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Abstract. We define right and left invariant matrices as Boolean matrices that are solutions to certain
systems of matrix equations and inequalities over additively idempotent semirings. We provide improved
algorithms for computing the greatest right and left invariant equivalence and quasi-order matrices. The
improvements are based on the usage of the well-known partition refinement technique. Afterwards, we
present the application of right invariant matrices in the determinization of weighted automata over addi-
tively idempotent, commutative and zero-divisor free semirings. In particular, we provide improvements
of the well-known determinization method of weighted automata over tropical semirings given by Mohri
[Computational Linguistics 23 (2) (1997) 269–311].

1. Introduction

Algorithms for checking and computing the behavioural equivalences of various systems have been
investigated in many areas of mathematics and computer science under different names, most commonly as
simulations and bisimulations. Under the later notions they have been investigated in numerous settings,
e.g. in concurrency theory by Park [40] and Milner [37], in modal logic by van Benthem [3], in set theory
by Forti and Honsell [19], etc. They have also taken an important place in the automata theory, or more
precisely, in the context of nondeterministic [12, 17], weighted [4, 16], fuzzy [11, 13, 42, 46] and probabilistic
automata [2], etc. When observed between two identical nondeterministic automata, bisimulations have
been studied under the name right and left invariant relations [5–8, 25–28], and have been used for modeling
the indistinguishability of states of nondeterministic finite automata.

Right and left invariant fuzzy relations were studied in [14, 15, 36, 43]. Their definitions are based on
the corresponding crisp counterparts. Precisely, they are defined as solutions to certain systems of fuzzy
relation equations and inequalities (see also [21–24]). They have been used to model the indistinguishability
of states of fuzzy finite automata, and have been applied in the state reduction and determinization of fuzzy
automata (cf. above mentioned references and also [31, 35, 44]). The greatest right and left invariant fuzzy
quasi-orders and equivalences were calculated in [14, 15, 43] by algorithms that approximate the greatest
fixpoint by the means of the Kleene fixpoint theorem, and in [36] by partition refinement algorithms. Both
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variants run in the same, polynomial-time complexity, and rely on the usage of the right and left residuals
of fuzzy relations and fuzzy subsets.

Previous approach to defining and computing right and left invariant relations cannot be directly applied
to weighted automata over arbitrary semirings. As pointed out in [16], two issues should be addressed: we
need to provide an ordering in the semiring, and to provide a way to calculate right and left residuals in order
to compute the solutions to certain matrix equations and inequalities in the semiring. To overcome these
problems, in the same paper, the authors have defined several types of simulations and bisimulations for
weighted automata over additively idempotent semirings as Boolean matrices that satisfy ceratin systems
of matrix equations and inequalities. This is due to the fact that in additively idempotent semirings a
natural ordering exists. In addition, right and left residuals exist and can be computed in the class of
Boolean matrices. The latter is due to the fact that the zero and one of an additively idempotent semiring
form a subsemiring isomorphic to the Boolean semiring, thus matrices with entries in this subsemiring can
be treated as Boolean matrices, that is, as ordinary binary relations. Also, the authors in [16] have provided
algorithms for testing the existence and computing the greatest simulations and bisimulations, if such exist.

Motivated by previous results, we define right and left invariant matrices for weighted automata over
additively idempotent semirings. They are in a tight connection with certain types of simulations defined
in [16]. Therefore, the polynomial-time algorithms from [16] for computing the greatest simulations can be
used for computing the greatest right and left invariant quasi-order and equivalence matrices. We further
improve those algorithms by using the well-employed technique of partition refinement. Originally defined
in the relational setting by Kanellakis and Smolka [32], and further improved by Paige and Tarjan [39], the
partition refinement technique is used in many different area of computer science dealing with graphs,
strings, boolean matrices or automata [20]. While the direct method from [16] can calculate the greatest
right and left invariant quasi-order and equivalence matrices in O(mn5), we show that our methods for
computing the greatest right and left invariant equivalence matrices run in O(mn3) time, with m being the
size of the alphabet, and n being the size of the set of states of the weighted automaton.

Further, we study weakly right and left invariant quasi-order and equivalence matrices, and give
algorithms for their computation similar to those given for fuzzy automata in [43]. In the end, we show that
right and left invariant matrices can be used in the determinization of weighted automata over additively
idempotent, commutative and zero-divisor free semirings, as it was done for fuzzy automata in [44].
Determinization of automata is a well-elaborated problem with a long history, starting back from the
paper of Rabin and Scott [41] in 1959. The original determinization algorithm, also known as the subset
construction, meant the construction of the deterministic automaton in which every state represents the set
of states that are reached in the original nondeterministic automaton at the current position. The resulting
automaton has size 2n, given a nondeterministic automaton of size n. The determinization has a wise range
of applications, including lexical analysis [45, Chapter 8], pattern matching based on regular expressions
[29, Chapter 4], analysis of protein sequences [34], and so forth. It is of a special interest in the content of
weighted finite automata (WFAs, for short), where the exponential blow up of states is even more present,
resulting sometimes even in deterministic WFAs with infinite number of states (see a classical reference
on weighted automata [18], as well as particular results on determinization of weighted automata over
tropical semirings [38], arbitrary semirings [33], strong bimonoids [10, 30]). As a particular case, our
algorithm outperforms the determinization method by Mohri [38] for weighted automata over tropical
semirings.

In Section 2 we recall basic notions and notations regarding additively idempotent semirings, matrices
over them, Boolean matrices and their right and left residuals. Further, we recall notion of WFAs and
deterministic WFAs, as well as factorizations. In Section 3, we define right and left invariant matrices
and their weakly counterparts. We present improved algorithms for computing the greatest right and
left invariant equivalence matrices, as well as their generalized versions for computing the greatest right
and left invariant quasi-order matrices. In Section 4 we show the applications of right and left invariant
matrices and their weakly counterparts in the determinization of weighted automata over commutative,
additively idempotent, zero-divisor free semirings. As shown by examples in the same section, our method
can produce finite deterministic weighted automata in some cases when the previous algorithms result in
infinite ones.
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2. Preliminaries

Throughout the paper, N denotes the set of natural numbers (without zero) and R denotes the set of
real numbers. Also, for an arbitrary assertion ϕ in the classical Boolean logic let dϕe denote its truth value,
i.e., dϕe = 1 if ϕ is true, and dϕe = 0 if ϕ is false.

2.1. Semirings and matrices
A semiring is a five-tuple (S,+, ·, 0, 1) consisting of a set S together with two binary operations addition +

and multiplication · on S, along with two constants 0, 1 ∈ S such that:

(i) (S,+, 0) is a commutative monoid,
(ii) (S, ·, 1) is a monoid,

(iii) Multiplication left and right distributes over addition, i.e. a · (b+c) = a ·b+a ·c and (a+b) ·c = a ·c+b ·c
for every a, b, c ∈ S,

(iv) Multiplication by 0 annihilates S, i.e. a · 0 = 0 · a = 0 for every a ∈ S.

As usual, we identify the semiring with its carrier set. A semiring S is called zero-divisor free if a · b = 0
implies a = 0 or b = 0 for every a, b ∈ S, and it is called commutative if (S, ·, 1) is a commutative monoid. If,
in addition to (i)-(iv), S satisfies the condition

(v) a + a = a for every a ∈ S,

then S is called additively idempotent. On an additively idempotent semiring S we define a partial order by

a 6 b ⇔ a + b = b, (1)

for every a, b ∈ S. If S is additively idempotent semiring, then the monoid (S,+, 0) is a join-semilattice
(upper semilattice) with zero.

Let A and B be finite nonempty sets. An A × B-matrix over S is any mapping µ : A × B → S. The set
of all A × B-matrices over S is denoted with SA×B. An A-column vector over S is any A × C-matrix over S
with |C| = 1. Similarly, an A-row vector over S is any C × A-matrix over S with |C| = 1. We denote the set
of all A-column vectors over S with SA×1, and the set of all A-row vectors over S with S1×A. For the sake of
simplicity, we identify any A-column vector or A-row vector with the mapping µ : A→ S, and call it simply
an A-vector. Similarly, with SA we denote the set of all A-vectors. For a matrix µ ∈ SA×B and elements a ∈ A
and b ∈ B, we define the ath row-vector aµ ∈ S1×B and the bth column-vector µb ∈ SA×1 with aµ(y) = µ(a, y) and
µb(x) = µ(x, b) for every y ∈ B and x ∈ A. For any matrix µ ∈ 2A×B, its transposed matrix µT

∈ 2B×A is defined
in a usual way, i.e. µT(b, a) = µ(a, b), for every a ∈ A and b ∈ B.

Let A and B be finite nonempty sets. For two A×B-matrices µ1, µ2 ∈ SA×B, their matrix sum µ1 +µ2 ∈ SA×B

and the Hadamard product µ1 � µ2 ∈ SA×B are defined pointwise by

(µ1 + µ2)(a, b) = µ1(a, b) + µ2(a, b), (µ1 � µ2)(a, b) = µ1(a, b) · µ2(a, b),

for every a ∈ A and b ∈ B. Also, let C be a finite nonempty set, and µ1 ∈ SA×B and µ2 ∈ SB×C. Then, the
matrix product µ1 · µ2 ∈ SA×C is defined for every a ∈ A and c ∈ C with

(µ1 · µ2)(a, c) =
∑
b∈B

µ1(a, b) · µ2(b, c). (2)

When µ1 ∈ S1×B or µ2 ∈ SB×1, then (2) defines matrix-vector products, and when µ1 ∈ S1×B and µ2 ∈ SB×1,
then (2) defines the scalar product of µ1 and µ2. Note that the matrix product and matrix-vector products are
associative (whenever they are defined), due to the distributivity of the multiplication over the addition.
In addition, (SA×A, ·, IA) is a monoid, where IA is the identity matrix defined with IA(a, a) = 1 for every a ∈ A,
and IA(a, b) = 0 for every a, b ∈ A with a , b. We also define the universal matrix UA ∈ SA×A with UA(a, b) = 1
for every a, b ∈ A. For n ∈ N0, the nth matrix power of a matrix % ∈ SA×A is a matrix %n

∈ SA×A defined
inductively by %0 = IA and %n+1 = %n

· %.
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Let S be an additively idempotent semiring. For two A× B-matrices µ1, µ2 ∈ SA×B, their ordering µ1 6 µ2
is defined pointwise, i.e.

µ1 6 µ2 if µ1(a, b) 6 µ2(a, b), (3)

for every a ∈ A and b ∈ B. This ordering is compatible with the matrix sum, product and transposition, i.e.,
for every µ1, µ2, µ′1, µ

′

2 ∈ SA×B and ν1, ν2 ∈ SB×C we have:

µ1 6 µ2 and µ′1 6 µ
′

2 implies µ1 + µ′1 6 µ2 + µ′2,

µ1 6 µ2 and ν1 6 ν2 implies µ1 · ν1 6 µ2 · ν2,

µ1 6 µ2 implies µT
1 6 µ

T
2 .

For any additively idempotent semiring S and a nonempty set A, the structure (SA×A,+, ·, 0A, IA) forms
an additively idempotent semiring, where 0A denotes the zero matrix defined with 0A(a, a) = 0 for every
a ∈ A. In addition, the natural ordering of this additively idempotent semiring, defined by the rule (1),
coincides with the pointwise ordering of matrices (3).

The following common notations are well-known in the recent literature (cf. [16]). We use
∑

and
∏

to
denote the addition and multiplication of family of matrices in SA×B, respectively, as well as

⊙
to denote

the Hadamard product of family of matrices in SA×B. We comply with the following standard conventions
for square matrices in SA×A:

∑
∅ = 0A and

∏
∅ =

⊙
∅

= IA.
Matrices over the Boolean semiring are called Boolean matrices. The set of all A × B-Boolean matrices is

denoted with 2A×B. For an additively idempotent semiring S, the set {0, 1} forms a Boolean subsemiring of
S. Thus, matrices over S taking values in {0, 1} can be identified with Boolean matrices, i.e. we can say that
2A×B is a subsemiring of an additively idempotent semiring SA×B.

Moreover, Boolean matrices from 2A×B can be identified with binary relations between sets A and B.
From this point of view, the ordering of matrices corresponds to the set-theoretical inclusion, the matrix
sum and the Hadamard product correspond to the set-theoretical union and intersection, and the matrix
product corresponds to the composition of binary relations. In addition, we define the difference between
% ∈ 2A×B and θ ∈ 2A×B as the Boolean matrix φ = θ−% ∈ 2A×B that satisfies φ+% = θ. Note that the difference
between matrices correspond to the set-theoretical difference.

In addition, we say that a Boolean matrix % ∈ 2A×A is reflexive if %(a, a) = 1 for every a ∈ A, symmetric
if %(a, b) = %(b, a) for every a, b ∈ A, and transitive if %(a, b) · %(b, c) 6 %(a, c) for every a, b, c ∈ A. A reflexive
and transitive Boolean matrix is called a quasi-order matrix, and a symmetric quasi-order matrix is called an
equivalence matrix. Note that every quasi-order matrix, and hence, every equivalence matrix, is additively
idempotent, i.e. it satisfies %·% = %. Also, it is easy to verify that for every two quasi-order (resp. equivalence)
matrices %, θ ∈ 2A×A we have that % � θ ∈ 2A×A is also a quasi-order (resp. equivalence) matrix. In addition,
the following lemma states the basic property of quasi-order (and also equivalence) matrices.

Lemma 2.1. Let %, θ ∈ 2A×A be two quasi-order matrices such that % 6 θ. Then % · θ = θ · % = θ.

For an equivalence matrix % ∈ 2A×A, we have that a% = %a, therefore, we use the common notion
%a = a% = %a to denote the equivalence class of % by a. The set of all equivalence classes of % is denoted with
A/% and called the factor set of A with respect to %. As in the case of the equivalence relations, we have that
%a
� %b is the zero vector when %(a, b) = 0, %a = %b when %(a, b) = 1, and

∑
a∈A %

a = 1A, where 1A is the A-vector
whose all values are 1.

Let %, θ ∈ 2A×B be quasi-order matrices. We say that % is a refinement of θ if % 6 θ, i.e., if % is included in
θ. It is easy to check that % is a refinement of θ if and only if every row vector of % is included in some row
vector of θ (or equivalently, every column vector of % is included in some column vector of θ).

Let S be an additively idempotent semiring, and let α ∈ SA×C and β ∈ SB×C. Then the Boolean left residual
of β by α is the Boolean matrix β/α ∈ 2B×A defined by

(β/α)(b, a) = daα 6 bβe, (4)
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for every b ∈ B and a ∈ A. The Boolean left residual β/α ∈ 2B×A of β by α is the greatest solution in the set
of all Boolean B × A-matrices to the matrix inequality χ · α 6 β, with χ ∈ 2B×A being an unknown matrix.
Dually, for α ∈ SC×A and β ∈ SC×B, we define the Boolean right residual of β by α as the Boolean matrix
α\β ∈ 2A×B defined by

(α\β)(a, b) = dαa 6 βbe, (5)

for every a ∈ A and b ∈ B. The Boolean right residual α\β ∈ 2A×B of β by α is the greatest solution in the set
of all Boolean A× B-matrices to the matrix inequality α · χ 6 β, with χ ∈ 2A×B being an unknown matrix. In
addition, for α ∈ SA×A and β ∈ SA×A, we define a Boolean matrix α|β ∈ 2A×A as α|β = (α\β) � (α/β).

Also, let ν ∈ SA and η ∈ SB. Then the Boolean left residual of η by ν and the Boolean right residual of η by ν
are Boolean matrices η/ν ∈ 2B×A and ν\η ∈ 2A×B defined by

(η/ν)(b, a) = (ν\η)(a, b) = dν(a) 6 η(b)e,

for every b ∈ B and a ∈ A, i.e. we have (η/ν) = (ν\η)T. The Boolean left residual η/ν ∈ 2B×A of η by ν is the
greatest solution in the set of all Boolean B × A-matrices to the matrix inequality χ · ν 6 η, with χ ∈ 2B×A

being an unknown matrix, while the Boolean right residual ν\η ∈ 2A×B of η by ν is the greatest solution in
the set of all Boolean A × B-matrices to the matrix inequality ν · χ 6 η, with χ ∈ 2A×B being an unknown
matrix. For more information on Boolean right and left residuals we refer to [16]. In addition, for ν, η ∈ SA

we define an A × A-Boolean matrix ν|η ∈ 2A×A with ν|η = (ν\η) � (ν/η), or equivalently,

(ν|η)(a, b) = dν(a) = η(b)e, (6)

for every a, b ∈ A.
The following properties related to Boolean residuals are used through the rest of the paper.

Lemma 2.2. a) Let %, θ ∈ 2A×A be quasi-order matrices such that % is a refinement ofθ. Then % is also a refinement
of θa/θa, for every a ∈ A.

b) Let %, θ ∈ 2A×A be equivalence matrices such that % is a refinement of θ. Then % is also a refinement of θa
|θa,

for every a ∈ A.

Proof. a) By % 6 θ and the fact that θ is a quasi-order matrix, it follows that % ·θ 6 θ ·θ = θ. Choose arbitrary
a, b ∈ A. Then we have

(% · θ)(b, a) =
∑
c∈A

%(b, c) · θ(c, a) =
∑
c∈A

%(b, c) · θa(c) = (% · θa)(b), (7)

thus we have % · θa 6 θa, or equivalently, % 6 θa/θa, for every a ∈ A.
b) Since % and θ are equivalence matrices, by a) we have % 6 θa/θa, for every a ∈ A. In addition, by the

symmetry of % we obtain that, for every a ∈ A, % = %T 6 (θa/θa)T = θa
\θa. Therefore, % 6 θa

|θa for every
a ∈ A.

2.2. Weighted automata

In the rest of the paper, X+ and X∗ denote, respectively, the free semigroup and the free monoid over an
alphabet X, and ε denotes the empty word in X∗.

Let S be an arbitrary semiring. A weighted finite automaton (WFA, for short) over X and S, or simply
just a weighted finite automaton, is a quadruple A = (A, δ, σ, τ), where A is a finite nonempty set of states,
δ : A × X × A → S is a weighted transition function, σ ∈ SA is an initial weighted vector and τ ∈ SA is a final
weighted vector. For each x ∈ X we define a weighted transition matrix δx ∈ SA×A with δx(a, b) = δ(a, x, b), for all
a, b ∈ A. In addition, for every u ∈ X∗ we define an A × A-matrix δu ∈ SA×A inductively as follows: δε = IA,
and for every u ∈ X∗ and x ∈ X we set δux = δu · δx. Moreover, for every u ∈ X∗ we define matrices σu ∈ SA×A

and τu ∈ SA×A with σu = σ · δu and τu = δu · τ.
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We visualize a WFA A by a labelled directed graph whose nodes are states of A, and an edge from a
node a into a node b is labelled by pairs of the form x/δ(a, x, b), for any x ∈ X. Also, we represent σ by
drawing for each node a the ingoing arrow labelled by σ(a), and represent τ by double-circling every node a
such that τ(a) , 0, and putting a label τ(a) by that node. We call this graph the transition graph ofA. Usually,
edges and ingoing arrows labelled by 0 are not shown in the transition graph. Also, we do not explicitly
show the label on the ingoing arrow or double-circled node if it is equal to 1.

A formal power series over X and S, or simply just a series, is any mapping ϕ : X∗ → S. The behaviour of a
weighted finite automatonA = (A, δ, σ, τ) is the series [[A]] defined by

[[A]](u) = σ · δu · τ =
∑
a,b∈A

σ(a) · δu(a, b) · τ(b), (8)

for every u ∈ X∗. Weighted automata A and B are equivalent if they have the same behaviour, i.e., if
[[A]] = [[B]].

A complete deterministic (or in some sources, sequential) weighted finite automaton (CDWFA, for short)
is a quadruple A = (A, δ, {a0/σ(a0)}, τ), where A is a finite nonempty set of states, δ : A × X × A → S is a
weighted transition function, such that for all x ∈ X and b, c1, c2 ∈ A, if δx(b, c1) , 0 and δx(b, c2) , 0 then
c1 = c2, and for every x ∈ X and b ∈ A there exists c ∈ A such that δx(b, c) , 0, a0 ∈ A is the initial state with
the initial weight σ(a0) , 0, and τ ∈ SA is a final weighted vector. Also, we allow the set A to be infinite, and
thenA is called a complete deterministic weighted automaton (for short: CDWA).

The behaviour of the CDWA is the series defined for every u = x1x2 . . . xn ∈ X∗ with

[[A]](u) = σ(a0) ·
( n∏

i=1

δxi (ai−1, ai)
)
· τ(an), (9)

where a1, a2 . . . , an ∈ A is a unique sequence of states such that δxi (ai−1, ai) > 0 for every i ∈ {1, 2, . . . ,n}.

2.3. Factorizations
Let A be a nonempty finite set and S be an arbitrary zero-divisor free semiring. We call an ordered pair

D = ( f , 1) of functions f : SA
→ SA and 1 : SA

→ S a factorization of dimension A, or simply just a factorization
when A is clear from the context, if the following two properties hold:

µ = 1(µ) · f (µ), for every µ ∈ SA,

1(0A) = 1.

For every µ ∈ SA we have 1(µ) , 0 and µ = 0A if and only if f (µ) = 0A. The factorization DN = ( fN, 1N)
of A, where 1N(µ) = 1 and fN(µ) = µ, for every µ ∈ SA, is called the trivial factorization. Every zero-divisor
free semiring admits a factorization, namely the trivial factorization. A factorization D = ( f , 1) is called
maximal if f (a · µ) = f (µ) for every a ∈ S and µ ∈ SA such that a · µ , 0A. As noted in [33], the restriction
“a · µ , 0A” is necessary, since otherwise we have that f (µ) = f (0 · µ) = f (0A), for every µ ∈ SA, and the
notion of the maximal factorization becomes meaningless. If D = ( f , 1) is a maximal factorization, then
f ( f (µ)) = f (1(µ) · f (µ)) = f (µ) for every µ ∈ SA.

Example 2.3. In this example, we present maximal factorizations for some additively idempotent semirings. Let A
be a nonempty finite set.

1. The Boolean semiring is the structure ({0, 1},max,min, 0, 1). Any two-element additively idempotent semir-
ing is isomorphic to the Boolean semiring. The Boolean semiring admits only the trivial factorization, i.e.
1(µ) = 1 and f (µ) = µ, for every µ ∈ {0, 1}A, which is also a maximal factorization.

2. The tropical semiring is the semiring (R+∪{∞},min,+,∞, 0). In the tropical semiring, we define the Mohri’s
factorization with 1(µ) = mina∈A µ(a) and f (µ) = µ′, with µ′ ∈ (R+ ∪ {∞})A defined with 1(µ) + µ′ = µ, for
every µ ∈ (R+ ∪ {∞})A. The A-vector µ′ is uniquely determined. Then the Mohri’s factorization is a maximal
factorization.
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3. The Viterbi semiring (also known as the probabilistic semiring) is the semiring ([0, 1],max, ·, 0, 1). In the
Viterbi semiring, we also define the Mohri’s factorization with 1(µ) = maxa∈A µ(a) and f (µ) = µ′, with
µ′ ∈ [0, 1]A defined with 1(µ) · µ′ = µ, for every µ ∈ [0, 1]A. The A-vector µ′ is also uniquely determined, and
the Mohri’s factorization is a maximal factorization.

Let us note that previous examples of additively idempotent semirings are all also examples of commutative and
zero-divisor free semirings.

3. Right and left invariant Boolean matrices and weakly counterparts

LetA = (A, δ, σ, τ) be a WFA over an additively idempotent semiring S. A Boolean A×A-matrix % ∈ 2A×A

over S is called r-stable if

% · δx · % 6 δx · %, for every x ∈ X, (10)

and is called right invariant if it is r-stable and it satisfies

% · τ 6 τ. (11)

Dually, a Boolean A × A-matrix % ∈ 2A×A over S is called l-stable if

% · δx · % 6 % · δx, for every x ∈ X, (12)

and is called left invariant if it is l-stable and it satisfies

σ · % 6 σ. (13)

A Boolean A × A-matrix % ∈ 2A×A is called stable if it is both r-stable and l-stable. Furthermore, a Boolean
A × A-matrix % ∈ 2A×A is called weakly right invariant if

% · τu 6 τu, for every u ∈ X∗. (14)

and is called weakly left invariant if

σu · % 6 σu, for every u ∈ X∗. (15)

By the induction on the length of the word u ∈ X∗, one can easily verify that every right (resp. left) invariant
matrix is weakly right (resp. weakly left) invariant. Note that, if % is a reflexive matrix, then all systems of
inequalities (10)–(15) become systems of equations.

Right and left invariant matrices are closely related to simulations for WFAs over additively idempotent
semirings introduced in [16]. Namely, the following lemma holds.

Lemma 3.1. Let A = (A, δ, σ, τ) be a WFA over an additively idempotent semiring S, and let % ∈ 2A×A be a
quasi-order matrix. Then the following two conditions are equivalent for every x ∈ X:

a) % · δx · % = δx · %,
b) % · δx 6 δx · %.

Proof. Choose an arbitrary x ∈ X. If % ·δx ·% = δx ·%, then by the reflexivity of %we obtain % ·δx 6 % ·δx ·% = δx ·%.
Conversely, if % · δx 6 δx · %, since % is a quasi-order matrix we have % · δx · % 6 δx · % · % = δx · %. The other
inequality follows from the reflexivity of %.

By Lemma 3.1 we have that a quasi-order matrix % ∈ 2A×A is right invariant if its transpose matrix %T is a
forward simulation onA. Similarly, we prove that a quasi-order matrix is left invariant if it is a backward
simulation onA.
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Theorem 3.2. LetA = (A, δ, σ, τ) be a WFA over an additively idempotent semiring S. Then there exists the greatest
right and left invariant (resp. weakly right and weakly left invariant) quasi-order matrix.

Proof. Since the identity matrix IA is right invariant quasi-order matrix, the family {%i}i∈I of all right invariant
quasi-order matrices is nonempty. By employing Lemma 3.1, we easily conclude that the sum of elements
from the family {%i}i∈I is also right invariant matrix, but not necessarily a quasi-order matrix. On the other
hand, since the matrix square (and thus, an arbitrary matrix power) of the right invariant quasi-order matrix
is also a right invariant quasi-order matrix, we conclude that the transitive closure of the sum of the family
{%i}i∈I, defined by

%ri =
∑
n∈N

(∑
i∈I

%i

)n
,

is also a right invariant quasi-order matrix. Therefore, %ri is the greatest right invariant quasi-order matrix.
Similarly we prove the assertion for the greatest left invariant matrix, and the same arguments are valid for
weakly right and weakly left invariant matrices.

The algorithms for computing the greatest quasi-order matrices can be easily derived from the algorithms
for computing the greatest simulations between weighted automata [16]. The following theorem provides
a method for constructing the greatest solution to the system of matrix inequalities (10)–(11). The method
is based on computing Boolean left residuals of matrices defined by rule (4). Since it represents a variation
of [16, Theorem 5.4], we omit its proof.

Theorem 3.3. Let A = (A, δ, σ, τ) be a WFA over an additively idempotent semiring, and let {%k}k∈N ⊆ 2A×A be a
sequence of Boolean A × A-matrices defined inductively with

%1 = τ/τ and %k+1 = %k �
⊙
x∈X

(δx · %k)/(δx · %k), for every k ∈N.

Then the sequence {%k}k∈N is finite and descending, and it stabilizes for some m ∈ N, i.e. there is the least m ∈ N
such that %m = %m+1. In addition, %m is the greatest right invariant quasi-order matrix.

In a similar way we can compute the greatest left invariant quasi-order matrix, i.e. the only difference
is that we compute the sequence {%k}k∈N ⊆ 2A×A by employing the Boolean right residual of matrices (5) in
the following way

%1 = τ\τ and %k+1 = %k �
⊙
x∈X

(%k · δx)\(%k · δx), for every k ∈N,

as well as the greatest right and left invariant equivalence matrices, where the sequence {%k}k∈N ⊆ 2A×A is
build in the corresponding of the following ways

%1 = τ|τ and %k+1 = %k �
⊙
x∈X

(δx · %k)|(δx · %k), for every k ∈N, or

%1 = τ|τ and %k+1 = %k �
⊙
x∈X

(%k · δx)|(%k · δx), for every k ∈N.

The corresponding algorithms for computing the greatest right or left invariant quasi-order or equiva-
lence matrices can be easily derived from previous formulae. They all finish in a finite number of steps and
in polynomial time, or more precisely, in O(mn5c+) time complexity, where |A| = n, |X| = m, and c+ denotes
the computation cost for performing the operation + in the semiring S. (cf. [16]).

As noted in the introduction, the algorithm for computing the greatest right or left invariant equivalence
matrix can be improved by using the well-exploited idea of partition refinement. Precisely, we employ the
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idea behind the algorithm by Paige and Tarjan [39] and, in contrast to the direct method given by Theo-
rem 3.3, we maintain the additional partition alongside to the current partition such that some additional
properties are satisfied. In what follows, we give improved algorithms for computing the greatest right or
left invariant equivalence matrices.

Let A = (A, δ, σ, τ) be a WFA over an additively idempotent semiring S, and let %, θ ∈ 2A×A be two
equivalence matrices. Then we say that % is stable with respect to θ if

% 6
⊙
x∈X

(δx · θ
a)|(δx · θ

a), for every a ∈ A. (16)

In case when A is a WFA over the Boolean semiring, the previous definition coincides with the one
given for partitions on the set of states of a nondeterministic automaton (cf. [1, 9, 39]).

Lemma 3.4. Let A = (A, δ, σ, τ) be a WFA over an additively idempotent semiring S and % ∈ 2A×A an equivalence
matrix. Then % is stable if and only if it is stable with respect to itself.

Proof. The equivalence matrix % ∈ 2A×A is stable iff it is both r-stable and l-stable. By (7), % ∈ 2A×A is stable iff

% · δx · %
a 6 δx · %

a and %a
· δx · % 6 %

a
· δx, for every a ∈ A and x ∈ X,

or equivalently,

% 6 (δx · %
a)/(δx · %

a) and % 6 (%a
· δx)\(%a

· δx), for every a ∈ A and x ∈ X,

which was to be proved.

Lemma 3.5. Let A = (A, δ, σ, τ) be a WFA over an additively idempotent semiring, and let %, θ ∈ 2A×A be two
equivalence matrices. If % 6 θ and % is r-stable, then % is stable w.r.t θ.

Proof. Since % satisfies (10), we have

% · δx · % · θ 6 δx · % · θ, for every x ∈ X,

and according to Lemma 2.1 we further have

% · δx · θ 6 δx · θ, for every x ∈ X.

By employing (7), we conclude that

% · δx · θ
a 6 δx · θ

a, for every x ∈ X and every a ∈ A,

which is equivalent to

% 6 (δx · θ
a)/(δx · θ

a), for every x ∈ X and every a ∈ A.

Furthermore, by the symmetry of % we get

% = %T 6 ((δx · θ
a)/(δx · θ

a))T = (δx · θ
a)\(δx · θ

a), for every x ∈ X and every a ∈ A.

Hence, % 6 (δx · θa)|(δx · θa), for every x ∈ X and a ∈ A, thus (16) follows.

Theorem 3.6. LetA = (A, δ, σ, τ) be a WFA over an additively idempotent semiring, and let {θk}k∈N and {%k}k∈N be
two sequences of Boolean A × A-matrices defined inductively in the following way: For k = 1, set

θ1 = UA, (17)

%1 = τ|τ �
⊙
x∈X

(δx · θ
a
1)|(δx · θ

a
1), for some a ∈ A. (18)
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Assume that we have computed θk and %k in the current step k. In the next step, if θk , %k, then select some a ∈ A
such that θa

k , %
a
k, and compute θk+1 and %k+1 in the following manner

θk+1 = θk � (%a
k|%

a
k), (19)

%k+1 = %k �
⊙
x∈X

(
(δx · %

a
k)|(δx · %

a
k) � (δx · (θa

k − %
a
k))|(δx · (θa

k − %
a
k))

)
. (20)

In other case, when θk = %k, set θk = θk+1 and %k = %k+1. Then the following properties hold:

a) Sequences {θk}k∈N and {%k}k∈N are descending;
b) %k and θk are equivalence matrices, for every k ∈N;
c) %k is a refinement of θk (i.e. %k 6 θk), for every k ∈N;
d) %k is stable w.r.t. θk, for every k ∈N;
e) There exists s ∈N such that θs = %s, and %s is the greatest right invariant equivalence matrix on A.

Proof. a) Since the Hadamard product
⊙

is applied on Boolean matrices, as well as that 0 is the least
element in the additively idempotent semiring, by (19) it follows that θk+1 6 θk, and by (20) we have that
%k+1 6 %k.

b) Follow directly from definitions of θk and %k.
c) We prove that %k 6 θk holds for every k ∈ N by induction on k. For k = 1 we have %1 6 UA = θ1.

Assume now that %m 6 θm for some k = m. According to part a), we have that %m+1 6 %m. On the other
hand, according to Lemma 2.2 we have %m 6 %c

m|%
c
m for every c ∈ A. Combining this with the induction

assumption %m 6 θm, as well that θm and %c
m|%

c
m are Boolean matrices, for every c ∈ A, we obtain:

%m 6 θm � (%a
m|%

a
m) = θm+1.

Hence, %m+1 6 %m 6 θm+1, which was to be proven.
d) We prove that

%k 6
⊙
x∈X

(δx · θ
a
k)|(δx · θ

a
k), for every a ∈ A, (21)

holds for every k ∈N by induction on k. We can conclude directly from (18) that (21) is valid for k = 1.
In case when k = 2 we have θ2 = θ1 � (%a

1|%
a
1) for some a ∈ A. Since θ1 has exactly one equivalence class

θa
1 = 1A, this means that θ2 is obtained from θ1 by splitting the equivalence class θa

1 into two equivalence
classes %a

1 and θa
1 − %

a
1. According to (20) we have

%2 = %1 �

⊙
x∈X

(
(δx · %

a
1)|(δx · %

a
1) � (δx · (θa

1 − %
a
1))|(δx · (θa

1 − %
a
1))

)
,

which means that

%2 6
⊙
x∈X

(δx · %
a
1)|(δx · %

a
1)

and

%2 6
⊙
x∈X

(δx · (θa
1 − %

a
1))|(δx · (θa

1 − %
a
1)),

i.e., (21) is valid for both equivalence classes of θ2, thus (21) follows in case when k = 2.
Assume now that (21) is valid for some k = m. Consider the equivalence matrix θm+1 = θm � (%a

m|%
a
m)

for some a ∈ A such that θa
m , %

a
m. From c) it follows that %a

m < θa
m, which means that θm+1 is obtained

from θm by splitting the equivalence class θa
m into two equivalence classes %a

m and θa
m − %

a
m. Thus, for every
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equivalence class θb
m+1 ∈ θm+1, b ∈ A, such that θb

m+1 , %
a
m and θb

m+1 , θ
a
m − %

a
m, according to a) and the

induction assumption we have

%m+1 6 %m 6
⊙
x∈X

(δx · θ
b
m)|(δx · θ

b
m) =

⊙
x∈X

(δx · θ
b
m+1)|(δx · θ

b
m+1).

In other words, (21) holds for every b ∈ A such that θb
m+1 , %

a
m and θb

m+1 , θ
a
m − %

a
m. On the other hand,

directly from (20) we have

%m+1 = %m �
⊙
x∈X

(
(δx · %

a
m)|(δx · %

a
m) � (δx · (θa

m − %
a
m))|(δx · (θa

m − %
a
m))

)
which means that

%m+1 6
⊙
x∈X

(δx · %
a
m)|(δx · %

a
m)

and

%m+1 6
⊙
x∈X

(δx · (θa
m − %

a
m))|(δx · (θa

m − %
a
m)),

i.e., (21) holds in the case k = m + 1, which was to be proven.
e) Since A is a finite set, we have that 2A×A is finite, thus both sequences {θk}k∈N and {%k}k∈N stabilize.

But, if for some s ∈Nwe have θs = θs+1, by the construction of these two sequences it follows that θs = %s.
In fact, if θs = θs+1 for some s ∈ N, we have that every matrix θm+1, with m < s, is obtained from θm by

splitting some equivalence class of θm into two classes. Since θ1 has exactly one equivalence class, we have
that θs can have at most |A| equivalence classes. In other words, it follows that s 6 |A|.

It remains to prove that %s is the greatest right invariant equivalence matrix. Since by d) %s is stable w.r.t.
θs, and θs = %s, we obtain that %s is stable, i.e.

%s 6
⊙
x∈X

(δx · %
c
s)|(δx · %

c
s),

for every c ∈ A, which means that %s satisfies (10). Also, by a) we have %s 6 %1 6 τ|τ, therefore, %s also
satisfies (11) and %s is a right invariant equivalence matrix. To prove that %s is also the greatest one, we
prove that ω 6 %k for every right invariant equivalence matrix ω ∈ 2A×A by induction on k.

For k = 1, we have that ω 6 UA = θ1, and since ω is r-stable, by Lemma 3.5 we have that ω is stable w.r.t.
θ. In addition, ω satisfies (11), which means that

ω 6 τ/τ and ω = ωT 6 (τ/τ)T = τ\τ,

therefore, ω 6 τ|τ, thus we have

ω 6 τ|τ �
⊙
x∈X

(δx · θ
a
1)|(δx · θ

a
1) = %1.

Assume now that ω 6 %m for some k = m. By b) we have that ω 6 θm, and by Lemma 2.2 we also have that
ω 6 %a

m|%
a
m, where a ∈ A such that %a

m , θ
a
m. Therefore,

ω 6 θm � (%a
m|%

a
m) = θm+1.

Since ω is r-stabile, from Lemma 3.5 it follows that ω is stable w.r.t. θm+1, i.e. (21) holds for all equivalence
classes of θm+1, and particularly, for equivalence classes %a

m and θa
m − %

a
m. That means that

ω 6 %m �
⊙
x∈X

(
(δx · %

a
m)|(δx · %

a
m) � (δx · (θa

m − %
a
m))|(δx · (θa

m − %
a
m))

)
= %m+1,

which was to be proven.
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Algorithm 1 Computation of the greatest right invariant equivalence matrix

Input: Weighted automatonA = (A, δ, σ, τ) over alphabet X and additively idempotent semiring S
Output: The greatest right invariant equivalence matrix

1: θ← UA
2: %← τ|τ �

⊙
x∈X(δx · θa)|(δx · θa), for some a ∈ A

3: while θ , % do
4: Choose a ∈ A such that θa , %a

5: θ1 ← θ � (%a
|%a)

6: %1 ← % �
⊙

x∈X

(
(δx · %a)|(δx · %a) � (δx · (θa

− %a))|(δx · (θa
− %a))

)
7: θ← θ1, %← %1
8: end while
9: return %

The previous theorem can be transformed into the algorithm for computing the greatest right invariant
equivalence matrix on a WFA over the additively idempotent semiring.

According to Theorem 3.6, sequences {θk}k∈N and {%k}k∈N are descending and stabilizing, therefore Algo-
rithm 1 always terminates in a finite number of steps, regardless of the underlying additively idempotent
semiring.

We now analyse the running time of Algorithm 1. To that effort, as before, denote with |A| = n and
|X| = m. Also, denote with c+ and c·, respectively, the computation costs for performing operations + and ·
in S. For example, when S is the Boolean, tropical or Viterbi semiring, then we have c+ = c· = 1.

We analyse only those steps of Algorithm 1 that consume more thanO(1) computation time. Step 1 takes
O(n2) time, while Step 2 requires computing the Hadamard product of m + 1 Boolean matrices, where each
Boolean matrix is computed by means of formula (6). Since the elements of the Boolean matrix can only be
zero or one from the semiring, the multiplication can be done in the constant time, thus the computation of
every A-vector δx · θa takes O(n2c+) time. The computation of the matrix defined by formula (6) requires n2

equality checking, thus taking O(n2) time. Therefore, Step 2 is performed in O(mn2c+) time.
In Step 4 we have, in the worst case, to iterate through all classes of equivalence matrices θ and %, and

they can have at most n equivalence classes. Checking if two equivalence classes are equal takes O(n) time,
thus Step 4 takes O(n2) time. Similarly as in the analysis of Step 2, we conclude that Step 5 is performed in
O(n2) time, and Step 6 in O(mn2c+) time. Step 7 obviously requires O(n2) time.

According to Theorem 3.6 e), the total number of repetition of Steps 4-7 is at most n − 1. Therefore,
the total computation time of Algorithm 1 is O(mn3c+). In conclusion, it runs in polynomial time and
outperforms the direct method given by Theorem 3.3.

The algorithm for computing the greatest left invariant equivalence matrix can be derived analogously.

Algorithm 2 Computation of the greatest left invariant equivalence matrix

Input: Weighted automatonA = (A, δ, σ, τ) over alphabet X and additively idempotent semiring S
Output: The greatest left invariant equivalence matrix

1: θ← UA
2: %← τ|τ �

⊙
x∈X(θa

· δx)|(θa
· δx), for some a ∈ A

3: while θ , % do
4: Choose a ∈ A such that θa , %a

5: θ1 ← θ � (%a
|%a)

6: %1 ← % �
⊙

x∈X

(
(%a
· δx)|(%a

· δx) � ((θa
− %a) · δx)|((θa

− %a) · δx)
)

7: θ← θ1, %← %1
8: end while
9: return %
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The following example illustrates the work of previous algorithms.

Example 3.7. Let A = (A, δ, σ, τ) be a WFA over the tropical semiring with A = {a1, a2, a3, a4, a5} and X = {x}
represented by the transition graph given by Figure 1. We have that the initial weighted vector, the final weighted
vector and the weighted transition matrix are given by

σ =
[

0 ∞ ∞ ∞ ∞

]
, τ =


∞

∞

0
∞

0

 , dx =


∞ 0 ∞ 0 ∞

0 0 ∞ 0 ∞

0 0 ∞ ∞ ∞

∞ ∞ 0 0 0
0 0 ∞ ∞ ∞

 .

a2

a5

a1 a4 a3

x/0 x/0

x/0

x/0

x/0

x/0

x/0

x/0

x/0

x/0

x/0

x/0

Figure 1: The transition graph of the WFA from Example 3.7

In the first step, Algorithm 1 produces matrices

θ1 = UA =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , %1 = τ|τ � (δx · θ
a
1)|(δx · θ

a
1) =


0 0 ∞ 0 ∞

0 0 ∞ 0 ∞

∞ ∞ 0 ∞ 0
0 0 ∞ 0 ∞

∞ ∞ 0 ∞ 0

 .

Next, for a1 ∈ A we have that %a1
1 , θ

a1
1 , thus we choose a1 ∈ A and obtain

θ2 = θ1 � (%a1
1 |%

a1
1 ) =


0 0 ∞ 0 ∞

0 0 ∞ 0 ∞

∞ ∞ 0 ∞ 0
0 0 ∞ 0 ∞

∞ ∞ 0 ∞ 0

 ,

%2 = %1 � (δx · %
a1
1 )|(δx · %

a1
1 ) � (δx · (θa1

1 − %
a1
1 ))|(δx · (θa1

1 − %
a1
1 )) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

∞ ∞ 0 ∞ 0
∞ ∞ ∞ 0 ∞

∞ ∞ 0 ∞ 0

 .
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Again, choose a1 ∈ A since %a1
2 , θ

a1
2 , and obtain

θ3 = θ2 � (%a1
2 |%

a1
2 ) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

∞ ∞ 0 ∞ 0
∞ ∞ ∞ 0 ∞

∞ ∞ 0 ∞ 0

 ,

%3 = %2 � (δx · %
a1
2 )|(δx · %

a1
2 ) � (δx · (θa1

2 − %
a1
2 ))|(δx · (θa1

2 − %
a1
2 )) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

∞ ∞ 0 ∞ 0
∞ ∞ ∞ 0 ∞

∞ ∞ 0 ∞ 0

 .
Since θ3 = %3, we obtain that the greatest right invariant equivalence matrix is equal to θ3 = %3.

The algorithm for computing the greatest right (resp. left) invariant equivalence matrix can be general-
ized to compute the greatest right (resp. left) invariant quasi-order matrix for a given weighted automaton
over an additively idempotent semiring.

LetA = (A, δ, σ, τ) be a weighted automaton over an additively idempotent semiring S, and let %, θ ∈ 2A×A

be two quasi-order matrices. Then we say that % is r-stable with respect to θ if

% 6
⊙
x∈X

(δx · θa)/(δx · θa), for every a ∈ A,

and dually, % is l-stable with respect to θ if

% 6
⊙
x∈X

(aθ · δx)\(aθ · δx), for every a ∈ A.

The following two Lemmas are generalizations of Lemmas 3.4 and 3.5.

Lemma 3.8. LetA = (A, δ, σ, τ) be a WFA over an additively idempotent semiring, and let % ∈ 2A×A be a quasi-order
matrix. Then % is r-stable (resp. l-stable) iff it is r-stable (resp. l-stable) with respect to itself.

Lemma 3.9. Let A = (A, δ, σ, τ) be a WFA over an additively idempotent semiring, and let %, θ ∈ 2A×A be two
quasi-order matrices. If % 6 θ and % is r-stable (resp. l-stable), then % is r-stable (resp. l-stable) w.r.t θ.

The following Theorems formalize the way to compute the greatest right invariant matrix.

Theorem 3.10. Let A = (A, δ, σ, τ) be a WFA over an additively idempotent semiring, and let {θk}k∈N and {%k}k∈N
be two sequences of Boolean A × A-matrices defined inductively in the following way: For k = 1, set

θ1 = UA,

%1 = τ/τ �
⊙
x∈X

(δx · θ1a)/(δx · θ1a), for some a ∈ A.

Assume that we have computed θk and %k in the current step k. In the next step, if %k , θk, select some a ∈ A such
that θka , %ka, and compute the set B = {b ∈ A|%ka(b) , 0}. Then compute θk+1 and %k+1 in the following way

θk+1 = θk � (%ka/%ka),

%k+1 = %k �
⊙
x∈X

⊙
b∈B

(δx · θk+1b)/(δx · θk+1b).

Otherwise, set θk+1 = θk and %k+1 = %k. Then the following holds:



S. Stanimirović et al. / Filomat 33:9 (2019), 2809–2831 2823

a) Sequences {θk}k∈N and {%k}k∈N are descending;
b) %k and θk are quasi-order matrices, for every k ∈N;
c) %k is a refinement of θk, for every k ∈N;
d) %k is r-stable w.r.t. θk, for every k ∈N;
e) There exists s ∈N such that θs = %s, and %s is the greatest right invariant quasi-order matrix on A.

Proof. Parts a), b), c) and e) can be proved in an analogue manner as in Theorem 3.6 by using Lemmas 3.8
and 3.9.

d) We prove that

%k 6
⊙
x∈X

(δx · θka)/(δx · θka), for every a ∈ A, (22)

holds for every k ∈ N by induction on k. In the case k = 1, (22) follows directly from the definition of %1
since A/θ1 contain only one foreset θa

1 = 1A. Assume that (22) is valid for some k = m and prove that it is
also valid for m + 1. According to the definition of %m+1 we have that

%k 6
⊙
x∈X

(δx · θkc)/(δx · θkc), for every c ∈ B. (23)

We now prove that θmc = θm+1c for every c ∈ A − B. If c ∈ A − B then %ma(c) = 0 and therefore, for every
d ∈ A we have %ma(c) 6 %ma(d) and

θm+1c(d) = θm+1(d, c) = θm(d, c) · (%ma/%ma)(d, c) = θm(d, c) · 1 = θm(d, c) = θmc(d).

The previous is valid for every d ∈ A, thus by the induction hypothesis we have

%m+1 6 %m 6
⊙
x∈X

(δx · θmc)/(δx · θmc) =
⊙
x∈X

(δx · θm+1c)/(δx · θm+1c), for every c ∈ A − B. (24)

By combining (23) and (24), (22) follows in the case k = m + 1, and the proof is completed.

The previous theorem can be transformed into the algorithm for computing the greatest right invariant
quasi-order matrix on a WFA over an additively idempotent semiring.

Algorithm 3 Computation of the greatest right invariant quasi-order matrix

Input: Weighted automatonA = (A, δ, σ, τ) over alphabet X and additively idempotent semiring S
Output: The greatest right invariant quasi-order matrix

1: θ← UA
2: %← τ/τ �

⊙
x∈X(δx · θa)/(δx · θa), for some a ∈ A

3: while θ , % do
4: Choose a ∈ A such that θa , %a
5: Compute B = {b ∈ A|%a(b) , 0}
6: θ1 ← θ � (%a/%a)
7: %1 ← % �

⊙
x∈X

⊙
b∈B(δx · θ1b)/(δx · θ1b)

8: θ← θ1, %← %1
9: end while

10: return %

Similarly as in the case of the greatest right invariant equivalence matrix, Algorithm 3 always terminates
in a finite number of steps, regardless of the underlying additively idempotent semiring.

We now analyse the running time of Algorithm 3. Step 1 requires O(n2) time. Next, in order to compute
the left residual of two vectors of dimension n, we need to perform n2 inequality checks, and since the
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ordering in S is defined by (1), the computation time of the single inequality check is equal to the cost of
the addition c+. Thus, computation of the right residual is done in O(n2c+) time. By applying the rest of the
formula, we conclude that Step 2 takes O(mn2c+) time.

Step 4 takes O(n2) time, Step 5 O(n) time, and Step 6 O(n2c+) time. In Step 7, we compute the product
δx · θb in O(n2c+) time, and the number of right residuals that need to be calculated is m · n. Thus, Step 7
takes O(mn3c+) time.

In contrast to the case of equivalence matrices, the total number of repetitions of Steps 3-9 can be n2,
making the total time complexity of Algorithm 3 proportional to O(mn5c+). However, the theoretical upper
bound n2 is reached only in extreme cases, which means that Algorithm 3 performs faster than the direct
method given by Theorem 3.3 in majority of practical examples.

The algorithm for computing the greatest left invariant quasi-order matrix can be derived analogously.

Algorithm 4 Computation of the greatest left invariant quasi-order matrix

Input: Weighted automatonA = (A, δ, σ, τ) over alphabet X and additively idempotent semiring S
Output: The greatest left invariant quasi-order matrix

1: θ← UA
2: %← τ\τ �

⊙
x∈X(aθ · δx)\(aθ · δx), for some a ∈ A

3: while θ , % do
4: Choose a ∈ A such that aθ , a%
5: Compute B = {b ∈ A|a%(b) , 0}
6: θ1 ← θ � (a%\a%)
7: %1 ← % �

⊙
x∈X

⊙
b∈B(bθ1 · δx)\(bθ1 · δx)

8: θ← θ1, %← %1
9: end while

10: return %

Example 3.11. Let A = (A, δ, σ, τ) be the WFA from Example 3.7. We aim to compute the greatest right invariant
quasi-order matrix by means of Algorithm 3. In the first step we calculate matrices

θ1 = UA =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , %1 = τ/τ � (δx · θ1a)/(δx · θ1a) =


0 0 ∞ 0 ∞

0 0 ∞ 0 ∞

0 0 0 0 0
0 0 ∞ 0 ∞

0 0 0 0 0

 .
In the next step we choose, for example, a3 ∈ A, because θ1a3 , %1a3, and compute the set B = {b ∈ A|%1a3(b) , 0} =
{a3, a5}. Then we have

θ2 = θ1 � (%1a3/%1a3) =


0 0 ∞ 0 ∞

0 0 ∞ 0 ∞

0 0 0 0 0
0 0 ∞ 0 ∞

0 0 0 0 0

 .
Since θ2a3 = θ2a5, we further have

%2 = %1 � (δx · θ2a3)/(δx · θ2a3) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

0 0 0 ∞ 0
0 0 ∞ 0 ∞

0 0 0 ∞ 0

 .
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In the next step, since for a4 ∈ A we have θ1a4 , %1a4, we choose a4 ∈ A, and compute the set B = {b ∈ A|%2a4(b) ,
0} = {a4}. Then we have

θ3 = θ2 � (%2a4/%2a4) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

0 0 0 ∞ 0
0 0 ∞ 0 ∞

0 0 0 ∞ 0

 , %3 = %2 � (δx ·θ3a4)/(δx ·θ3a4) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

∞ ∞ 0 ∞ 0
0 0 ∞ 0 ∞

∞ ∞ 0 ∞ 0

 .
In the end, we choose a1 ∈ A and obtain

θ4 = θ3� (%3a1/%3a1) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

∞ ∞ 0 ∞ 0
0 0 ∞ 0 ∞

∞ ∞ 0 ∞ 0

 , %4 = %3� (δx ·θ4a1)/(δx ·θ4a1) =


0 0 ∞ ∞ ∞

0 0 ∞ ∞ ∞

∞ ∞ 0 ∞ 0
0 0 ∞ 0 ∞

∞ ∞ 0 ∞ 0

 .
The algorithms stops and we obtain that θ4 = %4 is the greatest right invariant quasi-order matrix forA.

We now turn our attention to the computation of the greatest weakly right and weakly left invariant
matrix. According to the corresponding definitions, we first need to compute all A-column vectors τu from
the collection {τu}u∈X∗ . The procedure for computation of the family {τu}u∈X∗ can be derived in a similar way
as in [31, 43], and is given by Algorithm 5. We use the well-known data structures and operations on them.
In particular, we use a queue equipped with the standard operations:

• Enqueue(q, v), which adds an item v onto the end of the queue q,
• Dequeue(q), which removes the item from the front of the queue q and returns it as a result,
• IsEmpty(q), which returns true if no more items can be dequeued and there is no front item in the

queue q, and false otherwise.

All operations can be performed in O(1) time. In addition, we use a tree as a data structure together with
operations

• Lookup(T, v), which returns true if there is a node with the value v in the tree T, and false otherwise,
• Insert(T,n, v), which adds a new node with the value n to the tree T with an edge from the existing

node with value v,

We also use the notation Insert(T,n) = Insert(T,n,null,null) for adding a node with value n as a root of
an empty tree T. If we denote with t the number of nodes of the tree T, and with c the computation cost for
checking whether values of two nodes from the tree T are equal, then the Lookup(T, v) operation requires
going through, in the worst case, all nodes from the tree T (which requires O(t) time), and for each node
checking whether its value is equal to v (which is done inO(c) time). Thus, the total running time of Lookup
operation is O(tc). Similarly, we conclude that Insert operation also run in O(tc) time.

Unfortunately, this procedure does not necessarily terminate in a finite number of steps, since the
collection {τu}u∈X∗ may be infinite. In cases when the mentioned collection is finite, then the procedure
terminates in a finite number of steps, after computing all its members. For example, this holds when the
subsemiring S(δ, τ) of S generated by all values taken by weighted transition matrices {δx}x∈X and the final
weighted column vector τ is finite (but not only in this case). Denote with k the number of elements of the
subsemiring S(δ, τ). Then the collection {τu}u∈X∗ can have at most kn different members. Recall that |A| = n
and |X| = m.

We now analyse the running time of Algorithm 5. Step 8 requires computing the composition of the
A×A-matrix δx and the A-column vector τu, which is done inO(n2(c+ +c·)) time. Since the transition tree can
have at most kn vertices, and checking whether two column vectors are equal takes O(n) time, we conclude
that Steps 9 and 12 each take O(nkn) time, i.e. they take exponential time. Thus, Steps 8-12 take O(nkn) time
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Algorithm 5 Computation of all members of the family {τu}u∈X∗

Input: Weighted automatonA = (A, δ, σ, τ) over alphabet X and additively idempotent semiring S
Output: Family of A-column vectors {τu}u∈X∗

1: Initialize an empty queue q of A-column vectors and an empty tree T whose nodes are also A-column
vectors

2: Calculate τε = τ
3: Insert(T, τε)
4: Enqueue(q, τε)
5: while not IsEmpty(q) do
6: τu ← Dequeue(q)
7: for all x ∈ X do
8: Calculate τx·u = δx · τu
9: if not Lookup(T, τx·u) then

10: Enqueue(q, τx·u)
11: end if
12: Insert(T, τx·u, τu)
13: end for
14: end while
15: return Internal vertices of the tree T (all different members of the family {τu}u∈X∗ )

to compute. Since |X| = m, we conclude that the loop forming Steps 7-13 takes O(mnkn) time. In the end, by
the facts that the elements of the queue are the elements of the collection {τu}u∈X∗ , and that by Step 9 every
element from that collection is exactly once present in the queue in some point in time, we conclude that
Steps 5-14 are performed in O(mnk2n) time. Since Step 15 does not exceed that time, we conclude that the
total computation time for Algorithm 5 is equal to O(mnk2n).

Therefore, Algorithm 5 is exponential in the number of states ofA from a theoretical point of view. This
is due to the fact that the number of members of the collection {τu}u∈X∗ may grow exponentially. However,
this number is usually much smaller than its theoretical upper bound kn, therefore, making Algorithm 5 of
practical use.

We now provide the algorithm for computing the greatest weakly right invariant quasi-order matrix.
Other types of weakly invariant matrices can be computed in a similar way.

Algorithm 6 Computation of the greatest weakly right invariant quasi-order matrix

Input: Weighted automatonA = (A, δ, σ, τ) over alphabet X and additively idempotent semiring S
Output: The greatest weakly right invariant quasi-order matrix

1: Compute the family of A-column vectors {τu}u∈X∗ by means of Algorithm 5
2: %←

⊙
u∈X∗ τu/τu

3: return %

Again, if the subsemiring S(δ, τ) of S has k elements, then the collection {τu}u∈X∗ can contain at most kn

different members, with n being the number of states of the weighted automatonA. Then, the computation
of the left Boolean residual τu/τu takes O(n2c+) time, the computation of the whole collection {τu/τu}u∈X∗

takes O(knn2c+) time, and the computation of the Hadamard product of all matrices from this collection
also requires O(knn2c+) time. Thus, Step 2 runs in O(knn2c+) time, which does not exceed the computation
time of Step 1 (i.e. of Algorithm 5). Therefore, the running time of Algorithm 6 is O(mnk2n), the same as for
Algorithm 5.

Summing up, the algorithm for computing the greatest weakly right (resp. left) invariant quasi-order
matrix runs in exponential time, in contrast to the algorithm for computing the greatest right (resp. left)
invariant quasi-order matrix which runs in polynomial time. In other words, the greatest weakly right
(resp. left) invariant quasi-order matrix is harder to compute. On the other hand, the greatest weakly right
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(resp. left) invariant quasi-order matrix, when employed in the determinization of weighted automata,
can result in deterministic weighted automata with smaller number of states than deterministic weighted
automata obtained by using right (resp. left) invariant quasi-order matrix, as it is formally explained by
Remark 4.5.

4. Determinization algorithm

Let A = (A, δ, σ, τ) be a WFA over a zero-divisor free semiring S, and D = ( f , 1) a factorization of
dimension A. For each u ∈ X∗ define an A-vector σD

u ∈ SA inductively as follows: σD
ε = f (σ) and for

every u ∈ X∗ and x ∈ X we set σD
ux = f (σD

u · δx). Let us set AD = {σD
u |u ∈ X∗}, and let us define functions

δD : AD
× X × AD

→ S and τD : AD
→ S with

δD(µ, x, ν) =

1(σD
u · δx), µ = σD

u and ν = σD
ux

0, otherwise
, for every u ∈ X∗ and x ∈ X,

τD(µ) = µ · τ, for every α ∈ AD.

The following two theorems come from Kirsten and Mäurer [33].

Theorem 4.1. Let A = (A, σ, δ, τ) be a WFA over a zero-divisor free semiring, and D = ( f , 1) a factorization of
dimension A. ThenAD = (AD, {σD

ε /1(σ)}, δD, τD) is a well-defined CDWA equivalent toA.

Theorem 4.2. LetA be a WFA over a zero-divisor free semiring, N = ( fN, 1N), M = ( fM, 1M) and D = ( f , 1) be the
trivial, a maximal and an arbitrary factorization of dimension A, withAN,AM andAD the corresponding CDWAs
ofA, respectively. Then |AM

| 6 |AD
| and |AM

| 6 |AN
|.

Now, let S be a zero-divisor free and additively idempotent semiring, and let % ∈ 2A×A be a Boolean
A × A-matrix. Define a WFAA% = (A, δ%, σ%, τ%) with

σ% = σ · %, τ% = τ,

δ%(a, x, b) = (δx · %)(a, b), for every x ∈ X and a, b,∈ A.

Denote a family (A%)D = {(σ%)D
u }u∈X∗ with AD

% = {%D
u }u∈X∗ , and denote a weighted automaton (A%)D =

((A%)D, {(σ%)D
ε /1(σ · %)}, (δ%)D, (τ%)D) simply with AD

% = (AD
% , {%

D
ε /1(σ · %)}, δD

% , τ
D
% ). According to Theorem 4.1,

A
D
% is a CDWA (not necessarily finite), thus by (9) we have that the language accepted by this weighted

automaton is equal to

[[AD
% ]](u) = c%,Du · τD

% (%D
u ),

for every word u = x1x2 . . . xn ∈ X∗, where c%,Du ∈ S is equal to

c%,Du = 1(σ · %) ·
n∏

i=1

δD
% (%D

x1x2...xi−1
, xi, %

D
x1x2...xi

).

In addition, one can easily prove that

σ · % ·
n∏

i=1

(δxi · %) = c%,Dx1x2...xn
· %D

x1x2...xn
. (25)

We firstly determine the conditions under which the equivalence ofA andAD
% follows.

Theorem 4.3. LetA = (A, δ, σ, τ) be a WFA over an additive idempotent, zero-divisor free semiring, and % ∈ 2A×A

a reflexive weakly right invariant matrix, and letA% = (A, δ%, σ%, τ%). Then we have [[A]] = [[AD
% ]].



S. Stanimirović et al. / Filomat 33:9 (2019), 2809–2831 2828

Proof. Let u = x1x2 . . . xn ∈ X∗ with n ∈N0 be an arbitrary word. Then by (8) and the successive application
of (14), together with the fact that % is a reflexive matrix, we get

[[A%]](u) = σ% ·

 n∏
i=1

(δ%)xi

 · τ% = σ · % ·

 n∏
i=1

δxi · %

 · τ = σ ·

 n∏
i=1

% · δxi

 · % · τ = σ ·

 n∏
i=1

δxi

 · τ = [[A]](u).

Since the previous holds for every n ∈N0, the equivalence of weighted automataA andA% follows. On the
other hand, the equivalence ofA% andAD

% follows from Theorem 4.1. The proof is therefore completed.

With the following theorem, we show that further improvements in the determinization can be made
for WFAs over commutative, additively idempotent, zero-divisor free semirings by using right invariant
quasi-order matrices.

Theorem 4.4. LetA = (A, δ, σ, τ) be a WFA over a commutative, additively idempotent, zero-divisor free semiring,
D = ( f , 1) a maximal factorization of dimension A, and let ϕ,φ ∈ 2A×A be right invariant quasi-order matrices. Let
A

D
ϕ = (AD

ϕ , δ
D
ϕ , {ϕ

D
ε /1(σ ◦ ϕ)}, τD

ϕ ) and AD
φ = (AD

φ , δ
D
φ , {φ

D
ε /1(σ ◦ φ)}, τD

φ ) be the corresponding CDWAs of A. If
ϕ 6 φ holds, then |AD

φ | 6 |A
D
ϕ | follows.

Proof. Define a function ξ : AD
ϕ → AD

φ with ξ(ϕD
u ) = φD

u for every u ∈ X∗. We prove that ξ is a well-defined
function. Indeed, let u = x1x2 . . . xn ∈ X∗ and v = y1y2 . . . ym ∈ X∗ be two arbitrary words such that ϕD

u = ϕD
v

holds. Then by (25) we get

cϕ,Dv ·

(
σ · ϕ ·

n∏
i=1

(δxi · ϕ)
)

= cϕ,Dv · cϕ,Du · ϕD
u = cϕ,Du · cϕ,Dv · ϕD

v = cϕ,Du ·

(
σ · ϕ ·

m∏
i=1

(δyi · ϕ)
)
.

By using the previous relation with Lemma 2.1, we obtain the following

cϕ,Dv · cφ,Du · φD
u = cϕ,Dv ·

(
σ · φ ·

n∏
i=1

(δxi · φ)
)

= cϕ,Dv · (σ · δu · φ) = cϕ,Dv · (σ · δu · ϕ · φ)

= cϕ,Dv ·

(
σ · ϕ ·

( n∏
i=1

(δxi · ϕ)
)
· φ

)
=

(
cϕ,Dv ·

(
σ · ϕ ·

n∏
i=1

(δxi · ϕ)
))
· φ

=

(
cϕ,Du ·

(
σ · ϕ ·

m∏
i=1

(δyi · ϕ)
))
· φ = cϕ,Du ·

(
σ · ϕ ·

( m∏
i=1

(δyi · ϕ)
)
· φ

)

= cϕ,Du · (σ · δv · ϕ · φ) = cϕ,Du · (σ · δv · φ) = cϕ,Du ·

(
σ · φ ·

m∏
i=1

(δyi · φ)
)
.

Again, by (25) we get

cϕ,Dv · cφ,Du · φD
u = cϕ,Du · cφ,Dv · φD

v ,

and since D = ( f , 1) is the maximal factorization, we finally obtain

φD
u = f (φD

u ) = f (cϕ,Dv · cφ,Du · φD
u ) = f (cϕ,Du · cφ,Dv · φD

v ) = f (φD
v ) = φD

v .

In conclusion, we proved that ϕD
u = ϕD

v implies φD
u = φD

v , which ensures that ξ is a well-defined function.
In addition, it is obvious that for every φD

u ∈ AD
φ there exists ϕD

u ∈ AD
ϕ such that ξ(ϕD

u ) = φD
u , for an arbitrary

u ∈ X∗, which makes ξ a surjective mapping. Thus, |AD
φ | 6 |A

D
ϕ | follows.
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Remark 4.5. Let us compare the size of CDWAs obtained by using weakly right invariant quasi-order matrices with
those obtained by using right invariant ones. Recall from Section 3 that the set of all right invariant quasi-order
matrices on a WFAA is contained in the set off all all weakly right invariant quasi-order matrices ofA. Therefore, for
the greatest weakly right invariant quasi-order matrix %wri onA and the greatest right invariant quasi-order matrix
%ri on A we have that %ri 6 %wri. Thus, according to Theorem 4.4, it follows that |AD

%wri | 6 |A
D
%ri |, with D being the

maximal factorization of A. The previous inequality may be strict, which means that in general, weakly right invariant
quasi-order matrices provide better results than the right invariant ones when used in the determinization. However,
as we have seen, from the aspect of computation time, the advantage is on the side of right invariant quasi-order
matrices.

With the following example we show the case when AD is infinite, but AD
% is a finite CDWA, with %

being the greatest right invariant quasi-order matrix, and D being the maximal factorization of dimension
A.

Example 4.6. LetA = (A, δ, σ, τ) be a WFA over the alphabet X = {x, y} and the tropical semiring, with the transition
graph given by Figure 2, or in other words, with the initial weighted row vector, final weighted column vector and
weighted transition matrices given by

σ =
[
0 ∞ ∞ ∞

]
, τ =


∞

∞

∞

0

 , δx =


∞ 1 0 ∞

∞ 1 ∞ ∞

∞ ∞ 0 ∞

∞ ∞ ∞ ∞

 , δy =


∞ ∞ ∞ ∞

∞ ∞ ∞ 0
∞ ∞ ∞ 0
∞ ∞ ∞ ∞

 .
One can easily verify thatA does not satisfy the twins property (cf. [38]), therefore,AD is an infinite CDWA. On
the other hand, by means of Algorithm 3 we can compute the greatest right invariant quasi-order matrix % ∈ 2A×A,
which is given by

% =


0 ∞ ∞ ∞

∞ 0 ∞ ∞

0 0 0 ∞

∞ ∞ ∞ 0

 .
In this way, we can obtain the WFAA% which is determinizable. The transition graph ofAD

% is depicted in Figure 3.
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x/0
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Figure 2: The transition graph of the
WFAA from Example 4.6.

Figure 3: The transition graph of the
CDWFAAD

% equivalent toA.
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[10] M. Ćirić, M. Droste, J. Ignjatović, H. Vogler, Determinization of weighted finite automata over strong bimonoids, Information

Sciences 180 (2010) 3497-3520.
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