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Abstract. The aim of this paper is to obtain new lower bounds for the smallest singular value for some
special subclasses of nonsingular H-matrices. This is done in two steps: first, unifying principle for deriving
new upper bounds for the norm 1 of the inverse of an arbitrary nonsingular H-matrix is presented, and then,
it is combined with some well-known upper bounds for the infinity norm of the inverse. The importance
and efficiency of the results are illustrated by an example from ecological modelling, as well as on a type of
large-scale matrices posessing a block structure, arising in boundary value problems.

1. Introduction and motivation

For an arbitrary complex matrix A ∈ Cn,n by σmin(A) we denote its smallest singular value. It is well-
known that σmin(A) = 0 if and only if A is singular. Since the focus of our attention belongs to nonsingular,
in particular H-matrices, we will use the fact that σmin(A) = ‖A−1

‖
−1
2 . So, in order to obtain a lower bound for

σmin(A), one can think of this task as bounding the Euclidean norm of the inverse from above. As a matter
of fact, the relation

‖B‖22 ≤ ‖B‖∞‖B‖1,

which holds for any B ∈ Cn,n, makes it clear that we can use upper bounds for the inverses in both, infinity
and norm 1, for this purpose. For instance, this technique has been used in [10].

It is also well-known that systems, obtained by discretization of partial differential equations - either
using the finite element or finite difference methods, usually have a block structure in addition to large
dimensions. This fact justified the efforts to introduce and develop the concept of block matrices, as it offers
many practical benefits. The most obvious is computationally cheap reduction in size and the afterward
application of point-wise results.

This paper is organized as follows. A brief introduction covering the motivation is followed by Section
2, with notations, as well as definitions and known results. Next section presents an upper bound for norm
1 of the inverse of some special subclasses of H-matrices. Section 4 contains the main result of this paper,
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offering new lower bounds for the smallest singular value, and comparing them to the existing ones, as
well as addresses the block generalizations and applications of introduced bounds to large-scale matrices.
Finally, we end this paper with Section 5, with numerical examples and closing remarks.

2. Notation and preliminaries

Let A = [ai j] ∈ Cn,n be a square complex matrix of order n. The set of row (column) indices of A is defined
as N := {1, 2, . . . ,n}, and deleted row and column sums as

ri :=
∑

j∈N\{i}

|ai j|, ci :=
∑

j∈N\{i}

|a ji|, i ∈ N.

Definition 2.1. Matrix A = [ai j] ∈ Cn,n is called strictly diagonally dominant (SDD) matrix if and only if |aii| >
ri, for all i ∈ N.

The famous result for SDD matrices, for further reference see [1, 14], we recall as the following theorem.

Theorem 2.2 (Ahlberg-Nilson-Varah bound for SDD matrices). Let A ∈ Cn,n be an SDD matrix. Then,
‖A−1
‖∞ ≤ ν∞(A), where

ν∞(A) :=
1

min
i∈N

(
|aii| − ri

) . (1)

Diagonal dominance can also be column-wise. Due to the fact that ci(A) = ri(AT), a matrix is called
strictly diagonally dominant by columns if and only if |aii| > ci(A), for all i ∈ N, or, equivalently, provided
that AT is an SDD matrix. Obviously, if matrix A is strictly diagonally dominant by columns, then

‖A−1
‖1 = ‖(A−1)T

‖∞ = ‖(AT)−1
‖∞ ≤ ν∞(AT) =

1

min
i∈N

(
|aii| − ci

) .
Next, we recall the class of nonsingular matrices that generalizes the SDD property.

Definition 2.3. Matrix A = [ai j] ∈ Cn,n is called a generalized diagonally dominant (GDD) matrix if there exists a
positive vector x ∈ Rn such that

|aii|xi >
∑

j∈N\{i}

|ai j|x j, for all i ∈ N.

This definition can be interpreted in the following way: matrix A is a GDD matrix if and only if there
exists a positive diagonal matrix X = dia1(x1, x2, . . . , xn), such that AX is an SDD matrix. Such a matrix
X is usually called a scaling matrix. This class is also known in the literature as the class of nonsingular
H-matrices, so we will recall this equivalent definition, as well.

Definition 2.4. Matrix A = [ai j] ∈ Cn,n is called an H-matrix if its comparison matrix, M(A) = [mi j] ∈ Rn,n,
defined by

mi j =

{
|aii| , i = j
−|ai j| , i , j

is an M-matrix, i.e.,M(A)−1
≥ O.

It is known that the absolute value of the inverse for any nonsingular H-matrix can be bounded from
above by the inverse of its comparison M-matrix.
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Theorem 2.5 ([2]). If A = [ai j] ∈ Cn,n is a nonsingular H-matrix, then

|A−1
| ≤ M(A)−1.

One particular subclass of H-matrices, i.e. GDD matrices, will play a central role in this paper. It is the
S-SDD class, and here we recall some of its equivalent definitions.

Let S be a non-empty subset of the index set N, and let S := N \ S denote its complement. Then, one can
define

rS
i :=

∑
j∈S\{i}

|ai j| and rS
i :=

∑
j∈S\{i}

|ai j|, for all i ∈ N.

Obviously, it holds that ri = rS
i + rS

i , for all i ∈ N. Also, note that the class of N-SDD matrices is, in fact, the
class of SDD matrices.

Definition 2.6 ([5]). Given any matrix A = [ai j] ∈ Cn,n, n ≥ 2, and given ∅ , S ⊆ N, we say that A is an S-SDD
matrix if it has at least one strictly diagonally dominant row, and (|aii| − rS

i )(|a j j| − rS
j ) > rS

i rS
j , for all i ∈ S and all

j ∈ S.

Later on, this definition was equivalently rewritten in many forms. One of them has been used in order
to obtain eigenvalue localization sets in [3]:

Definition 2.7. Given any matrix A = [ai j] ∈ Cn,n, n ≥ 2, and given ∅ , S ⊆ N, we say that A is an S-SDD matrix
if the following conditions are fulfilled:

1. |aii| > rS
i , for all i ∈ S and

2. (|aii| − rS
i )(|a j j| − rS

j ) > rS
i rS

j , for all i ∈ S and all j ∈ S.

In the same paper [3], the authors have derived an explicit expression for the choice of a scaling matrix
X = dia1(x1, x2, . . . , xn) (for which AX is an SDD matrix):

xi =

{
γ , i ∈ S
1 , i ∈ S

(2)

where

0 ≤ B1 := max
i∈S

rS
i

|aii| − rS
i

< γ < min
j∈S:rS

j,0

|a j j| − rS
j

rS
j

=: B2.

As a matter of fact, an equivalent characterization of the S-SDD class (for S being a proper subset of N, such
that rS

j , 0 for at least one j ∈ S), is that the interval (B1,B2) is non-empty.
Regarding a bound for the infinity norm of the inverse of an S-SDD matrix, in the case of S being a proper

subset of N, we refer to [9]:

Theorem 2.8 ([9]). Let A ∈ Cn,n, n ≥ 2, be an S-SDD matrix for some non-empty proper subset S of N. Then,
‖A−1
‖∞ ≤ νS

∞(A), where

νS
∞(A) := max

{
θS

ij(A), θS
ji(A)

}
, (3)

with

θS
ij(A) := max

i∈S
j∈S

|aii| − rS
i + rS

j

(|aii| − rS
i )(|a j j| − rS

j ) − rS
i rS

j

.
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Finally, let us end this section with some known results regarding block H- matrices. Let ` be an arbitrary
positive integer such that ` ≤ n. Then, define L := {1, 2, . . . , `}, and by π = {p j}

`
j=0 denote a partition of N,

provided that positive numbers p j, j = 1, 2, . . . , `, satisfy the following criteria

p0 := 0 < p1 < p2 < · · · < p` := n.

Such a partition π enables one to perform a structural subdivision of A into ` × ` blocks, that is

A =


A11 A12 · · · A1`

A21 A22 · · · A2`
...

...
. . .

...
A`1 A`2 · · · A``

 = [Ai j]`×`.

Upon one specific choice of partition, for which pi = i, for all i ∈ N, one is dealing with the point-wise
case. In order to generalize (point-wise) subclasses of nonsingular H-matrices, the notion of a comparison
matrix is required. Although it can be done in an arbitrary p-norm, for the purpose of this paper, we will
only focus on the Euclidean case, that is p = 2, and the accompanying results related to it.

Let A ∈ Cn,n and π = {p j}
`
j=0 be a partition of the index set.

The comparison matrix with respect to partition π, 〈A〉π = [αi j] ∈ R`,`, is defined in the following way:

αi j =

{
(‖A−1

ii ‖2)−1 , i = j
−‖Ai j‖2 , i , j

where (‖A−1
ii ‖2)−1 is defined to be zero if Aii is a singular matrix.

Definition 2.9. Given a partition π, block matrix [Ai j]`×` is called block πH-matrix (BπH) if its comparison matrix
〈A〉π is a nonsingular H-matrix (i.e. a nonsingular M-matrix).

Apart from the fact that every BπH-matrix is nonsingular, this definition implies that all its diagonal
blocks are nonsingular matrices.

In general, for every nonsingular (point-wise) subclassK of H-matrices, we say that A is BπK provided
that 〈A〉π belongs toK.

Lastly, we recall the link between the Euclidean norm of the inverse of a block matrix on one hand, and
the the inverse of its comparison (point-wise) matrix, on the other:

Theorem 2.10 ([4]). Given a partition π, if matrix A = [Ai j]`,` is a BπH-matrix, then

‖A−1
‖2 ≤ ‖(〈A〉π)−1

‖2.

3. New upper bounds for the norm 1 of the inverse of H-matrices

Before we derive the upper bounds for the norm 1, we propose some auxiliary results.

Lemma 3.1. Let A = [ai j] ∈ Rn,n be an M-matrix, z ∈ Rn be a vector with at least one component positive and
A−1z =: δ. Denoting A−1 = [bi j], it holds that

min
i∈N

∑
j∈N

bi j ≥

min
i∈N

δi

max
i∈N

zi
. (4)
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Proof: Denote by k ∈ N the index for which zk ≥ z j, for all j ∈ N. Then, according to the assumption that
vector z has at least one component positive, we infer that zk > 0 and for every i ∈ N

δi =
∑
j∈N

bi jz j ≤
∑
j∈N

bi jzk, i.e.
∑
j∈N

bi j ≥
δi

zk
,

therefore

min
i∈N

∑
j∈N

bi j ≥

min
i∈N

δi

max
i∈N

zi
.

We remark that the presented bound is meaningful under the condition that δ > 0.

Lemma 3.2. Let A = [ai j] ∈ Rn,n be an M-matrix, z ∈ Rn be a vector with at least one component positive and
(AT)−1z =: η. Denoting A−1 = [bi j], it holds that

min
j∈N

∑
i∈N

bi j ≥

min
i∈N

ηi

max
i∈N

zi
. (5)

Proof: Directly follows from Lemma 3.1, since the class of M-matrices is transpose- invariant and due to the
fact that (A−1)T = (AT)−1.

In this section we will derive a unifying framework for bounding the norm 1 of the inverse of an arbitrary
nonsingular H-matrix. First, we formulate the result in its general form, applicable to any nonsingular H-
matrix, and then discuss applications to some special cases.

Theorem 3.3. Let A = [ai j] ∈ Cn,n be a nonsingular H-matrix and δ > 0 be a positive vector, for whichM(A)δ > 0
(such a vector always exists). Then,

‖A−1
‖1 ≤ ξ +

‖δ‖1 − ξ‖M(A)δ‖1
min
k∈N

(M(A)δ)k
,

where

ξ :=
min
i∈N

δi

max
i∈N

(M(A)Tδ)i
.

Proof: First, observe that M(A) is an M-matrix, which ensures that there exists a vector δ > 0, such that
M(A)δ > 0. Additionally,M(A)T is also an M-matrix, since this class is transpose-invariant. Let us prove
that vector y =M(A)Tδ has at least one component positive.

In order to confirm this, we assume the opposite, i.e. yi ≤ 0, for all i ∈ N. From δ = (M(A)T)−1y, since all
elements of (M(A)T)−1 are nonnegative, it follows that, for all i ∈ N

δi = ((M(A)T)−1y)i ≤ 0,

which is an obvious contradiction. Therefore, choosing η = δ, according to Lemma 3.2, it directly follows
that

min
j∈N

∑
i∈N

bi j ≥

min
i∈N

δi

max
i∈N

(M(A)Tδ)i
=: ξ. (6)

On the other hand, denotingM(A)−1 = [bi j] and definingM(A)δ =: z,we proceed by seeing that, component-
wise,M(A)−1z = δ is equivalent to ∑

j∈N

bi jz j = δi, for all i ∈ N,
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from whence, taking the sum over i, we get∑
i∈N

∑
j∈N

bi jz j =
∑
i∈N

δi,

that is ∑
j∈N

z j

∑
i∈N

bi j =
∑
i∈N

δi.

We may spot that for every k ∈ N,

zk

∑
i∈N

bik +
∑

j∈N\{k}

z j

∑
i∈N

bi j =
∑
i∈N

δi,

from where we deduce, using the lower bound (6), that∑
i∈N

δi ≥ zk

∑
i∈N

bik + ξ
∑

j∈N\{k}

z j.

The positivity of z ensures that, after dividing both sides of the latter inequality by zk, we have∑
i∈N

bik ≤
1
zk

(∑
i∈N

δi − ξ
∑

j∈N\{k}

z j

)
,

which is equivalent to ∑
i∈N

bik ≤
1
zk

(∑
i∈N

δi − ξ
∑
j∈N

z j + ξzk

)
= ξ +

‖δ‖1 − ξ‖z‖1
zk

.

Finally, using this estimation,

‖M(A)−1
‖1 = max

k∈N

∑
i∈N

bik ≤ max
k∈N

(
ξ +
‖δ‖1 − ξ‖z‖1

zk

)
=

= ξ +
‖δ‖1 − ξ‖M(A)δ‖1

mink(M(A)δ)k
.

According to Theorem 2.5, |A−1
| ≤ M(A)−1. Finally, the monotonicity of norm 1 ensures that

‖A−1
‖1 ≤ ‖M(A)−1

‖1,

which completes the proof.
From the application point of view, in order to obtain results which can be practically evaluated, it is

convenient to know vector δ. As it turns out, this vector is exactly the one from Definition 2.3, and it is
known for some subclasses of H-matrices. For instance, as far as SDD matrices are concerned, it is known
that δ = e, where e is a vector with all components equal to 1. If we switch to SDD matrices, and take δ = e,
our Theorem 3.3 becomes Theorem 1 from [10]:

Corollary 3.4 (Theorem 1 from [10]). Let A = [ai j] ∈ Cn,n, n ≥ 2, be an SDD matrix. Then, ‖A−1
‖1 ≤ ν1(A),

where

ν1(A) :=

n −

∑
i∈N

(|aii| − ri) −min
i∈N

(|aii| − ri)

max
j∈N

(|a j j| − c j)

min
i∈N

(|aii| − ri)
. (7)
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Proof: Using the result of Theorem 3.3 for a particular choice δ = e, one can readily check that

M(A)δ = |aii| − ri, M(A)Tδ = |aii| − ci, ‖δ‖1 = n, ξ =
1

max
j∈N

(|a j j| − c j)
,

hence,

ξ +
‖δ‖1 − ξ‖M(A)δ‖1

min
k∈N

(M(A)δ)k
=

=
1

max
j∈N

(|a j j| − c j)
+

n − 1
max

j∈N
(|a j j| − c j)

∑
i∈N

(|aii| − ri)

min
k∈N

(|akk| − rk)
,

which is the same as (7).

For all the classes for which the positive diagonal matrix that scales a given nonsingular H−matrix to
an SDD one is known, it is possible to derive upper bounds for the norm 1 of their inverse, with the aid of
the aforementioned lemmas.

Here, we will restrict ourselves to the class of S-SDD matrices, since they arise in practical applications,
including the optimization of wireless sensor networks, neural networks and empirical food webs. The
upper bound for the norm 1 of their inverse is our following result.

Theorem 3.5. Let A = [ai j] ∈ Cn,n, n ≥ 2, be an S-SDD matrix, for some nonempty subset of the index set. Then,
‖A−1
‖1 ≤ νS

1(A), where

νS
1(A) := ξ +

m1 + n −m − ξ
(
1

∑
i∈S

|aii| +
∑
i∈S

|aii| − 1
∑
i∈N

rS
i −

∑
i∈N

rS
i

)
min

{
min

i∈S

(
1
(
|aii| − rS

i

)
− rS

i

)
,min

i∈S

(
|aii| − 1rS

i − rS
i

)} , (8)

with

ξ =
min

{
1, 1

}
max

{
max

i∈S

(
1
(
|aii| − cS

i

)
− cS

i

)
,max

i∈S

(
|aii| − 1cS

i − cS
i

)} , (9)

1 :=
B1 + B2

2
, B1 := max

i∈S

rS
i

|aii| − rS
i

,

B2 :=


2 − B1 if S = ∅

B1 if S , ∅ and for all j ∈ S, rS
j = 0

min
j∈S:rS

j,0

|a j j| − rS
j

rS
j

if S , ∅ and there exists j ∈ S such that rS
j , 0

,

and with the usual convention that sum, min and max are set to be zero if they are taken over an empty set.

Proof: A is an S-SDD matrix, hence there exists a positive diagonal scaling matrix X, for which AX is an
SDD matrix.

(?) If S = N, meaning that A is an SDD matrix, we can obviously choose X to be the identity matrix.
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If S is a proper subset of N, a scaling matrix X = dia1(x1, x2, . . . , xn) (for which AX is an SDD matrix) has the
following form:

xi =

{
γ , i ∈ S
1 , i ∈ S

,

where

(??) if for all j ∈ S, rS
j = 0, then

0 ≤ B1 = max
i∈S

rS
i

|aii| − rS
i

< γ.

(? ? ?) if there exists j ∈ S such that rS
j , 0, then

0 ≤ B1 = max
i∈S

rS
i

|aii| − rS
i

< γ < min
j∈S:rS

j,0

|a j j| − rS
j

rS
j

= B2.

Note that the direct implications of the fact that A is an S-SDD matrix are:

• the value B1 is always well defined,

• in the case (? ? ?), the interval (B1,B2) is non-empty.

In the case (???), we will choose γ to be the middle point of the given interval,
B1 + B2

2
, while in the case

(??), we will choose γ to be equal to B1. Obviously, the case (?), when S = N, can be considered as a case
for which γ is chosen to be equal to 1.

Generally speaking, in all three cases, (?), (??) and (???), we can say that there exists a scaling matrix
X = dia1(x1, x2, . . . , xn) (for which AX is an SDD matrix) of the form:

xi =

{
1 , i ∈ S
1 , i ∈ S

where 1 =
B1 + B2

2
,

and B1,B2 are defined in Theorem. For such a choice of γ = 1, the condition for AX to be an SDD matrix is
equivalent toM(A)δ > 0, where

δi =

{
1 , i ∈ S
1 , i ∈ S

.

Since

(M(A)δ)i =

 1|aii| − 1rS
i − rS

i , i ∈ S
|aii| − 1rS

i − rS
i , i ∈ S

and

(M(A)Tδ)i =

 1|aii| − 1cS
i − cS

i , i ∈ S
|aii| − 1cS

i − cS
i , i ∈ S

on the grounds of Theorem 3.3, we conclude that

‖A−1
‖1 ≤ ξ +

‖δ‖1 − ξ‖M(A)δ‖1
min
k∈N

(M(A)δ)k
,

where

ξ =
min
i∈N

δi

max
i∈N

(M(A)Tδ)i
. (10)
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First, we will confirm that (8) holds.
To that end, let us assume that card(S) = m. Then,

‖δ‖1 = m1 + n −m = m1 + n −m,

‖M(A)δ‖1 =
∑
i∈N

(M(A)δ)i =
∑
i∈S

(
1
(
|aii| − rS

i

)
− rS

i

)
+

∑
j∈S

(
|a j j| − 1rS

j − rS
j

)
=

= 1
∑
i∈S

|aii| +
∑
i∈S

|aii| − 1
∑
i∈N

rS
i −

∑
i∈N

rS
i ,

and
min
k∈N

(M(A)δ)k =

= min
{

min
i∈S

(
1
(
|aii| − rS

i

)
− rS

i

)
,min

i∈S

(
|aii| − rS

i − rS
i

)}
.

This minimum is always positive. It is obvious for cases (?) and (??), while in the case (? ? ?) it is also
true, because for every i ∈ S and every j ∈ S, for which rS

j , 0,

rS
i

|aii| − rS
i

≤ B1 < 1 < B2 ≤
|a j j| − rS

j

rS
j

,

which implies that for every i ∈ S

1
(
|aii| − rS

i

)
− rS

i >
rS

i

|aii| − rS
i

(
|aii| − rS

i

)
− rS

i = 0,

and, similarly, for every j ∈ S, for which rS
j , 0,

|a j j| − 1rS
j − rS

j > |a j j| −
|a j j| − rS

j

rS
j

rS
j − rS

j = 0.

It only remains to show (9). Apparently, min
i∈N

δi = min
{
1, 1

}
. As far as the denominator in (10) is concerned,

its positivity is implied byM(A)Tδ having at least one component positive. Finally,

max
i∈N

(M(A)Tδ)i = max
{

max
i∈S

(
1
(
|aii| − cS

i

)
− cS

i

)
,max

i∈S

(
|aii| − 1cS

i − cS
i

)}
,

which completes the proof.

4. Lower bounds for σmin

It is well-known that
(σmin(A)−1)2 = ‖A−1

‖
2
2 ≤ ‖A

−1
‖∞‖A−1

‖1,

so we can use this fact to immediately obtain the lower bound for the minimal singular value of an S-SDD
matrix.

Theorem 4.1. Let A ∈ Cn,n be an S-SDD matrix, for some nonempty proper subset S of the index set. Then,

σmin(A) ≥
1√

νS
∞(A)νS

1(A)
.
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However, the approach based on S-SDD matrices can help one to improve some already known lower
bounds for the minimal singular value of an SDD matrix, as well. Before we formulate this new lower
bound as a theorem, let us prove the following Lemma.

Lemma 4.2. Let A ∈ Cn,n be an SDD matrix. Then, for every nonempty proper subset S of the index set N, it holds
that

νS
∞(A) ≤ ν∞(A). (11)

Proof: Observe that A, being an SDD matrix, is also an S-SDD matrix for every S ⊆ N. In order to prove
(11), it is sufficient to show that, for every i ∈ S and for every j ∈ S, both

θS
ij(A) ≤ max

i∈S

1
|aii| − ri

and θS
ji(A) ≤ max

j∈S

1
|a j j| − r j

holds. Let i ∈ S and j ∈ S be chosen arbitrarily. First, if |aii| − ri ≤ |a j j| − r j, then this is equivalent to
|aii| − rS

i + rS
j − rS

i ≤ |a j j| − rS
j . Multiplying both sides by |aii| − rS

i which is positive and subtracting rS
i rS

j from
both sides gives

(|aii| − rS
i + rS

j )(|aii| − rS
i − rS

i ) ≤ (|aii| − rS
i )(|a j j| − rS

j ) − rS
i rS

j ,

with the right-hand side being positive by assumption. Hence,

|aii| − rS
i + rS

j

(|aii| − rS
i )(|a j j| − rS

j ) − rS
i rS

j

≤
1

|aii| − ri
.

Taking the maximum over i ∈ S and j ∈ S leads to

max
i∈S
j∈S

|aii| − rS
i + rS

j

(|aii| − rS
i )(|a j j| − rS

j ) − rS
i rS

j

≤ max
i∈S

1
|aii| − ri

. (12)

However, if |a j j| − r j < |aii| − ri, then multiplying both sides with |a j j| − rS
j , which is again positive, and

subtracting rS
i rS

j from both sides produces

(|a j j| − rS
j + rS

i )(|a j j| − rS
j − rS

j ) < (|aii| − rS
i )(|a j j| − rS

j ) − rS
i rS

j ,

which implies
|a j j| − rS

j + rS
i

(|aii| − rS
i )(|a j j| − rS

j ) − rS
i rS

j

<
1

|a j j| − r j
.

From there,

max
i∈S
j∈S

|a j j| − rS
j + rS

i

(|aii| − rS
i )(|a j j| − rS

j ) − rS
i rS

j

< max
j∈S

1
|a j j| − r j

. (13)

Finally, (12) and (13) imply that max{θS
ij(A), θS

ji(A)} ≤ max
i∈N

1
|aii| − ri

, which completes the proof.

Therefore, when dealing with SDD matrices, with some investment in the calculations, we can improve
the Varah bound (1), by optimizing the upper bound (3) over all nonempty proper subsets S. In terms of
norm 1, we can expect the similar behaviour, if we optimize (8) over all nonempty S ⊆ N. Then, a better
lower bound for the minimal singular value of an SDD matrix can be obtained:
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Theorem 4.3. Let A ∈ Cn,n be an SDD matrix. Then,

σmin(A) ≥
1√
αβ

:= E,

where
α := min

∅,S(N
νS
∞(A) and β := min

∅,S⊆N
νS

1(A).

In the next section, we will compare this bound with the existing ones on some relevant numerical examples.
Before that, let us comment how we can obtain block generalizations of the previous results.

In order to bound the smallest singular value of a block matrix A ∈ Cn,n, provided that it is a Bπ2 H-matrix,
we will use Theorem 2.10, from whence we have

σmin(A) = ‖A−1
‖
−1
2 ≥ ‖(〈A〉

(2)
π )−1

‖
−1
2 = σmin(〈A〉(2)

π ).

In other words, the smallest singular value of a (large-scale) block matrix can be bounded from below by
the smallest singular value of the comparison matrix 〈A〉(2)

π ∈ R
`,`, playing the role of a point-wise matrix,

for which we can use previous results.
New lower bounds for the minimal singular value of a Bπ S-SDD and Bπ SDD matrices are given in the

following two theorems.

Theorem 4.4. Let A ∈ Cn,n be a Bπ S-SDD matrix, for some nonempty proper subset S of the index set. Then,

σmin(A) ≥
1√

νS
∞(〈A〉π)νS

1(〈A〉π)
.

Theorem 4.5. Let A ∈ Cn,n be a Bπ SDD matrix. Then,

σmin(A) ≥
1√
α̂β̂

:= Ê,

where
α̂ := min

∅,S(N
νS
∞(〈A〉π) and β̂ := min

∅,S⊆N
νS

1(〈A〉π).

5. Numerical examples

Example 1 (point-wise case): Consider an example from the modelling of dynamical processes occurring
in ecology. When analyzing the stability of a dynamical system that models the energy flow in the soil food
web, the matrix of interest is the same as in [8], where it was referred to as the community matrix, obtained
as the Jacobian of the dynamical system presented in [11–13],

A =



−6.0000 0 0 0 0.0200 0 0.0200 0
0 −1.8400 0 0 0 0.0015 0 0
0 0 −1.9200 0 0 0.0016 0 0
0 0 0 −2.6800 0 0.0045 0 0

−0.0263 0 0 0 −6.0000 0 0.0101 0
0 −10.5143 −13.6558 −12.0721 0 −1.2000 0 0.9302

−15.7632 0 0 0 −15.7618 0 −1.2000 0.9591
6.7895 7.0971 10.3866 7.5088 6.6331 −2.9147 −3.0590 −6.2977


.

This matrix is obviously not an SDD one, but one can confirm that it is an S-SDD for S = {1, 2, 3, 4, 5}. The
results are summarized in the following table.
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‖A−1
‖∞ νS

∞ ‖A−1
‖1 νS

1 σmin E

12.2139 86.1454 8.3171 359.2074 0.1398 0.0057

ε1 ε2 ε3 ε4

-18.8473 -3.0402 -17.9392 -18.8473

Bound (28) from [10] is not applicable, since A is not SDD. Some other well-known lower bounds for
the smallest singular value, introduced in [6, 7] and reviewed in [4], cannot be used either, since all of them
are negative. Namely,

Example 2 (block case): Consider the following block tridiagonal matrix arising in boundary value prob-
lems,

A =



T −I O · · · O
−I T −I · · · O

O
. . .

. . .
. . . O

... −I T −I
O · · · O −I T


∈ Rn2,n2

, where T =



4 −1 0 · · · 0
−1 4 −1 · · · 0

0
. . .

. . .
. . . 0

... −1 4 −1
0 · · · 0 −1 4


∈ Rn,n,

with I being the identity matrix of order n. We will consider two cases, n = 4 and n = 10, while the
partition will always be π = {0,n, 2n, . . . ,n2

} and the norm of choice is the Euclidean norm.
For the first case, where block matrix A is of order 16, σmin(A) = 0.7639, and this value coincides with the

smallest singular value of the comparison matrix, 〈A〉(2)
π . We also note that A is not an SDD, whereas 〈A〉(2)

π

is, so this makes it possible to compare E to the bound denoted by (28) in [10]. The following table presents
results for the comparison matrix, for which εi = 0.382, for all i = 1, 2, 3, 4.

‖(〈A〉(2)
π )−1

‖∞ α ‖(〈A〉(2)
π )−1

‖1 β (28) from [10] E

1.4757 1.4757 1.4757 2.8727 0.2909 0.4857

As we can conclude, not only has bound E outperfomed the bound from [10], but also each of the
standard bounds, εi, i = 1, 2, 3, 4, as well. The optimal choice of S for α is S = {1, 4} and for β it is S = {2, 3}.

Now, we turn to the case n = 10. Matrix A is now of order 100, with σmin(A) = 0.162, again the same as
σmin(〈A〉(2)

π ). However, as before, A is not SDD, while 〈A〉(2)
π is, so we are able to perform our analysis in a

similar way. Computations reveal that εi = 0.081, for all i = 1, 2, 3, 4.

This time, E only outperformed the bound from [10]. The optimal choice for α this time is S = {3, 4, 7, 8},
where the one for β is S = {2, 3, . . . , 9}.

As a conclusion, let us remark that in the case of a block H-matrix, the lower bound for the smallest
singular value is obtained by bounding the smallest singular value of its comparison matrix, which, in the
Euclidean norm, has a very specific structure. Namely, 〈A〉(2)

π = [αi j], where

αi j =

{
σmin(Aii), i = j,
−σmax(Ai j), i , j.

Therefore, the comparison matrix itself requires a calculation of extreme singular values of each of the
blocks from the partitioned matrix. However, in our example, as well as in most examples arising from
boundary value problems, these matrices are low-dimensional ones in addition to being the same along the
diagonal as well as outside it, so practically it is only required to calculate two singular values, one smallest
of the diagonal block, and one largest of the off-diagonal block.
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‖(〈A〉(2)
π )−1

‖∞ α ‖(〈A〉(2)
π )−1

‖1 β (28) from [10] E

7.3263 12.3435 7.3263 75.5519 0.0296 0.0327
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