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Abstract. If m ≥ p + 1 ≥ 2 or m = p ≥ 3, all natural Lie algebra brackets on couples of vector fields and
p-forms on m-manifolds are described.

1. Introduction

LetM fm be the category of m-dimensional C∞ manifolds and their embeddings.
The Courant bracket on the ”doubled” tangent bundle T ⊕ T∗ is of full interest because it is involved in

the definitions of Dirac and generalized complex structures, see e.g. [1, 4, 5]. That is why, in [2], we studied
”brackets” on T ⊕ T∗ similar to the Courant one.

The Courant bracket can be extended on T ⊕
∧p T∗, see e.g. [5]. That is why, in [3], we described all

M fm-natural bilinear operators

A : (T ⊕
p∧

T∗) × (T ⊕
p∧

T∗) T ⊕
p∧

T∗

transforming pairs of couples Xi
⊕ωi

∈ X(M)⊕Ωp(M) (i = 1, 2) of vector fields and p-forms on m-manifolds
M into couples A(X1

⊕ ω1,X2
⊕ ω2) ∈ X(M) ⊕Ωp(M) of vector fields and p-forms on M.

In the present note, we extract allM fm-natural bilinear operators A as above satisfying the Jacobi identity
in Leibniz form (or shortly, satisfying the Leibniz rule)

A(ρ1,A(ρ2, ρ3)) = A(A(ρ1, ρ2), ρ3) + A(ρ2,A(ρ1, ρ3))

for any ρi = Xi
⊕ ωi

∈ X(M) ⊕Ωp(M) (i = 1, 2, 3) and M ∈ obj(M fm).
In particular, we find all M fm-natural Lie algebra brackets [−,−] on X(M) ⊕ Ωp(M) (i.e. M fm-natural

skew-symmetric bilinear operators A = [−,−] as above satisfying the Leibniz rule).

From now on, (xi) (i = 1, ...,m) is the usual coordinates on Rm and ∂i = ∂
∂xi are the canonical vector fields

on Rm.
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2. On the Courant like brackets

Definition 2.1. ([3]) A bilinearM fm-natural operator A : (T⊕
∧p T∗)×(T⊕

∧p T∗) T⊕
∧p T∗ is aM fm-invariant

family of bilinear operators

A : (X(M) ⊕Ωp(M)) × (X(M) ⊕Ωp(M))→ X(M) ⊕Ωp(M)

for m-dimensional manifolds M, where X(M) is the space of vector fields on M and Ωp(M) is the space of p-forms on
M.

Remark 2.2. In the above definition, theM fm-invariance of A means that if (X1
⊕ω1,X2

⊕ω2) ∈ (X(M)⊕Ωp(M))×

(X(M) ⊕ Ωp(M)) and (X
1
⊕ ω1,X

2
⊕ ω2) ∈ (X(M) ⊕ Ωp(M)) × (X(M) ⊕ Ωp(M)) are ϕ-related by an M fm-map

ϕ : M → M (i.e. X
i
◦ ϕ = Tϕ ◦ Xi and ωi

◦ ϕ =
∧p T∗ϕ ◦ ωi for i = 1, 2), then so are A(X1

⊕ ω1,X2
⊕ ω2) and

A(X
1
⊕ ω1,X

2
⊕ ω2).

The most important example of a bilinearM fm-natural operator A : (T⊕
∧p T∗)× (T⊕

∧p T∗) T⊕
∧p T∗

is the generalized Courant bracket.

Example 2.3. ([5]) The generalized Courant bracket is given by

[X1
⊕ ω1,X2

⊕ ω2]C = [X1,X2] ⊕ (LX1ω2
− LX2ω1 +

1
2

d(iX2ω1
− iX1ω2))

for any Xi
⊕ ωi

∈ X(M) ⊕Ωp(M), i = 1, 2, where L denotes the Lie derivative, d the exterior derivative, [−,−] the
usual bracket on vector fields and i is the insertion derivative. For p = 1 we obtain the usual Courant bracket as in
[1].

Remark 2.4. If m = p, LXω = diXω+ iXdω = diXω for any vector field X and any m-form ω on a m-manifold M as
dω = 0, and then [X1

⊕ ω1,X2
⊕ ω2]C = [X1,X2] ⊕ 1

2 (LX1ω2
− LX2ω1).

Theorem 2.5. ([3]) If m ≥ p + 1 ≥ 2 (or m = p ≥ 3), any bilinearM fm-natural operator A : (T ⊕
∧p T∗) × (T ⊕∧p T∗) T ⊕

∧p T∗ is of the form

A(X1
⊕ ω1,X2

⊕ ω2) = a[X1,X2] ⊕ (b1LX2ω1 + b2LX1ω2 + c1d(iX2ω1) + c2d(iX1ω2))

for uniquely determined by A real numbers a, b1, b2, c1, c2 (or a, b1, b2, c1, c2 with c1 = c2 = 0).

Corollary 2.6. ([3]) If m ≥ p + 1 ≥ 2 (or m = p ≥ 3), any skew-symmetric bilinear M fm-natural operator
A : (T ⊗

∧p T∗) × (T ⊗
∧p T∗) T ⊕

∧p T∗ is of the form

A(X1
⊕ ω1,X2

⊕ ω2) = a[X1,X2] ⊕ (b(LX1ω2
− LX2ω1) + cd(iX2ω1

− iX1ω2))

for uniquely determined by A real numbers a, b, c (or a, b, c with c = 0), i.e. roughly speaking, any such A coincides
with the generalized Courant bracket up to three (or two) real constants.

3. The main result

The main result of the present note is the following

Theorem 3.1. If m ≥ p+1 ≥ 2 (or m = p ≥ 3), any bilinearM fm-natural operator A : (T⊕
∧p T∗)× (T⊕

∧p T∗) 
T ⊕
∧p T∗ satisfying the Leibniz rule as in Introduction is the constant multiple of one of the following four (or three

respectively) operators A1,A2,A3,A4 (or A1,A2,A3) given by

A1(ρ1, ρ2) = [X1,X2] ⊕ 0 ,
A2(ρ1, ρ2) = [X1,X2] ⊕ (LX1ω2

− LX2ω1) ,
A3(ρ1, ρ2) = [X1,X2] ⊕ LX1ω2 ,

A4(ρ1, ρ2) = [X1,X2] ⊕ (LX1ω2
− LX2ω1 + d(iX2ω1)) ,

where ρi = Xi
⊕ ωi. The operators A1, ...,A4 satisfy the Leibniz rule.
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Proof. Let A : (T ⊕
∧p T∗) × (T ⊕

∧p T∗)  T ⊕
∧p T∗ be a bilinear M fm-natural operator satisfying the

Leibniz rule. By Theorem 2.5, if m ≥ p + 1 ≥ 2 (or m = p ≥ 3), A is of the form

A(X1
⊕ ω1,X2

⊕ ω2) = a[X1,X2] ⊕ (b1LX2ω1 + b2LX1ω2 + c1d(iX2ω1) + c2d(iX1ω2))

for uniquely determined by A real numbers a, b1, b2, c1, c2 (or a, b1, b2, c1, c2 with c1 = c2 = 0). Then for any
X1,X2,X3

∈ X(M) and ω1, ω2, ω3
∈ Ωp(M) we have

A(X1
⊕ ω1,A(X2

⊕ ω2,X3
⊕ ω3)) = a2[X1, [X2,X3]] ⊕Ω ,

A(A(X1
⊕ ω1,X2

⊕ ω2),X3
⊕ ω3) = a2[[X1,X2],X3] ⊕Θ ,

A(X2
⊕ ω2,A(X1

⊕ ω1,X3
⊕ ω3)) = a2[X2, [X1,X3]] ⊕ T ,

where

Ω = b1La[X2,X3]ω
1 + c1d(ia[X2,X3]ω

1)

+b2LX1 (b1LX3ω2 + b2LX2ω3 + c1d(iX3ω2) + c2d(iX2ω3))
+c2d(iX1 (b1LX3ω2 + b2LX2ω3 + c1d(iX3ω2) + c2d(iX2ω3))) ,

Θ = b2La[X1,X2]ω
3 + c2d(ia[X1,X2]ω

3)

+b1LX3 (b1LX2ω1 + b2LX1ω2 + c1d(iX2ω1) + c2d(iX1ω2))
+c1d(iX3 (b1LX2ω1 + b2LX1ω2 + c1d(iX2ω1) + c2d(iX1ω2))) ,

T = b1La[X1,X3]ω
2 + c1d(ia[X1,X3]ω

2)

+b2LX2 (b1LX3ω1 + b2LX1ω3 + c1d(iX3ω1) + c2d(iX1ω3))
+c2d(iX2 (b1LX3ω1 + b2LX1ω3 + c1d(iX3ω1) + c2d(iX1ω3))) .

The Leibniz rule of A is equivalent to

Ω = Θ + T . (1)

Assume m = p ≥ 3. Then c1 = c2 = 0 and equation (1) gives

b1aL[X2,X3]ω
1 + b2b1LX1LX3ω2 + b2

2LX1LX2ω3

= (b2aL[X1,X2]ω
3 + b2

1LX3LX2ω1 + b1b2LX3LX1ω2)

+(b1aL[X1,X3]ω
2 + b2b1LX2LX3ω1 + b2

2LX2LX1ω3) .

If we put X1 = ∂1 , X2 = x1∂1 , X3 = 0 and ω1 = 0 , ω2 = 0 , ω3 = d(x1)2
∧ dx2

∧ ... ∧ dxm, we get

4b2
2dx1
∧ dx2

∧ ... ∧ dxm = 2b2adx1
∧ dx2

∧ ... ∧ dxm + 2b2
2dx1
∧ dx2

∧ ... ∧ dxm .

If we put X1 = 0 , X2 = ∂1 , X3 = x1∂1 and ω1 = d(x1)2
∧ dx2

∧ ... ∧ dxm , ω2 = 0 , ω3 = 0, we get

2b1adx1
∧ dx2

∧ ... ∧ dxm = 2b2
1dx1
∧ dx2

∧ ... ∧ dxm + 4b2b1dx1
∧ dx2

∧ ... ∧ dxm .

If we put X1 = ∂1 ,X2 = 0 , X3 = x1∂1 and ω1 = 0 , ω2 = d(x1)2
∧ dx2

∧ ... ∧ dxm , ω3 = 0, we get

4b2b1dx1
∧ dx2

∧ ... ∧ dxm = 2b1b2dx1
∧ dx2

∧ ... ∧ dxm + 2b1adx1
∧ dx2

∧ ... ∧ dxm .

So,

b2a = b2
2 , b1a = b2

1 + 2b1b2 , b1b2 = b1a . (2)
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From the first equality we get b2 = 0 or b2 = a. From the third one we get b1 = 0 or b2 = a. Adding the first
two equalities we get (b2 + b1)a = (b2 + b1)2, i.e. b2 + b1 = 0 or b2 + b1 = a. Consequently

(b1, b2) = (0, 0) or (b1, b2) = (0, a) or (b1, b2) = (−a, a) . (3)

Theorem 3.1 for m = p ≥ 3 is complete.
So, we may assume m ≥ p + 1 ≥ 2. Applying the differentiation d to both sides of the equality (1) and

using the well-known formula d ◦ LX = LX ◦ d we get

b1aL[X2,X3]dω1 + b2b1LX1LX3 dω2 + b2
2LX1LX2 dω3

= (b2aL[X1,X2]dω3 + b2
1LX3LX2 dω1 + b1b2LX3LX1 dω2)

+(b1aL[X1,X3]dω2 + b2b1LX2LX3 dω1 + b2
2LX2LX1 dω3) .

If we put X1 = ∂1 , X2 = x1∂1 , X3 = 0 and ω1 = 0 , ω2 = 0 , ω3 = (x1)2dx2
∧ ... ∧ dxp+1, we get

4b2
2dx1
∧ dx2

∧ ... ∧ dxp+1 = 2b2adx1
∧ dx2

∧ ... ∧ dxp+1 + 2b2
2dx1
∧ dx2

∧ ... ∧ dxp+1 .

If we put X1 = 0 , X2 = ∂1 , X3 = x1∂1 and ω1 = (x1)2dx2
∧ ... ∧ dxp+1 , ω2 = 0 , ω3 = 0, we get

2b1adx1
∧ dx2

∧ ... ∧ dxp+1 = 2b2
1dx1
∧ dx2

∧ ... ∧ dxp+1 + 4b2b1dx1
∧ dx2

∧ ... ∧ dxp+1 .

If we put X1 = ∂1 ,X2 = 0 , X3 = x1∂1 and ω1 = 0 , ω2 = (x1)2dx2
∧ ... ∧ dxp+1 , ω3 = 0, we get

4b2b1dx1
∧ dx2

∧ ... ∧ dxp+1 = 2b1b2dx1
∧ dx2

∧ ... ∧ dxp+1 + 2b1adx1
∧ dx2

∧ ... ∧ dxp+1 .

So,
b2a = b2

2 , b1a = b2
1 + 2b1b2 , b1b2 = b1a ,

i.e. equations (2). Consequently, we have (as above) alternative (3).
Then, using the formula LXLYω − LYLXω = L[X,Y]ω and alternative (3), one can easily verify that

b1aL[X2,X3]ω
1 + b2b1LX1LX3ω2 + b2

2LX1LX2ω3

= (b2aL[X1,X2]ω
3 + b2

1LX3LX2ω1 + b1b2LX3LX1ω2)

+(b1aL[X1,X3]ω
2 + b2b1LX2LX3ω1 + b2

2LX2LX1ω3) .

The last formula for (a, b1, b2) = (1, 0, 0) or (a, b1, b2) = (1, 0, 1) or (a, b1, b2) = (1,−1, 1) means that the
operators A1,A2,A3 satisfy the Leibniz rule, as well.

More, the last formula implies that the Leibniz rule (1) is equivalent to alternative (3) and the following
condition

c1ad(i[X2,X3]ω
1) + b2LX1 (c1d(iX3ω2) + c2d(iX2ω3))

+c2d(iX1 (b1LX3ω2 + b2LX2ω3 + c1d(iX3ω2) + c2d(iX2ω3)))
= c2ad(i[X1,X2]ω

3) + b1LX3 (c1d(iX2ω1) + c2d(iX1ω2))
+c1d(iX3 (b1LX2ω1 + b2LX1ω2 + c1d(iX2ω1) + c2d(iX1ω2)))
+c1ad(i[X1,X3]ω

2) + b2LX2 (c1d(iX3ω1) + c2d(iX1ω3))
+c2d(iX2 (b1LX3ω1 + b2LX1ω3 + c1d(iX3ω1) + c2d(iX1ω3))) .

(4)

If we put (in (4)) X1 = ∂1, X2 = ∂2, X3 = 0, ω1 = ω2 = 0 and ω3 = (x2)2dx1
∧ dx3

∧ ... ∧ dxp+1, we get

2c2b2dx2
∧ dx3

∧ ... ∧ dxp+1 = 2c2b2dx2
∧ dx3

∧ ... ∧ dxp+1 + 2c2
2dx2
∧ dx3

∧ ... ∧ dxp+1 .

Then c2 = 0.
If we put X1 = 0, X2 = ∂1, X3 = ∂2, ω1 = (x2)2dx1

∧ dx3
∧ ... ∧ dxp+1, and ω2 = ω3 = 0, we get

0 = 2b1c1dx2
∧ dx3

∧ ... ∧ dxp+1 + 2c2
1dx2
∧ dx3

∧ ... ∧ dxp+1 + 2c2b1dx2
∧ dx3

∧ ... ∧ dxp+1 .
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Then (as c2 = 0) we get c1 = 0 or c1 = −b1.
Consequently we obtain that (b1, b2, c1, c2) = (0, 0, 0, 0) or (b1, b2, c1, c2) = (0, a, 0, 0) or (b1, b2, c1, c2) =

(−a, a, 0, 0) or (b1, b2, c1, c2) = (−a, a, a, 0).
On the other hand, A1, ...,A4 from Theorem 3.1 satisfy the Leibniz rule, see above for A1,A2,A3 and see

Lemma 3.2 below for A4. Theorem 3.1 is complete.

Lemma 3.2. The operator A4 from Theorem 3.1 satisfies the Leibniz rule.

Proof. It is sufficient to prove (4) for (a, b1, b2, c1, c2) = (1,−1, 1, 1, 0), i.e that

di[X2,X3]ω
1 +LX1 diX3ω2 = −LX3 diX2ω1

− diX3LX2ω1

+diX3LX1ω2 + diX3 diX2ω1 + di[X1,X3]ω
2 +LX2 diX3ω1 .

(5)

The above formula (5) is the sum of the following two formulas

di[X2,X3]ω
1 = −LX3 diX2ω1

− diX3LX2ω1 + diX3 diX2ω1 +LX2 diX3ω1 , (6)

LX1 diX3ω2 = diX3LX1ω2 + di[X1,X3]ω
2 . (7)

The formula (7) follows immediately from LX1 d = dLX1 and i[X1,X3] = LX1 iX3 − iX3LX1 . The proof of (6)
is following. Applying LX3 = diX3 + iX3 d and dd = 0, we easily get diX3 diX2ω1 = LX3 diX2ω1 . We have also
LX2 d = dLX2 and then LX2 diX3ω1 = dLX2 iX3ω1. Then (6) follows from i[X2,X3] = LX2 iX3 − iX3LX2 .

From Theorem 3.1 and Corollary 2.6 it follows immediately

Corollary 3.3. If m ≥ p + 1 ≥ 2 or m = p ≥ 3, any M fm-natural Lie algebra bracket on X(M) ⊕ Ωp(M) is the
constant multiple of one of the following two ones

[X1
⊕ ω1,X2

⊕ ω2]1 = [X1,X2] ⊕ 0 ,
[X1
⊕ ω1,X2

⊕ ω2]2 = [X1,X2] ⊕ (LX1ω2
− LX2ω1) .
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