17], Fridy [12], Connor [9] and many others. First, we recall some definitions concerning this
concept.

Let R be the set of real numbers andN be the set of positive integers. The natural density of a subset A
ofN is given by

δ(A) = lim
n→∞

1
n
|{k ≤ n : k ∈ A}|

if this limit exists, where |A| denotes the cardinality of the set A.
A sequence (xk)k∈N is statistically convergent to some number l if for every ε > 0

δ ({k : |xk − l| ≥ ε}) = 0.

In this case, we write st− lim xk = l. The sequence x = (xk) is said to be statistically bounded if there exists a
real number M such that the set

{k ∈N : |xk| > M}

has natural density zero. For a sequence x = (xk) of real numbers, the notions of statistical limit superior
and limit inferior are defined as follows

st- lim inf x :=

inf Ax, Ax , ∅,

∞, otherwise,

st- lim sup x :=

sup Bx, Bx , ∅,

−∞, otherwise,

where Ax := {a ∈ R : δ({k ∈N : xk < a}) , 0} and Bx := {b ∈ R : δ({k ∈N : xk > b}) , 0}.

Lemma 2.1. [13] If β = st − lim sup x is finite, then for every ε > 0,

δ
(
{k ∈N : xk > β − ε}

)
, 0 and δ

(
{k ∈N : xk > β + ε}

)
= 0. (2)

Conversely, if (2) holds for every ε > 0 then β = st − lim sup x.

The dual statement for st − lim inf x is as follows:

Lemma 2.2. [13] If α = st − lim inf x is finite, then for every ε > 0,

δ ({k ∈N : xk < α + ε}) , 0 and δ ({k ∈N : xk < α − ε}) = 0. (3)

Conversely, if (3) holds for every ε > 0 then α = st − lim inf x.

Theorem 2.3. [13] The statistically bounded sequence x = (xk) of real numbers is statistically convergent if and only
if st − lim inf x = st − lim sup x.

In this section, we briefly recall some of the basic notions related with fuzzy numbers and we refer to
[8, 10] for more details.

Fuzzy set u ∈ E1 is called a fuzzy number if u is a normal, convex fuzzy set, upper semi-continuous and
supp u = cl{x ∈ R | u(x) > 0} is compact. We use E1 to denote the fuzzy number space. For λ ∈ (0, 1] let
[u]λ = {x ∈ R | u(x) ≥ λ} and [u]0 = supp u.

For r ∈ R, define a fuzzy number χ{r} by

χ{r}(x) :=
{

1 , if x = r,
0 , if x , r.

for any x ∈ R.
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Remark 2.4. u ∈ E1 if and only if [u]λ is closed, bounded and non-empty interval for each λ ∈ [0, 1] which is defined
by [u]λ := [u−(λ),u+(λ)].

From this characterization of fuzzy numbers, it can be seen that a fuzzy number is determined by the
endpoints of the intervals.

Theorem 2.5. [18, Theorem 1.1] Let u ∈ E1 and [u]λ = [u−(λ),u+(λ)] for each λ ∈ [0, 1]. Then the following
statements hold:

(i) u−(λ) is a bounded and non-decreasing left continuous function on (0, 1];

(ii) u+(λ) is a bounded and non-increasing left continuous function on (0, 1];

(iii) The functions u−(λ) and u+(λ) are right continuous at the point λ = 0;

(iv) u−(1) ≤ u+(1).

Conversely, if the pair of functions α(λ) and β(λ) satisfy the conditions (i)–(iv), then there exists a unique u ∈ E1

such that [u]λ = [α(λ), β(λ)] for each λ ∈ [0, 1].

For u, v,w ∈ E1 and k ∈ R the addition and the scalar multiplication are defined respectively by

u + v = w ⇐⇒ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]
⇐⇒ w−(λ) = u−(λ) + v−(λ) and w+(λ) = u+(λ) + v+(λ) for all λ ∈ [0, 1],

[ku]λ = k[u]λ for all λ ∈ [0, 1].

The partial ordering relation on E1 is defined as follows:

u � v⇐⇒ u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ) for all λ ∈ [0, 1].

u ≺ v means u � v and at least one of u−(λ) < v−(λ) or u+(λ) < v+(λ) holds for some λ ∈ [0, 1]. If u � v or
v � u, we say u, v are comparable.

Let us denote by W the set of all nonempty compact intervals of the real line R. Hausdorff metric dH on
W is defined by

dH(A,B) := max
{
|A− − B−|, |A+

− B+
|
}

where A = [A−,A+],B = [B−,B+] ∈ W. Now, we may define the metric D on E1 by means of the Hausdorff
metric dH as follows

D(u, v) := sup
λ∈[0,1]

dH([u]λ, [v]λ) := sup
λ∈[0,1]

max{|u−(λ) − v−(λ)|, |u+(λ) − v+(λ)|}.

Several types of convergence of sequences of fuzzy numbers have been introduced (see [10, 19, 21, 22]).
Let (un) be a sequence of fuzzy numbers and µ ∈ E1.

(un) is said to be convergent to µ with respect to metric D if limn→∞D(un, µ) = 0. In this case we write

un
D
−→ µ.

(un) is said to be levelwise convergent to µ ∈ E1, written as un
l
−→ µ, if limn→∞ dH([un]λ, [µ]λ) = 0 for all

λ ∈ [0, 1] or equivalently,

lim
n→∞

u−n (λ) = µ−(λ) and lim
n→∞

u+
n (λ) = µ+(λ)

for all λ ∈ [0, 1].
(un) is said to be almost everywhere converges to µ if limn→∞ dH([un]λ, [µ]λ) = 0 holds for λ almost

everywhere on [0, 1]. In this case we write un
a.e.
−−→ µ.
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Lemma 2.6. [21, Lemma 2.1] Let u, v ∈ E1. If [u]λ = [v]λ for almost everywhere on [0, 1], then u = v.

The statistical boundedness of a sequence of fuzzy numbers was introduced and studied by Aytar and
Pehlivan [5]. The sequence u = (uk) is said to be statistically bounded if there exists a real number M such
that the set

{k ∈N : D(uk, 0) > M}

has natural density zero.
Wu and Wu [20] proved the existence of supremum and infimum for a bounded set of fuzzy numbers

according to relation �. Fang and Huang [10] improved the expressions of the supremum and infimum.
By means of the concepts of ”sup” and ”inf” of sets of fuzzy numbers, Aytar et al.[2] defined the concept
of statistical limit superior and limit inferior of statistically bounded sequences of fuzzy numbers. Given
u = (uk), define the following sets:

Au =
{
µ ∈ E1 : δ

(
{k ∈N : uk ≺ µ}

)
, 0

}
,

Au =
{
µ ∈ E1 : δ

(
{k ∈N : uk � µ}

)
= 1

}
,

Bu =
{
µ ∈ E1 : δ({k ∈N : uk � µ}) , 0

}
,

Bu =
{
µ ∈ E1 : δ({k ∈N : uk ≺ µ}) = 1

}
.

Theorem 2.7. [1, Theorem 1] If the sequence u = (uk) ⊆ E1 is statistically bounded, then inf Au = sup Au and
sup Bu = inf Bu.

For u = (uk), statistical limit inferior and limit superior defined as follows:

st − Lim inf uk = inf Au

st − Lim sup uk = sup Bu.

3. Main results

In this section, we give more useful expressions for endpoints of level sets of statistical limit inferior and
limit superior.

Theorem 3.1. Let (un) be a statistically bounded sequence of fuzzy numbers. Then st − Lim sup un = µ has the
following representation:

µ = st − Lim sup un =
⋃
λ∈(0,1]

λ
[
st- lim sup u−n (λ), st − lim sup u+

n (λ)
]
,

µ−(λ) = sup
r<λ

st- lim sup u−n (r), µ+(λ) = inf
r<λ

st- lim sup u+
n (r), (4)

µ−(0) = inf
λ>0

st- lim sup u−n (λ), µ+(0) = sup
λ>0

st- lim sup u+
n (λ) (5)

for each λ ∈ (0, 1]. Dually, ν = st − Lim inf un has the following representation:

ν = st-Lim inf un =
⋃
λ∈(0,1]

λ
[
st- lim inf u−n (λ), st- lim inf u+

n (λ)
]
,

ν−(λ) = sup
r<λ

st- lim inf u−n (r), ν+(λ) = inf
r<λ

st- lim inf u+
n (r),

ν−(0) = inf
λ>0

st- lim inf u−n (λ), ν+(0) = sup
λ>0

st- lim inf u+
n (λ)

for each λ ∈ (0, 1].
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Proof. We prove the result only for st−Lim sup. Since (un) is a statistically bounded sequence, for each λ ∈
[0, 1], (u−n (λ)) and (u+

n (λ)) are statistically bounded sequences. Therefore the real numbers st- lim sup u−n (λ)
and st- lim sup u+

n (λ) exist. So the interval

H(λ) =
[
st- lim sup u−n (λ), st- lim sup u+

n (λ)
]

can be defined. By Theorem 2.5, u−n (λ) and u+
n (λ) are nondecreasing and nonincreasing functions with

respect to λ for fixed n, respectively. So we obtain st- lim sup u−n (λ) and st- lim sup u+
n (λ) are nondecreasing

and nonincreasing functions on [0, 1], respectively. That is, for 0 < r < λ ≤ 1,

st- lim sup u−n (r) ≤ st- lim sup u−n (λ) and st- lim sup u+
n (r) ≥ st- lim sup u+

n (λ). (6)

Thus, we have H(λ) ⊆ H(r). So, there exists a fuzzy set µ on R such that

µ =
⋃
λ∈(0,1]

λ
[
st- lim sup u−n (λ), st- lim sup u+

n (λ)
]

and

[µ]λ =
⋂
r<λ

H(r)

=
⋂
r<λ

[
st- lim sup u−n (r), st- lim sup u+

n (r)
]

=

[
sup
r<λ

st- lim sup u−n (r), inf
r<λ

st- lim sup u−n (r)
]

(7)

for each λ ∈ (0, 1]. Furthermore, for each λ ∈ (0, 1] and r ∈ (0, λ), we have

[µ]λ ⊆
[
st- lim sup u−n (r), st- lim sup u+

n (r)
]

⊆

[
inf
λ>0

st- lim sup u−n (λ), sup
λ>0

st- lim sup u+
n (λ)

]
.

This implies that

[µ]0 = cl

 ⋃
λ∈(0,1]

[µ]λ

 ⊆
[
inf
λ>0

st- lim sup u−n (λ), sup
λ>0

st- lim sup u+
n (λ)

]
.

Hence [µ]0 is a closed interval. Therefore, we know that µ ∈ E1 by Remark 2.4. By (7) we have

µ−(λ) = sup
r<λ

st- lim sup u−n (r), µ+(λ) = inf
r<λ

st- lim sup u+
n (r) for λ ∈ (0, 1]

µ−(0) = inf
λ>0

sup
r<λ

st- lim sup u−n (r), µ+(0) = sup
λ>0

inf
r<λ

st- lim sup u+
n (r).

(4) is proved. We prove the first equation in (5). Using the similar way the second equation in (5) can be
proved. For r ∈ (0, λ) since

st- lim sup u−n (r) ≥ inf
λ>0

st- lim sup u−n (λ),

we have

inf
λ>0

sup
r<λ

st- lim sup u−n (r) ≥ inf
λ>0

st- lim sup u−n (λ). (8)

By (6), for r ∈ (0, λ) we obtain

st- lim sup u−n (r) ≤ st- lim sup u−n (λ).
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Therefore for each λ ∈ (0, 1]

sup
r<λ

st- lim sup u−n (r) ≤ st- lim sup u−n (λ).

So we have

inf
λ>0

sup
r<λ

st- lim sup u−n (r) ≤ inf
λ>0

st- lim sup u−n (λ). (9)

From (8) and (9) we obtain the first equation in (5).
Now, we prove that µ = st-Lim sup un. Let b ∈ Bu. Then δ({k ∈N : uk � b}) , 0. So, for each λ ∈ (0, 1]

δ
(
{k ∈N : u−k (λ) ≥ b−(λ)}

)
, 0 and δ

(
{k ∈N : u+

k (λ) ≥ b+(λ)}
)
, 0.

This implies that
st- lim sup u−n (λ) ≥ b−(λ) and st- lim sup u+

n (λ) ≥ b+(λ).

Therefore, we have µ � b. Since b is an arbitrary element of Bu, we get

µ � sup Bu. (10)

Conversely, let b ∈ Bu be given. Then δ({k ∈N : uk ≺ µ}) = 1. For each λ ∈ (0, 1] we get

δ
(
{k ∈N : u−k (λ) ≤ b−(λ)}

)
= 1, δ

(
{k ∈N : u+

k (λ) ≤ b+(λ)}
)

= 1.

This implies
st- lim sup u−n (λ) ≤ b−(λ) and st- lim sup u+

n (λ) ≤ b+(λ).

Therefore µ � b. Since b is an arbitrary element of Bu we have

µ � inf Bu. (11)

Combining (10) with (11) we get sup Bu � µ � inf Bu. By Theorem 2.7 we have µ = st-Lim sup un.

Example 3.2. Define the sequence u = (un) of fuzzy numbers as follows:

un =


wn, if n is an odd nonsquare,
χ{−n}, if n is an odd square,
χ{n}, if n is an even square,
vn, if n is an even nonsquare,

,where

wn(x) =


1 , if x ∈ [− 1

2 , 0],
n−1
2n , if x ∈ [−1,− 1

2 ),
0 , otherwise,

and

vn(x) =

 1 − n√x − 1 , if x ∈ [1, 2],
0 , otherwise.

The sequence is statistically bounded since the set of squares has density zero. So st-Lim sup un and st-Lim inf un
exist. Now we calculate these. Firstly, we find endpoints of λ−level sets u = (un) as follows:

u+
n (λ) =


0 if n is an odd nonsquare,
−n, if n is an odd square,
n, if n is an even square,

1 + (1 − λ)n, if n is an even nonsquare
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and

u−n (λ) =



1, if n is an even nonsquare,
−n, if n is an odd square,
n, if n is an even square,

−1 , if λ ∈
[
0, 1

2 −
1

2n

]
,

−
1
2 , if λ ∈

(
1
2 −

1
2n , 1

]
.

 if n is an odd nonsquare.

Then

st- lim sup u−n (λ) = 1, st- lim sup u+
n (λ) =

{
2 , if λ = 0,
1 , if λ ∈ (0, 1],

st- lim inf u+
n (λ) = 0, st- lim inf u−n (λ) =

{
−1 , if λ ∈ [0, 1

2 ),
−

1
2 , if λ ∈ [ 1

2 , 1].

We can see that st- lim sup u+
n (λ) is not right continuous at λ = 0 and st- lim inf u−n (λ) is not left continuous at

λ = 1
2 . By Theorem 3.1, we have

(st − Lim inf un)+(λ) = 0, (st − Lim inf un)−(λ) =

{
−1, if λ ∈ [0, 1

2 ],
−

1
2 , if λ ∈ ( 1

2 , 1],

(st − Lim sup un)+(λ) = 1, (st − Lim sup un)−(λ) = 1.

So,

(st − Lim inf un)(x) =


1, if x ∈

[
−

1
2 , 0

]
,

1
2 , if x ∈

[
−1,− 1

2

)
,

0, otherwise,

st − Lim sup un = χ{1}.

It is evident that if there exist a fuzzy number µ ∈ E1 such that [µ]λ = [st− lim sup u−n (λ), st− lim inf u+
n (λ)]

for all λ ∈ [0, 1], then µ = Lim sup un. However by Example 3.2, we see that st- lim sup u−n (λ) and
st- lim sup u+

n (λ) may not determine a fuzzy number. The following theorem gives necessary conditions
under which the family

{
[st − lim sup u−n (λ), st − lim sup u+

n (λ)] : λ ∈ [0, 1]
}

can define a fuzzy number. First,
we need to define the notions of statistical equi-left and right-continuity of a sequence of functions.

Definition 3.3. [14] Let { fk} be a sequence of functions defined on [a, b] and λ0 ∈ (a, b]. Then, { fk} is said to be
statistically equi-left-continuous (SELC) at λ0 if for any ε > 0 there exists ε′ > 0 such that

δ
(
{k ∈N : | fk(λ) − fk(λ0)| ≥ ε}

)
= 0,

whenever λ ∈ (λ0 − ε′, λ0].
Statistical equi-right continuity (SERC) at λ0 ∈ [a, b) can be defined similarly.

Theorem 3.4. Let (uk) be a statistically bounded sequence of fuzzy numbers such that

st − lim sup u−k (λ) = µ−(λ) and st − lim sup u+
k (λ) = µ+(λ) (12)

for each λ ∈ [0, 1]. If the sequences of functions {u−k (λ)} and {u+
k (λ)} are SELC at each λ ∈ (0, 1] and SERC at λ = 0,

then the pair of functions µ−(λ) and µ+(λ) define a fuzzy number.

Proof. Since the sequences {u−k (λ)} and {u+
k (λ)} are SELC at each λ ∈ (0, 1], Then for any ε > 0, there exist

ε′ > 0 such that

δ
({

k ∈N : u−k (λ) − u−k (r) ≥
ε
3

})
= 0 and δ

({
k ∈N : u+

k (r) − u+
k (λ) ≥

ε
3

})
= 0 (13)
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whenever r ∈ (λ − ε′, λ]. Let us define

K1 =
{
k ∈N : u−k (λ) − u−k (r) <

ε
3

}
,

K2 =
{
k ∈N : u+

k (r) − u+
k (λ)| <

ε
3

}
.

We have δ(K1) = 1 and δ(K2) = 1. We define

K3 =
{
k ∈N : u−k (r) ≤ µ−(r) +

ε
3

}
,

K4 =
{
k ∈N : u+

k (λ) ≤ µ+(λ) +
ε
3

}
,

K5 =
{
k ∈N : u−k (λ) > µ−(λ) −

ε
3

}
,

K6 =
{
k ∈N : u+

k (r) > µ+(r) −
ε
3

}
.

By (12), (13) and Lemma 2.1 we have δ(K3) = 1, δ(K4) = 1, δ(K5) , 0 and δ(K6) , 0. So there exist
k ∈ K1 ∩ K3 ∩ K5 and m ∈ K2 ∩ K4 ∩ K6 such that

0 ≤ µ−(λ) − µ−(r) ≤ u−k (λ) +
ε
3
−

(
u−k (r) −

ε
3

)
< ε,

0 ≤ µ+(r) − µ+(λ) ≤ u+
m(r) +

ε
3
−

(
u+

m(λ) −
ε
3

)
< ε.

This means that µ−(λ) and µ+(λ) are left continuous at λ ∈ (0, 1].
Since the sequences {u−k (λ)} and {u+

k (λ)} are SERC at 0, it can be easily prove that µ−(λ) and µ+(λ) are
right continuous at λ = 0. From the proof of Theorem 3.1 it can be seen that µ−(λ) is nondecreasing, µ+(λ)
is nonincreasing. Furtermore, we have u−k (1) ≤ u+

k (1) for all k. So

st- lim sup u−k (1) ≤ st- lim sup u+
k (1).

That is µ−(1) ≤ µ+(1). Consequently by Theorem 2.5 we obtain µ ∈ E1. This completes the proof.

The dual statement of Theorem 3.4 for st − Lim inf un may be given as follows.

Theorem 3.5. Let (uk) be a statistically bounded sequence of fuzzy numbers such that

st − lim inf u−k (λ) = ν−(λ) and st − lim inf u+
k (λ) = ν+(λ)

for each λ ∈ [0, 1]. If the sequences of functions {u−k (λ)} and {u+
k (λ)} are SELC at each λ ∈ (0, 1] and SERC at λ = 0,

then the pair of functions ν−(λ) and ν+(λ) define a fuzzy number.

4. Almost everywhere statistical convergence of sequences of fuzzy numbers

Now we give some definitions for statistical convergence of sequences of fuzzy numbers and we refer
to [2–4, 6, 7, 15, 16] for more details.

Let (uk)∞k=0 be a sequence of fuzzy numbers and µ ∈ E1.
If st− limk→∞D(uk, µ) = 0, we say that (uk) statistically converges to µ with respect to the metric D. In

this case we write uk
D
−→ µ(st).

If st− limk→∞ dH([uk]λ, [µ]λ) = 0 for all λ ∈ [0, 1] or equivalently,

st− lim
k→∞

u−k (λ) = µ−(λ) and st− lim
k→∞

u+
k (λ) = µ+(λ)

for all λ ∈ [0, 1], then (uk) is said to be levelwise statistically convergent to µ, denoted by uk
l
−→ µ(st).
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If st− limk→∞ dH([uk]λ, [µ]λ) = 0 holds for λ almost everywhere on [0, 1] then we say that (uk) almost
everywhere statistically converges to µ. In this case we write uk

a.e.
−→ µ(st).

Clearly uk
D
−→ µ(st) if and only if [uk]λ is uniformly statistically convergent to [µ]λ with respect to λ. So

we have the following implication

uk
D
−→ µ(st)⇒ uk

l
−→ µ(st)⇒ uk

a.e.
−→ µ(st).

In fuzzy number space Theorem 2.3 is not valid for levelvise statistical convergence and statistical
convergence with respect to the metric D. It can be seen the following example.

Example 4.1. Let us define

un (x) =



x − n, for n ≤ x ≤ n + 1,
−x + n + 2, for n + 1 ≤ x ≤ n + 2,

0, otherwise

 if n is a square,

1 − 1
n , if x ∈ [0, 1),

1 , if x = 1,
0 , otherwise.

 if n is a nonsquare

Then, if n is a nonsquare, we have

u+
n (λ) = 1, and u−n (λ) =

{
1 , if λ ∈ (1 − 1

n , 1],
0 , if λ ∈ [0, 1 − 1

n ].

Therefore

st- lim inf
n→∞

u−n (λ) = st- lim sup
n→∞

u−n (λ) =

{
1 , if λ = 1,
0 , if λ ∈ [0, 1),

st- lim inf
n→∞

u+
n (λ) = st- lim sup

n→∞
u+

n (λ) = 1.

By Theorem 3.1 we obtain st − Lim inf un = st − Lim sup un = χ[0,1]. However, if n is a nonsquare, then
dH([un]1, [χ[0,1]]1) = 1. u = (un) is neither statistically convergent to χ[0,1] with respect to the metric D nor
levelwise.

We obtain Theorem 2.3 for almost everywhere statistical convergence. This can be seen following
theorem.

Theorem 4.2. Let (un) be a statistically bounded sequence of fuzzy numbers and µ ∈ E1. Then st−Lim sup un =

st−Lim inf un = µ if and only if un
a.e.
−−→ µ(st).

Proof. Necessity: Assume that st−Lim sup un = st−Lim inf un = µ. Since st- lim sup u−n (λ) and st- lim inf u−n (λ)
are nondecreasing and bounded functions in λ, they have at most countably many discontinuities. We de-
note these discontinuities by D−.

Similarly, st- lim sup u+
n (λ) and st- lim inf u+

n (λ) are nonincreasing and bounded functions in λ and
they have at most countably many discontinuities. We denote these discontinuities by D+. We define
D = D− ∪D+. D is countable set. For all λ ∈ (0, 1]\D we have

(st − Lim sup un)−(λ) = sup
r<λ

st- lim sup u−n (r) = lim
r→λ−

st- lim sup u−n (r) = st- lim sup u−n (λ),

(st − Lim sup un)+(λ) = inf
r<λ

st- lim sup u+
n (r) = lim

r→λ−
st- lim sup u+

n (r) = st- lim sup u+
n (λ).

Consequently

[st − Lim sup un]λ = [st- lim sup u−n (λ), st- lim sup u+
n (λ)]
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holds for every λ ∈ (0, 1]\D. Similarly, it can be seen that

[st − Lim inf un]λ = [st- lim inf u−n (λ), st- lim inf u+
n (λ)]

holds for every λ ∈ (0, 1]\D. By the assumption we have

st- lim sup u−n (λ) = st- lim inf u−n (λ) = µ−(λ)

and

st- lim sup u+
n (λ) = st- lim inf u+

n (λ) = µ+(λ)

for every λ ∈ (0, 1]\D. This implies that

st- lim u+
n (λ) = µ+(λ) and st- lim u−n (λ) = µ−(λ)

for every λ ∈ (0, 1]\D. Therefore, un
a.e.
−−→ µ(st).

Sufficiency: Suppose that un
a.e.
−−→ µ(st). So there exist a set D with zero measure such that

st- lim u+
n (λ) = µ+(λ) and st- lim u−n (λ) = µ−(λ)

holds for every λ ∈ [0, 1]\D. For λ0 ∈ [0, 1]\D and λ0 , 0, taking rn ∈ [0, 1]\D is increasing and rn → λ0,
then we have

(st − Lim sup un)−(λ0) = lim
n→∞

st- lim sup u−n (rn) = lim
n→∞

µ−(rn) = µ−(λ0),

(st − Lim sup un)+(λ0) = lim
n→∞

st- lim sup u+
n (rn) = lim

n→∞
µ+(rn) = µ+(λ0),

(st − Lim inf un)−(λ0) = lim
n→∞

st- lim inf u−n (rn) = lim
n→∞

µ−(rn) = µ−(λ0),

(st − Lim inf un)+(λ0) = lim
n→∞

st- lim inf u+
n (rn) = lim

n→∞
µ+(rn) = µ+(λ0).

As a consequence, [st − Lim sup un]λ = [st − Lim inf un]λ = [µ]λ for every λ ∈ (0, 1]\D. By Lemma 2.6 we
have st−Lim sup un = st−Lim inf un = µ and the proof is completed.

Remark 4.3. The limit inferior and superior of a bounded sequence of fuzzy numbers have been defined by Aytar
et.al.[1]. By using the similar way in Theorem 4.2, for bounded sequence (uk) we can prove that Lim sup un =

Lim inf un = µ if and only if un
a.e.
−−→ µ. Besides Zhao and Wu [22] proved that for a bounded sequence of

fuzzy numbers almost everywhere convergence, convergence with respect to the endograph metric and dp metric are
equivalent. So we can obtain the following theorem.

Theorem 4.4. Let (uk) be a bounded sequence of fuzzy numbers and µ ∈ E1, then the following properties are
equivalent:

(i) Lim sup un = Lim inf un = µ,

(ii) uk
a.e.
−−→ µ,

(iii) uk
dp
−→ µ,

(iv) uk
Dend
−−−→ µ,

where dp(u, v) =
(∫ 1

0 (dH([u]λ, [v]λ))pdλ
) 1

p

, 1 ≤ p < ∞ and Dend(u, v) = dH (end(u), end(v)) , end(u) = {(x, y) : x ∈

R, 0 ≤ y ≤ u(x)}, for u, v ∈ E1.
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