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Abstract. Based on the extensions of Morgenstern family (Huang and Bairamov extensions), the concomi-
tants of different types of generalized order statistics (1os) and dual generalized order statistics (d1os) are
obtained. Moreover, a unified approach to such models is derived. Information properties such as Shannon
entropy and Kullback-Leibler divergence for Huang and Kotz extension are obtained.

1. Introduction

The Farlie-Gumbel-Morgenstern family (Morgenstern family) is an important class of bivariate distri-
butions, it was originally introduced by Morgenstern [17] for Cauchy marginal. Morgenstern distributions
are important and efficient in applications for multivariate distributions with given marginal. Johnson
and Kotz [11] studied the multivariate case and provided a detailed analysis of probabilistic and statistical
characteristics. Huang and Kotz [9] extended Morgenstern family to increase the dependence between the
underlying variables by introducing an additional parameter. The generalizations of Morgenstern family
of bivariate distributions received a great deal of attention of many researchers. A polynomial type single
parameter extension of Morgenstern distribution was considered by Huang and Kotz [10], which is spec-
ified by the cumulative distribution function (cd f ) and probability density function (pd f ), respectively, as
follows:

FX,Y(x, y) = FX(x)FY(y)[1 + α(1 − Fp
X(x))(1 − Fp

Y(y))], (1)

fX,Y(x, y) = fX(x) fY(y)[1 + α((1 + p)Fp
X(x) − 1)((1 + p)Fp

Y(y) − 1)], p ≥ 1, (2)

where the admissible range of the associated parameter α is −max(1, p)−2
≤ α ≤ p−1, and since p ≥ 1, this

admissible becomes p−2
≤ α ≤ p−1. Furthermore, the conditional pd f of Y given X is given by:

fY|X(y | x) = fY(y)[1 + α((1 + p)Fp
X(x) − 1)((1 + p)Fp

Y(y) − 1)]. (3)
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Bairamov et al. [2] presented a general form of the model described above, as follows:

FBA
X,Y(x, y) = FX(x)FY(y)[1 + α(1 − Fp1

X (x))q1 (1 − Fp2

Y (y))q2 ], (4)

f BA
X,Y(x, y) = fX(x) fY(y)[1 + α(Fp1

X (x) − 1)q1−1(1 − (1 + p1q1)Fp1

X (x))(Fp2

Y (y) − 1)q2−1

× (1 − (1 + p2q2)Fp2

Y (y))], p1, p2 ≥ 1, q1, q2 > 1,
(5)

where the admissible range of the associated parameter α is

−min

1,
1

p1p2

(
1 + p1q1

p1(q1 − 1)

)q1−1 (
1 + p2q2

p2(q2 − 1)

)q2−1
 ≤ α

≤ min

 1
p1

(
1 + p1q1

p1(q1 − 1)

)q1−1

,
1
p2

(
1 + p2q2

p2(q2 − 1)

)q2−1
 .

(6)

Moreover, the conditional pd f of Y given X is given by:

f BA
Y|X(y | x) = fY(y)[1 + α(Fp1

X (x) − 1)q1−1(1 − (1 + p1q1)Fp1

X (x))(Fp2

Y (y) − 1)q2−1

× (1 − (1 + p2q2)Fp2

Y (y))].
(7)

Where fX(x), fY(y), and FX(x), FY(y) are the marginal pd f ’s and cd f ’s of the random variables (R.V.’s) X and
Y respectively.

Originally David et al. [6] studied concomitants of order statistics. From some bivariate population
with cd f F(x, y), let (Xi,Yi), i = 1, 2, ...,n, be n pairs of independent R.V.’s. Let X(r:n) be the rth order statistics,
then Y associated with X(r:n) is called the concomitant of rth order statistics and is denoted by Y[r:n]. The pd f
and cd f of Y[r:n] are given by:

1[r:n](y) = 1Y[r:n] (y) =

∫
∞

−∞

fY|X(y | x) f(r:n)(x)dx, (8)

G[r:n](y) =

∫
∞

−∞

FY|X(y | x) f(r:n)(x)dx, (9)

where f(r:n)(x) is the pd f of X(r:n).

The concept of 1os was introduced by Kamps [12] and we refer to it as case-I of 1os. The use of such
connotation has been steadily rising over the years, as it includes important well-known concepts that have
been separately treated in statistical literature. Accordingly, many of models of ascendingly ordered R.V.’s
are contained in it, such as ordinary order statistics, sequential order statistics, record values and Pfeifers
record model. Kamps and Cramer [13] derived a second model of 1os in which the parameters are pairwise
different and we refer to it as case-II of 1os. On the other side, the concept of lower 1os was given by
Pawlas and Szynal [18] and later Burkschat et al. [5] proposed it as d1os to enable a common approach of
descending ordered R.V.’s like reversed order statistics and lower records models.

A classical measure of uncertainty was launched by Shannon [19] in the information theory literature.
The Shannon entropy of a continuous R.V. X measures the average reduction of uncertainty of X. The
Shannon entropy for X with pd f fX(x) is defined as:

H(X) = −E(ln fX(X)) = −

∫
∞

−∞

fX(x) ln fX(x)dx. (10)
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Divergence measures are used to quantify the dissimilarity of two probability distributions. They are
equal to zero if and only if the distributions are the same. They are interpreted as distances between prob-
ability distributions. Kullback and Leibler [14] considered the Kullback-Leibler divergence (information
divergence) for two continuous random variables X1 and X2 with pd f ’s f1 and f2, respectively, which is
given by:

K(X1,X2) =

∫
∞

−∞

f1(x) ln
(

f1(x)
f2(x)

)
dx, (11)

K(X1,X2) is non negative, invariant under one-to-one transformation of (X1,X2), and it is not symmetric.

Beg and Ahsanullah [4] considered concomitants of generalized order statistics for Morgenstern family
and derived the joint distribution of concomitants of two generalized order statistics and obtain their
product moments. In this dissertation, we obtain the cd f and pd f of concomitants of ordered R.V.’s under
Huang and Bairamov extensions. Also, information properties for Huang and Kotz extension are presented.
The rest of this article is organized as follows: In Section 2, the pd f and cd f of concomitants for case-I and
case-II of 1os and d1os under Huang and Bairamov extensions are provided. Section 3, contains information
properties such as Shannon entropy and Kullback-Leibler divergence for Huang and Kotz extension. In
addition, some examples for some well-known distributions to obtain the entropy are given.

2. Distribution theory for concomitants of ordered R.V.’s

In this section, we use case-I and case-II of 1os and d1os to obtain the pd f and cd f of concomitants for
both Huang and Bairamov extensions. The following theorems deal with this matter. To obtain the cd f of
such models, from Equation (1), the conditional cd f of Y given X = x, for Huang and Kotz extension, is
given by:

FY|X(y|x) = f−1
X (x)

∂FX,Y(x, y)
∂x

= FY(y)[1 + α((1 + p)Fp
X(x) − 1)(Fp

Y(y) − 1)].
(12)

From Equation (4), the conditional cd f of Y given X = x, for Bairamov extension, is given by:

FBA
Y|X(y|x) = FY(y)[1 + α(1 − Fp1

X (x))q1−1(1 − (1 + p1q1)Fp1

X (x))(1 − Fp2

Y (y))q2 ]. (13)

We may classify 1os and d1os based on m̃ into the following cases: Let n ∈ N, k ≥ 1, m1, ...,mn−1 ∈ R,
Mr =

∑n−1
j=r m j, 1 ≤ r ≤ n − 1, be parameters such that γr = k + n − r + Mr ≥ 1 for all r ∈ {1, 2, ...,n − 1}, and let

m̃ = (m1, ...,mn−1) ∈ Rn−1.
Case-I of gos: If m1 = m2 = . . . = mn−1 = m, the pd f of rth case-I of 1os X(r,n,m,k) can be written as, see Kamps
[12]:

f(r,n,m,k)(x) =
cr−1

(r − 1)!
(1 − F(x))γr−1 f (x)1r−1

m (F(x)), (14)

where cr−1 =
∏r

j=1 γ j, 1m(z) = hm(z) − hm(0), 0 < z < 1,

hm(z) =


−(1−z)m+1

m+1 , m , −1,

− ln(1 − z), m = −1.
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Case-II of gos: If γi , γ j, i, j = 1, 2, . . . ,n and i , j, the pd f of rth case-II of 1os X(r,n,m̃,k) as follows, see Kamps
and Cramer [13]:

f(r,n,m̃,k)(x) = cr−1

r∑
i=1

ai(r) (1 − F(x))γi−1 f (x), (15)

where ai(r) =
∏r

j=1, j,i
1

γ j−γi
, 1 ≤ i ≤ r ≤ n and γi = k + n − i + Mi > 0.

Case-I of dgos: When m1 = m2 = . . . = mn−1 = m, the pd f of rth case-I of d1os Xd(r,n,m,k) is defined by, see
Pawlas and Szynal [18]:

fd(r,n,m,k)(x) =
cr−1

(r − 1)!
(F(x))γr−1 f (x)1r−1

m (F(x)), (16)

where cr−1 =
∏r

j=1 γ j, 1m(z) = hm(z) − hm(1), 0 ≤ z < 1,

hm(z) =


−1

m+1 zm+1, m , −1,

− ln z, m = −1.

Case-II of dgos: When γi , γ j, i, j = 1, 2, . . . ,n − 1, in this case, the pd f of rth case-II of d1os Xd(r,n,m̃,k) is
defined by, see Athar and Faizan [1]:

fd(r,n,m̃,k)(x) = cr−1

r∑
i=1

ai(r) (F(x))γi−1 f (x), (17)

where ai(r) =
∏r

j=1, j,i
1

γ j−γi
, 1 ≤ i ≤ r ≤ n and γi = k + n − i + Mi > 0.

In the following theorems we use the following notations as follows: Based on Huang and Kotz extension
the pd f and cd f of the concomitant of rth case-I of 1os (case-I of d1os) are 11[r;n,m,k] and G1[r;n,m,k] (1d1[r;n,m,k]

and Gd1[r;n,m,k]), respectively. And the pd f and cd f of the concomitant of rth case-II of 1os (case-II of d1os)
are 11[r;n,m̃,k] and G1[r;n,m̃,k] (1d1[r;n,m̃,k] and Gd1[r;n,m̃,k]), respectively. Based on Bairamov extension the pd f and
cd f of the concomitant of rth case-I of 1os (case-I of d1os) are 12[r;n,m,k] and G2[r;n,m,k] (1d2[r;n,m,k] and Gd2[r;n,m,k]),
respectively. And the pd f and cd f of the concomitant of rth case-II of 1os (case-II of d1os) are 12[r;n,m̃,k] and
G2[r;n,m̃,k] (1d2[r;n,m̃,k] and Gd2[r;n,m̃,k]), respectively.

Theorem 2.1. Based on Huang and Kotz extension with pd f given by (2) and cd f given by (1), utilizing (3), (14)
and (12), the pd f and cd f of the concomitant of rth case-I of 1os, Y[r;n,m,k], are given by, 1 ≤ r ≤ n, respectively:

11[r;n,m,k](y) = fY(y)
[
1 + αT∗1(r; n,m, k)

(
(1 + p)Fp

Y(y) − 1
)]
, (18)

G1[r;n,m,k](y) = fY(y)
[
1 + αT∗1(r; n,m, k)

(
Fp

Y(y) − 1
)]
, (19)

where

T∗1(r; n,m, k) = (1 + p)cr−1

p∑
j=0

(
p
j

)
(−1) j 1∏r

i=1(γi + j)
− 1, (20)

γr = k + (n − r)(m + 1), n ∈N, k ≥ 1, m1 = ... = mn−1 = m ∈ R, cr−1 =
∏r

i=1 γi.
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Proof. From (3) and (14), the pd f of the concomitant of r-th case-I of 1os, Y[r,n,m,k], is given by:

11[r,n,m,k](y) =

∫
∞

−∞

fY|X(y | x) f(r,n,m,k)(x)dx

= fY(y) − α fY(y)((1 + p)Fp
Y(y) − 1)

+
α(1 + p)cr−1

(r − 1)!(m + 1)r−1 fY(y)((1 + p)Fp
Y(y) − 1)

×

∫
∞

−∞

(1 − (1 − FX(x)))p(1 − FX(x))γr−1

× [1 − (1 − FX(x))m+1]r−1 fX(x)dx

= fY(y) − α fY(y)((1 + p)Fp
Y(y) − 1)

+
α(1 + p)cr−1

(r − 1)!
fY(y)((1 + p)Fp

Y(y) − 1)

×

p∑
j=0

(
p
j

)
(−1) j

∫
∞

−∞

(1 − FX(x))γr+ j−1

× [
1

m + 1
{1 − (1 − FX(x))m+1

}]r−1 fX(x)dx.

(21)

From Beg and Ahsanullah [4], we note that∫
∞

−∞

(1 − FX(x))γr+ j−1[
1

m + 1
{1 − (1 − FX(x))m+1

}]r−1 fX(x)dx =
(r − 1)!∏r
i=1(γi + j)

, (22)

and the result follows. By the same manner we can obtain the cd f of case-I of 1os.

Theorem 2.2. Based on Bairamov extension with pd f given by (5) and cd f given by (4) (with p1 = p2 = 1),
utilizing (7), (14) and (13), the pd f and cd f of the concomitant of rth case-I of 1os, Y[r;n,m,k], are given by, 1 ≤ r ≤ n,
respectively:

12[r;n,m,k](y) = fY(y)
[
1 + αR∗1(r; n,m, k)

(
1 − (1 + q2)FY(y)

) (
1 − FY(y)

)q2−1
]
, (23)

G2[r;n,m,k](y) = fY(y)
[
1 + αR∗1(r; n,m, k)

(
1 − FY(y)

)q2
]
, (24)

where

R∗1(r; n,m, k) = cr−1

{
(1 + q1)∏r

i=1(γi + q1)
−

q1∏r
i=1(γi + q1 − 1)

}
, (25)

γr = k + (n − r)(m + 1), n ∈N, k ≥ 1, m1 = ... = mn−1 = m ∈ R, cr−1 =
∏r

i=1 γi.

Theorem 2.3. Based on Huang and Kotz extension with pd f given by (2) and cd f given by (1), utilizing (3), (15)
and (12), the pd f and cd f of the concomitant of rth case-II of 1os, Y[r;n,m̃,k], are given by, 1 ≤ r ≤ n, respectively:

11[r;n,m̃,k](y) = fY(y)
[
1 + αB∗1(r; n, m̃, k)

(
(1 + p)Fp

Y(y) − 1
)]
, (26)

G1[r;n,m̃,k](y) = fY(y)
[
1 + αB∗1(r; n, m̃, k)

(
Fp

Y(y) − 1
)]
, (27)

where

B∗1(r; n, m̃, k) = (1 + p)cr−1

r∑
i=0

ai(r)
p!(γi − 1)!
(γi + p)!

− 1, (28)

ai(r) =
∏r

j=1,i, j
1

γ j−γi
, γ j , γi, 1 ≤ i ≤ r ≤ n, cr−1 =

∏r
j=1 γ j.
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Theorem 2.4. Based on Bairamov extension with pd f given by (5) and cd f given by (4) (with p1 = p2 = 1), utilizing
(7), (15) and (13), the pd f and cd f of the concomitant of rth case-II of 1os, Y[r;n,m̃,k], are given by, 1 ≤ r ≤ n,
respectively:

12[r;n,m̃,k](y) = fY(y)
[
1 + αQ∗1(r; n, m̃, k)

(
1 − (1 + q2)FY(y)

) (
1 − FY(y)

)q2−1
]
, (29)

G2[r;n,m̃,k](y) = fY(y)
[
1 + αQ∗1(r; n, m̃, k)

(
1 − FY(y)

)q2
]
, (30)

where

Q∗1(r; n, m̃, k) = cr−1

r∑
i=0

ai(r)
{

(1 + q1)
(γi + q1)

−
q1

(γi + q1 − 1)

}
, (31)

ai(r) =
∏r

j=1,i, j
1

γ j−γi
, γ j , γi, 1 ≤ i ≤ r ≤ n, cr−1 =

∏r
j=1 γ j.

Theorem 2.5. Based on Huang and Kotz extension with pd f given by (2) and cd f given by (1), utilizing (3), (16)
and (12), the pd f and cd f of the concomitant of rth case-I of d1os, Yd[r;n,m,k], are given by, 1 ≤ r ≤ n, respectively:

1d1[r;n,m,k](y) = fY(y)
[
1 + αT∗2(r; n,m, k)

(
(1 + p)Fp

Y(y) − 1
)]
, (32)

Gd1[r;n,m,k](y) = fY(y)
[
1 + αT∗2(r; n,m, k)

(
Fp

Y(y) − 1
)]
, (33)

where

T∗2(r; n,m, k) = (1 + p)cr−1
1∏r

i=1(γi + p)
− 1, (34)

γr = k + (n − r)(m + 1), n ∈N, k ≥ 1, m1 = ... = mn−1 = m ∈ R, cr−1 =
∏r

i=1 γi.

Theorem 2.6. Based on Bairamov extension with pd f given by (5) and cd f given by (4) (with p1 = p2 = 1), utilizing
(7), (16) and (13), the pd f and cd f of the concomitant of rth case-I of d1os, Yd[r;n,m,k], are given by, 1 ≤ r ≤ n,
respectively:

1d2[r;n,m,k](y) = fY(y)
[
1 + αR∗2(r; n,m, k)

(
1 − (1 + q2)FY(y)

) (
1 − FY(y)

)q2−1
]
, (35)

Gd2[r;n,m,k](y) = fY(y)
[
1 + αR∗2(r; n,m, k)

(
1 − FY(y)

)q2
]
, (36)

where

R∗2(r; n,m, k) = cr−1

(1 + q1)
q1∑
j=0

(
q1
j

)
(−1) j∏r

i=1(γi + j)
− q1

q1−1∑
j=0

(
q1 − 1

j

)
(−1) j∏r

i=1(γi + j)

 , (37)

γr = k + (n − r)(m + 1), n ∈N, k ≥ 1, m1 = ... = mn−1 = m ∈ R, cr−1 =
∏r

i=1 γi.

Theorem 2.7. Based on Huang and Kotz extension with pd f given by (2) and cd f given by (1), utilizing (3), (17)
and (12), the pd f and cd f of the concomitant of rth case-II of d1os, Yd[r;n,m̃,k], are given by, 1 ≤ r ≤ n, respectively:

1d1[r;n,m̃,k](y) = fY(y)
[
1 + αB∗2(r; n, m̃, k)

(
(1 + p)Fp

Y(y) − 1
)]
, (38)

Gd1[r;n,m̃,k](y) = fY(y)
[
1 + αB∗2(r; n, m̃, k)

(
Fp

Y(y) − 1
)]
, (39)

where

B∗2(r; n, m̃, k) = (1 + p)cr−1

r∑
i=0

ai(r)
γi + p

− 1, (40)

ai(r) =
∏r

j=1,i, j
1

γ j−γi
, γ j , γi, 1 ≤ i ≤ r ≤ n, cr−1 =

∏r
j=1 γ j.
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Theorem 2.8. Based on Bairamov extension with pd f given by (5) and cd f given by (4) (with p1 = p2 = 1), utilizing
(7), (17) and (13), the pd f and cd f of the concomitant of rth case-II of d1os, Yd[r;n,m̃,k], are given by, 1 ≤ r ≤ n,
respectively:

1d2[r;n,m̃,k](y) = fY(y)
[
1 + αQ∗2(r; n, m̃, k)

(
1 − (1 + q2)FY(y)

) (
1 − FY(y)

)q2−1
]
, (41)

Gd2[r;n,m̃,k](y) = fY(y)
[
1 + αQ∗2(r; n, m̃, k)

(
1 − FY(y)

)q2
]
, (42)

where

Q∗2(r; n, m̃, k) = cr−1

r∑
i=0

ai(r)

(1 + q1)
q1∑
j=0

(
q1
j

)
(−1) j

γi + j
− q1

q1−1∑
j=0

(
q1 − 1

j

)
(−1) j

γi + j

 , (43)

ai(r) =
∏r

j=1,i, j
1

γ j−γi
, γ j , γi, 1 ≤ i ≤ r ≤ n, cr−1 =

∏r
j=1 γ j.

Remark 2.1. By substituting p = 1 in Huang and Kotz extension, and p1 = p2 = q1 = q2 = 1 in Bairamov extension,
Equations (18) to (43) reduces to the ordinary Morgenstern family, and we obtain the same results that mentioned in
Mohie El-Din et al. [16].

Now, we can generalize the previous models in unified models as follows: based on Huang and Kotz
extension, Equations (18), (26), (32) and (38), and Equations (19), (27), (33) and (39) can be combined,
respectively, as follows:

1
(1)
Y∗r

(y) = fY(y)
[
1 + αM∗r

(
(1 + p)Fp

Y(y) − 1
)]
, (44)

G(1)
Y∗r

(y) = fY(y)
[
1 + αM∗r

(
Fp

Y(y) − 1
)]
, (45)

where

Y∗r =


Y[r;n,m,k], f or case − I o f 1os
Yd[r;n,m,k], f or case − I o f d1os
Y[r;n,m̃,k], f or case − II o f 1os
Yd[r;n,m̃,k], f or case − II o f d1os,

(46)

M∗r =


T∗1(r; n,m, k), f or case − I o f 1os
T∗2(r; n,m, k), f or case − I o f d1os
B∗1(r; n, m̃, k), f or case − II o f 1os
B∗2(r; n, m̃, k), f or case − II o f d1os,

(47)

1
(1)
Y∗r

(y) =


11[r;n,m,k](y), pd f o f concomitant o f rth case − I o f 1os
1d1[r;n,m,k](y), pd f o f concomitant o f rth case − I o f d1os
11[r;n,m̃,k](y), pd f o f concomitant o f rth case − II o f 1os
1d1[r;n,m̃,k](y), pd f o f concomitant o f rth case − II o f d1os,

(48)

G(1)
Y∗r

(y) =


G1[r;n,m,k](y), cd f o f concomitant o f rth case − I o f 1os
Gd1[r;n,m,k](y), cd f o f concomitant o f rth case − I o f d1os
G1[r;n,m̃,k](y), cd f o f concomitant o f rth case − II o f 1os
Gd1[r;n,m̃,k](y), cd f o f concomitant o f rth case − II o f d1os.

(49)

Based on Bairamov extension, Equations (23), (29), (35) and (41), and Equations (24), (30), (36) and (42) can
be combined, respectively, as follows:

1
(2)
Y∗r

(y) = fY(y)
[
1 + αZ∗r

(
1 − (1 + q2)FY(y)

) (
1 − FY(y)

)q2−1
]
, (50)
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G(2)
Y∗r

(y) = fY(y)
[
1 + αZ∗r

(
1 − FY(y)

)q2
]
, (51)

where

Y∗r =


Y[r;n,m,k], f or case − I o f 1os
Yd[r;n,m,k], f or case − I o f d1os
Y[r;n,m̃,k], f or case − II o f 1os
Yd[r;n,m̃,k], f or case − II o f d1os,

(52)

Z∗r =


R∗1(r; n,m, k), f or case − I o f 1os
R∗2(r; n,m, k), f or case − I o f d1os
Q∗1(r; n, m̃, k), f or case − II o f 1os
Q∗2(r; n, m̃, k), f or case − II o f d1os.

(53)

1
(2)
Y∗r

(y) =


12[r;n,m,k](y), pd f o f concomitant o f rth case − I o f 1os
1d2[r;n,m,k](y), pd f o f concomitant o f rth case − I o f d1os
12[r;n,m̃,k](y), pd f o f concomitant o f rth case − II o f 1os
1d2[r;n,m̃,k](y), pd f o f concomitant o f rth case − II o f d1os,

(54)

G(2)
Y∗r

(y) =


G2[r;n,m,k](y), cd f o f concomitant o f rth case − I o f 1os
Gd2[r;n,m,k](y), cd f o f concomitant o f rth case − I o f d1os
G2[r;n,m̃,k](y), cd f o f concomitant o f rth case − II o f 1os
Gd2[r;n,m̃,k](y), cd f o f concomitant o f rth case − II o f d1os.

(55)

3. Information properties for concomitants in Huang and Kotz extension

In this section, we derive an analytical expression of entropy and Kullback-Leibler divergence for Y∗r in
Huang and Kotz extension. Also, applying the entropy for some well-known distributions of this model.

Theorem 3.1. For any absolutely continuous R.V. Y∗r, which is the concomitant of rth ordered R.V. of Huang and
Kotz extension defined in Equation (46), 1 ≤ r ≤ n. From Equations (10) and (44), Y∗r has entropy H(Y∗r) iff

H(Y∗r) = H(Y)[1 − αM∗r] + W(r, α) − α(1 + p)M∗r

∫
∞

−∞

Fp
Y(y) fY(y) ln fY(y)dy, (56)

where

W(r, α) = − ln(1 − αM∗r) + (1 − αM∗r) 2F(0,1,0,0)
1

(
1
p
,−1; 1 +

1
p

;
αM∗r(1 + p)
αM∗r − 1

)
, (57)

2F(0,1,0,0)
1 (a, b; c; z) is the derivative of the Gaussian hypergeometric function 2F1(a, b; c; z) with respect to b, and

2F(0,1,0,0)
1 (a, b; c; z) =

z a
c

F2 1 2
2 0 1

(
a + 1, b + 1; 1; 1, b;
2, c + 1;−; b + 1; z, z

)
, (58)

and the general form of it is known as Kampé de Fériet’s series (Srivastava and Karlsson [20]).

Proof. From Equations (10) and (44), the Shannon entropy of Huang and Kotz extension is given by:

H(Y∗r) =

∫
∞

−∞

1
(1)
Y∗r

(y) ln[1(1)
Y∗r

(y)]dy

= −

∫
∞

−∞

αM∗r(1 + p)Fp
Y(y) fY(y) ln[ fY(y)]dy + H(Y)[1 − αM∗r]

− E
1

(1)
Y∗r

(y)[ln[1 + αM∗r((1 + p)Fp
Y(y) − 1)]].

(59)
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To evaluate E
1

(1)
Y∗r

(y)[ln[1 + αM∗r((1 + p)Fp
Y(y) − 1)]]. First, we want to find E

1
(1)
Y∗r

(y)[1 + αM∗r((1 + p)Fp
Y(y) − 1)]t, let

u(t) = E
1

(1)
Y∗r

(y)[1 + αM∗r((1 + p)Fp
Y(y) − 1)]t

=

∫
∞

−∞

fY(y)[(1 − αM∗r) + (αM∗r(1 + p)Fp
Y(y))]t+1dy

=

t+1∑
j=0

(
t + 1

j

)
(αM∗r(1 + p)) j(1 − αM∗r)

t+1− j 1
jp + 1

,

(60)

then

ú(0) = E
1

(1)
Y∗r

(y)[ln[1 + αM∗r((1 + p)Fp
Y(y) − 1)]]

= ln(1 − αM∗r) − (1 − αM∗r) 2F(0,1,0,0)
1

(
1
p
,−1; 1 +

1
p

;
αM∗r(1 + p)
αM∗r − 1

)
,

(61)

and the result follows.

In the following examples, we will choose some subfamilies of Huang and Kotz extension when they
are exponential, Pareto and power function, and obtain its entropy as an applications of the last theorem.

Example 3.1. With the cd f of exponential distribution:

FY(y) = 1 − e−c y, y ≥ 0, c > 0,

from Equation (56), we get

H(Y∗r) = W(r, α) − (1 − αM∗r) (ln(c) − 1) − αM∗r(ln(c) − B[1+p]),

where B[n] = ψ(n + 1) − ψ(1) and ψ(.) is the digamma function.

Example 3.2. With the cd f of Pareto distribution:

FY(y) = 1 − y−c, y ≥ 1, c > 0,

from Equation (56), we get

H(Y∗r) = W(r, α) − (1 − αM∗r)
(
ln(c) −

1
c
− 1

)
−
αM∗r(c ln(c) − (1 + c)B[1+p])

c
.

Example 3.3. With the cd f of power function distribution:

FY(y) = yc, 0 ≤ y ≤ 1, c > 0,

from Equation (56), we get

H(Y∗r) = W(r, α) − (1 − αM∗r)
(
ln(c) +

1
c
− 1

)
−
αM∗r(c(1 + p) ln(c) + 1 − c)

c(1 + p)
.

3.1. Kullback-Leibler divergence

In this subsection, we obtain Kullback-Leibler divergence between concomitants of rth and sth ordered
R.V.’s of Huang and Kotz extension.
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Theorem 3.2. Let Y∗r and Y∗s be the concomitants of rth and sth ordered R.V.’s of Huang and Kotz extension. From
Equations (11) and (44), the Kullback-Leibler divergence between Y∗r and Y∗s is given by:

K(Y∗r,Y
∗

s) = −W(r, α) − ln(1 − αM∗s) + αM∗r 2F(0,1,0,0)
1

(
1 +

1
p
, 0; 2 +

1
p

;
αM∗s(1 + p)
αM∗s − 1

)
−

× (αM∗r − 1) 2F(0,1,0,0)
1

(
1
p
, 0; 1 +

1
p

;
αM∗s(1 + p)
αM∗s − 1

)
,

(62)

where W(r, α) is defined in (57), 2F(0,1,0,0)
1 (a, b; c; z) is defined in (58).
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