

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On I– Deferred Statistical Convergence of Order α

Hacer Şengüla, Mikail Etb, Mahmut Işıka

^aFaculty of Education; Harran University; Osmanbey Campus 63190; Şanlıurfa; TURKEY ^bDepartment of Mathematics; Fırat University 23119; Elazığ ; TURKEY

Abstract. The idea of *I*—convergence of real sequences was introduced by Kostyrko et al. [Kostyrko, P., Šalát, T. and Wilczyński, W. I-convergence, Real Anal. Exchange 26(2) (2000/2001), 669-686] and also independently by Nuray and Ruckle [Nuray, F. and Ruckle, W. H. Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl. 245(2) (2000), 513–527]. In this paper we introduce I-deferred statistical convergence of order α and strong *I*-deferred Cesàro convergence of order α and investigated between their relationship.

1. Introduction, Definitions and Preliminaries

The concept of statistical convergence was introduced by Steinhaus [29] and Fast [12] and later reintroduced by Schoenberg [24] independently. Later on it was further investigated from the sequence spaces point of view and linked with summability theory by Çınar et al. ([6],[8]), Connor [5], Çolak [17], Çakallı et al. ([2],[3],[4]), Et et al. ([9],[10],[11],[28]), Fridy [13], Işık et al. ([14],[15],[16]), Küçükaslan and Yılmaztürk ([19],[30]), Savaş and Et [23], Şengül et al. ([25],[26],[27]) and many others.

The idea of statistical convergence depends on the density of subsets of the set N of natural numbers. The density of a subset E of \mathbb{N} is defined by

 $\delta(E) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_E(k)$ provided the limit exists, where χ_E is the characteristic function of E. It is clear that any finite subset of $\mathbb N$ has zero natural density and $\delta(E^c) = 1 - \delta(E)$.

The idea of *I*–convergence of real sequences was introduced by Kostyrko et al. [18] and also independently by Nuray and Ruckle [20] (who called it generalized statistical convergence) as a generalization of statistical convergence. Later I-convergence was studied by Das et al. [7], Salat et al. ([21], [22]), Şengül and Et ([25],[26]) and many others.

Let X be non-empty set. Then a family sets $I \subseteq 2^X$ (power sets of X) is said to be an *ideal* if I additive *i.e.* A, $B \in I$ implies $A \cup B \in I$ and hereditary, *i.e.* $A \in I$, $B \subset A$ implies $B \in I$.

A non-empty family of sets $F \subseteq 2^X$ is said to be a *filter* of X if and only if (i) $\phi \notin F$, (ii) $A, B \in F$ implies $A \cap B \in F$ and (iii) $A \in F$, $A \subset B$ implies $B \in F$.

An ideal $I \subseteq 2^X$ is called non-trivial if $I \neq 2^X$.

A non-trivial ideal *I* is said to be *admissible* if $I \supset \{\{x\} : x \in X\}$.

If *I* is a non-trivial ideal in *X*, $X \neq \phi$, then the family of sets

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45

Keywords. Statistical convergence, I-convergence, Cesàro summability

Received: 29 September 2018; Accepted: 10 January 2019

Communicated by Ivana Djolović

Email addresses: hacer.sengul@hotmail.com (Hacer Sengul), mikailet68@gmail.com (Mikail Et), misik63@yahoo.com (Mahmut Işık)

 $F(I) = \{M \subset X : (\exists A \in I) (M = X \setminus A)\}$ is a filter of X, called the *filter associated with I*. Throughout the paper I will stand for a non-trivial admissible ideal of \mathbb{N} .

The deferred Cesàro mean of sequences was introduced by Agnew [1] such as:

$$(D_{p,q}x)_n = \frac{1}{q(n) - p(n)} \sum_{p(n)+1}^{q(n)} x_k$$

where $\{p(n)\}\$ and $\{q(n)\}\$ are sequences of non-negative integers satisfying

$$p(n) < q(n)$$
 and $\lim_{n \to \infty} q(n) = +\infty$.

Let *K* be a subset of \mathbb{N} and denote the set $\{k: p(n) < k \le q(n), k \in K\}$ by $K_{p,q}(n)$. Deferred density of *K* is defined by

$$\delta_{p,q}(K) = \lim_{n \to \infty} \frac{1}{(q(n) - p(n))} \left| K_{p,q}(n) \right|, \text{ provided the limit exists.}$$
 (1)

The vertical bars in (1) indicate the cardinality of the set $K_{p,q}(n)$.

It is clear that, if $K \subseteq M$, then $\delta_{p,q}(K) \le \delta_{p,q}(M)$ and if q(n) = n, p(n) = 0, then deferred density coincides natural density of *K*.

2. Main Results

In this section, we introduce the concepts of I-deferred statistical convergence of order α and strong *I*-deferred Cesàro convergence of order α and investigated between their relationship.

Definition 2.1. Let $\{p(n)\}$ and $\{q(n)\}$ be two sequences as above and $\alpha \in (0,1]$ be given. The sequence $x=(x_k)$ is said to be I-deferred statistically convergent of order α (or $DS_{p,q}^{\alpha}(I)$ -convergent) to L if, for every $\varepsilon, \delta > 0$

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \leq q\left(n\right) : \left|x_{k} - L\right| \geq \varepsilon \right\} \right| \geq \delta \right\} \in I.$$

In this case we write $DS_{p,q}^{\alpha}(I) - \lim x_k = L$ or $x_k \to L(DS_{p,q}^{\alpha}(I))$. The set of all I-deferred statistically convergent sequences of oder α will be denoted by $DS_{p,q}^{\alpha}(I)$. If q(n) = n, p(n) = 0, then I-deferred statistical convergence of order α coincides I-statistical convergence of order α and also if q(n) = n, p(n) = 0 and $\alpha = 1$, then I-deferred statistical convergence of order α coincides I-statistical convergence.

Definition 2.2. Let $\{p(n)\}$, $\{q(n)\}$ be given and $\alpha \in (0,1]$ and r be a positive real number. A sequence $x=(x_k)$ is said to be strongly I-deferred Cesàro convergent of order α (or strongly $Dw_{\tau}^{\alpha}[p,q](I)$ -convergent) to L if

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \sum_{p\left(n\right) + 1}^{q\left(n\right)} \left| x_k - L \right|^r \ge \varepsilon \right\} \in I$$

and this is denoted by $Dw_r^{\alpha}[p,q](I) - \lim x_k = L \text{ or } x_k \to L(Dw_r^{\alpha}[p,q](I))$. The set of all strongly I-deferred Cesàro convergent sequences of oder α will be denoted by $Dw_r^{\alpha}[p,q](I)$.

The proof of each of the following results is straightforward, so we choose to state these results without proof.

Theorem 2.3. Let $0 < \alpha \le 1$ and $x = (x_k)$, $y = (y_k)$ be sequences of real numbers, then

(i) If
$$DS_{p,q}^{\alpha}(I) - \lim x_k = x_0$$
 and $DS_{p,q}^{\alpha}(I) - \lim y_k = y_0$, then $DS_{p,q}^{\alpha}(I) - \lim (x_k + y_k) = x_0 + y_0$, (ii) If $DS_{p,q}^{\alpha}(I) - \lim x_k = x_0$ and $c \in \mathbb{C}$, then $DS_{p,q}^{\alpha}(I) - \lim (cx_k) = cx_0$,

(ii) If
$$DS_{n,\sigma}^{\alpha}(I) - \lim x_k = x_0$$
 and $c \in \mathbb{C}$, then $DS_{n,\sigma}^{\alpha}(I) - \lim (cx_k) = cx_0$.

(iii) If
$$DS_{p,q}^{\alpha}(I) - \lim x_k = x_0$$
, $DS_{p,q}^{\alpha}(I) - \lim y_k = y_0$ and $x, y \in \ell_{\infty}$, then $DS_{p,q}^{\alpha}(I) - \lim (x_k y_k) = x_0 y_0$.

Theorem 2.4. Let $0 < \alpha \le 1$, then $DS_{p,q}^{\alpha}(I) \cap \ell_{\infty}$ is a closed subset of ℓ_{∞} .

Proof. Suppose that $\left\{x^i\right\}_{i\in\mathbb{N}}\subseteq DS^\alpha_{p,q}\left(I\right)\cap\ell_\infty$ is convergent sequence and that it converges to $x\in\ell_\infty$. We need to prove that $x\in DS^\alpha_{p,q}\left(I\right)\cap\ell_\infty$. Assume that $x^i\to L_i\left(DS^\alpha_{p,q}\left(I\right)\right)$ for $\forall i\in\mathbb{N}$. Take a positive strictly decreasing sequence $\{\varepsilon_i\}_{i\in\mathbb{N}}$ where $\varepsilon_i=\frac{\varepsilon}{2^i}$ for a given $\varepsilon>0$. Clearly $\{\varepsilon_i\}_{i\in\mathbb{N}}$ converges to 0. Choose a positive integer i such that $\left\|x-x^i\right\|_\infty<\frac{\varepsilon}{4}$. Let $0<\delta<1$. Then

$$A = \left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n \right) - p\left(n \right) \right)^{\alpha}} \left| \left\{ p\left(n \right) < k \le q\left(n \right) : \left| x_k^i - L_i \right| \ge \frac{\varepsilon_i}{4} \right\} \right| < \frac{\delta}{3} \right\} \in F(I)$$

and

$$B = \left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left| x_k^{i+1} - L_{i+1} \right| \ge \frac{\varepsilon_{i+1}}{4} \right\} \right| < \frac{\delta}{3} \right\} \in F(I).$$

Since $A \cap B \in F(I)$ and $\phi \notin F(I)$, we can choose $n \in A \cap B$. Then

$$\frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left| x_k^i - L_i \right| \ge \frac{\varepsilon_i}{4} \right\} \right| < \frac{\delta}{3}$$

and

$$\frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \leq q\left(n\right) : \left| x_{k}^{i+1} - L_{i+1} \right| \geq \frac{\varepsilon_{i+1}}{4} \right\} \right| < \frac{\delta}{3}$$

and so

$$\frac{1}{\left(q\left(n\right)-p\left(n\right)\right)^{\alpha}}\left|\left\{p\left(n\right)< k \leq q\left(n\right): \left|x_{k}^{i}-L_{i}\right| \geq \frac{\varepsilon_{i}}{4} \vee \left|x_{k}^{i+1}-L_{i+1}\right| \geq \frac{\varepsilon_{i+1}}{4}\right\}\right| < \delta < 1.$$

Hence, there exists a $k \in (p(n), q(n)]$ for which $\left|x_k^i - L_i\right| \ge \frac{\varepsilon_i}{4}$ and $\left|x_k^{i+1} - L_{i+1}\right| \ge \frac{\varepsilon_{i+1}}{4}$. Then, we can write

$$\begin{aligned} |L_{i} - L_{i+1}| & \leq \left| |L_{i} - x_{k}^{i}| + \left| x_{k}^{i} - x_{k}^{i+1} \right| + \left| x_{k}^{i+1} - L_{i+1} \right| \\ & \leq \left| |x_{k}^{i} - L_{i}| + \left| x_{k}^{i+1} - L_{i+1} \right| + \left| |x - x^{i}| \right|_{\infty} + \left| |x - x^{i+1}| \right|_{\infty} \\ & \leq \frac{\varepsilon_{i}}{4} + \frac{\varepsilon_{i+1}}{4} + \frac{\varepsilon_{i}}{4} + \frac{\varepsilon_{i+1}}{4} \leq \varepsilon_{i}. \end{aligned}$$

This implies that $\{L_i\}_{i\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} , and so there is a real number L such that $L_i\to L$, as $i\to\infty$. We need to prove that $x\to L\left(DS^\alpha_{p,q}(I)\right)$. For any $\varepsilon>0$, choose $i\in\mathbb{N}$ such that $\varepsilon_i<\frac{\varepsilon}{4}$, $\left\|x-x^i\right\|_\infty<\frac{\varepsilon}{4}$, $\left\|L_i-L\right\|<\frac{\varepsilon}{4}$. Then

$$\frac{1}{(q(n) - p(n))^{\alpha}} \left| \{ p(n) < k \le q(n) : |x_{k} - L| \ge \varepsilon \} \right| \\
\le \frac{1}{(q(n) - p(n))^{\alpha}} \left| \{ p(n) < k \le q(n) : |x_{k}^{i} - L_{i}| + ||x_{k} - x_{k}^{i}||_{\infty} + |L_{i} - L| \ge \varepsilon \} \right| \\
\le \frac{1}{(q(n) - p(n))^{\alpha}} \left| \{ p(n) < k \le q(n) : |x_{k}^{i} - L_{i}| + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} \ge \varepsilon \} \right| \\
\le \frac{1}{(q(n) - p(n))^{\alpha}} \left| \{ p(n) < k \le q(n) : |x_{k}^{i} - L_{i}| \ge \frac{\varepsilon}{2} \} \right|.$$

This implies that

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left| x_{k} - L \right| \ge \varepsilon \right\} \right| < \delta \right\}$$

$$\supseteq \left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left| x_{k}^{i} - L_{i} \right| \ge \frac{\varepsilon}{2} \right\} \right| < \delta \right\} \in F\left(I\right).$$

So

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| < \delta \right\} \in F\left(I\right),$$

and so

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in I.$$

This gives that $x \to L(DS_{p,q}^{\alpha}(I))$, and this completes the proof of the theorem. \square

Theorem 2.5. Let $\alpha \in (0,1]$. Then $Dw_r^{\alpha}[p,q](I) \subseteq DS_{p,q}^{\alpha}(I)$ and the inclusion is strict.

Proof. First part of proof is easy, so omitted. To show the strictness of the inclusion, choose q(n) = n and p(n) = 0 and define a sequence $x = (x_k)$ by

$$x_k = \left\{ \begin{array}{cc} \sqrt{n}, & k = n^2 \\ 0, & k \neq n^2 \end{array} \right..$$

Then for every $\varepsilon > 0$ and $\frac{1}{2} < \alpha \le 1$, we have

$$\frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : |x_k - 0| \ge \varepsilon \right\} \right| \le \frac{\left[\sqrt{n}\right]}{n^{\alpha}},$$

and for any $\delta > 0$ we get

$$\left\{n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{p\left(n\right) < k \le q\left(n\right) : |x_k - 0| \ge \varepsilon\right\} \right| \ge \delta\right\} \subseteq \left\{n \in \mathbb{N} : \frac{\left[\sqrt{n}\right]}{n^{\alpha}} \ge \delta\right\}.$$

Since the set on the right-hand side is a finite set and so belongs to I, it follows that for $\frac{1}{2} < \alpha \le 1$, $x_k \to 0 \left(DS_{p,q}^{\alpha}(I) \right)$.

On the other hand, for $0 < \alpha < 1$ and r = 1,

$$\frac{1}{\left(q\left(n\right)-p\left(n\right)\right)^{\alpha}}\sum_{n\left(n\right)+1}^{q\left(n\right)}\left|x_{k}-0\right|^{r}=\frac{\left[\sqrt{n}\right]\left[\sqrt{n}\right]}{n^{\alpha}}\rightarrow\infty$$

and for $\alpha = 1$,

$$\frac{\left[\sqrt{n}\right]\left[\sqrt{n}\right]}{n^{\alpha}} \to 1.$$

Then

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))^{\alpha}} \sum_{p(n) + 1}^{q(n)} |x_k - 0|^r \ge 1 \right\} = \left\{ n \in \mathbb{N} : \frac{\left[\sqrt{n}\right] \left[\sqrt{n}\right]}{n^{\alpha}} \ge 1 \right\}$$

$$= \left\{ m, m + 1, m + 2, \ldots \right\}$$

for some $m \in \mathbb{N}$ which belongs to F(I), since I is admissible. So $x_k \to 0$ ($Dw_r^{\alpha}[p,q](I)$). \square

Theorem 2.6. Let $0 < \alpha \le 1$, $\liminf_{n \to \infty} \frac{q(n)}{p(n)} > 1$ and q(n) - p(n) < p(n), then $S^{\alpha}(I) \subset DS^{\alpha}_{p,q}(I)$.

Proof. Suppose that $\liminf_n \frac{q(n)}{p(n)} > 1$; then there exists a a > 0 such that $\frac{q(n)}{p(n)} \ge 1 + a$ for sufficiently large n, which implies that

$$\frac{q\left(n\right)-p\left(n\right)}{p\left(n\right)}\geq\frac{a}{1+a}\Longrightarrow\left(\frac{q\left(n\right)-p\left(n\right)}{p\left(n\right)}\right)^{\alpha}\geq\left(\frac{a}{1+a}\right)^{\alpha}\Longrightarrow\frac{1}{p\left(n\right)^{\alpha}}\geq\frac{a^{\alpha}}{\left(1+a\right)^{\alpha}}\frac{1}{\left(q\left(n\right)-p\left(n\right)\right)^{\alpha}}.$$

If $x_k \to L(S^\alpha(I))$, then for every $\varepsilon > 0$ and for sufficiently large n, we have

$$\begin{split} \frac{1}{p\left(n\right)^{\alpha}} \left| \left\{ k \leq p\left(n\right) : \left| x_{k} - L \right| \geq \varepsilon \right\} \right| & \geq & \frac{1}{p\left(n\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \leq q\left(n\right) : \left| x_{k} - L \right| \geq \varepsilon \right\} \right| \\ & \geq & \frac{a^{\alpha}}{\left(1 + a\right)^{\alpha}} \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \leq q\left(n\right) : \left| x_{k} - L \right| \geq \varepsilon \right\} \right|. \end{split}$$

For $\delta > 0$, we have

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$

$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{p\left(n\right)^{\alpha}} \left| \left\{ k \le p\left(n\right) : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| \ge \frac{\delta a^{\alpha}}{\left(1 + a\right)^{\alpha}} \right\} \in I$$

this proves the proof. \Box

Theorem 2.7. If $\lim_{n \to \infty} \inf \frac{(q(n) - p(n))^{\alpha}}{n} > 0$ and q(n) < n, then $S(I) \subseteq DS_{p,q}^{\alpha}(I)$.

Proof. Let $\lim_{n\to\infty}\inf\frac{\left(q(n)-p(n)\right)^{\alpha}}{n}>0$, then for each $\varepsilon>0$ the inclusion

$$\{k \leq n : |x_k - L| \geq \varepsilon\} \supset \{p(n) < k \leq q(n) : |x_k - L| \geq \varepsilon\}$$

is satisfied and so we have the following inequality

$$\begin{split} \frac{1}{n} \left| \{ k \leq n : |x_k - L| \geq \varepsilon \} \right| & \geq \frac{1}{n} \left| \{ p \left(n \right) < k \leq q \left(n \right) : |x_k - L| \geq \varepsilon \} \right| \\ & = \frac{\left(q \left(n \right) - p \left(n \right) \right)^{\alpha}}{n} \frac{1}{\left(q \left(n \right) - p \left(n \right) \right)^{\alpha}} \left| \{ p \left(n \right) < k \leq q \left(n \right) : |x_k - L| \geq \varepsilon \} \right|. \end{split}$$

Hence we can write

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$

$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{n} \left| \left\{ k \le n : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| \ge \delta \frac{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}}{n} \right\} \in I.$$

Therefore $S(I) \subseteq DS_{p,q}^{\alpha}(I)$. \square

Theorem 2.8. Let α and β be two real numbers such that $0 < \alpha \le \beta \le 1$, then $Dw_r^{\alpha}[p,q](I) \subseteq Dw_r^{\beta}[p,q](I)$ and the inclusion is strict.

Proof. The inclusion part of the proof follows from the following inequality:

$$\frac{1}{(q(n)-p(n))^{\beta}} \sum_{\nu(n)+1}^{q(n)} |x_k - L|^r \le \frac{1}{(q(n)-p(n))^{\alpha}} \sum_{\nu(n)+1}^{q(n)} |x_k - L|^r.$$

To show that the inclusion is strict define $x = (x_k)$ such that

$$x_k = \begin{cases} 1, & \text{if } k \text{ is square} \\ 0, & \text{otherwise} \end{cases}.$$

Then $x \in Dw_r^{\beta}[p,q](I)$ for $\frac{1}{2} < \beta \le 1$ but $x \notin Dw_r^{\alpha}[p,q](I)$ for $0 < \alpha \le \frac{1}{2}$. \square

Theorem 2.9. Let $\alpha, \beta \in (0,1]$ $(0 < \alpha \le \beta \le 1)$, then $DS_{p,q}^{\alpha}(I) \subseteq DS_{p,q}^{\beta}(I)$ and the inclusion is strict.

Proof. First part of proof is easy, so omitted. To show the inclusion is strict, let us define a sequence by

$$x_k = \begin{cases} 1, & k = n^2 \\ 0, & k \neq n^2 \end{cases}$$

then $x \in DS_{p,q}^{\beta}(I)$ for $\frac{1}{2} < \beta \le 1$, but $x \notin DS_{p,q}^{\alpha}(I)$ for $0 < \alpha \le \frac{1}{2}$, where q(n) = 3n - 1 and p(n) = 2n - 1. \square

Corollary 2.10. If a sequence is $DS_{p,q}^{\alpha}(I)$ –convergent to L, then it is $DS_{p,q}(I)$ –convergent to L.

Theorem 2.11. Let $0 < \alpha \le 1$ and $0 < r < s < \infty$, then $Dw_s^{\alpha}[p,q](I) \subseteq Dw_r^{\alpha}[p,q](I)$.

Proof. Omitted. □

Theorem 2.12. Let $\{p(n)\}, \{q(n)\}, \{p'(n)\}\}$ and $\{q'(n)\}$ be four sequences of non-negative integers such that

$$p(n) < q(n), p'(n) < q'(n) \text{ and } q(n) - p(n) \le q'(n) - p'(n) \text{ for all } n \in \mathbb{N}$$
 (2)

and α , β be fixed real numbers such that $0 < \alpha \le \beta \le 1$, then (i) If

$$\lim_{n \to \infty} \inf \frac{(q(n) - p(n))^{\alpha}}{(q'(n) - p'(n))^{\beta}} > 0$$
(3)

then $DS_{p',q'}^{\beta}(I) \subseteq DS_{p,q}^{\alpha}(I)$, (ii) If

$$\lim_{n \to \infty} \frac{q'(n) - p'(n)}{(q(n) - v(n))^{\beta}} = 1 \tag{4}$$

then $DS^{\alpha}_{p,q}(I) \subseteq DS^{\beta}_{p',q'}(I)$.

Proof. (*i*) Let (3) be satisfied. For given $\varepsilon > 0$ we have

$$\{p'(n) < k \le q'(n) : |x_k - L| \ge \varepsilon\} \supseteq \{p(n) < k \le q(n) : |x_k - L| \ge \varepsilon\},$$

and so

$$\frac{1}{(q'(n) - p'(n))^{\beta}} \left| \{ p'(n) < k \le q'(n) : |x_k - L| \ge \varepsilon \} \right| \\
\ge \frac{(q(n) - p(n))^{\alpha}}{(q'(n) - p'(n))^{\beta}} \frac{1}{(q(n) - p(n))^{\alpha}} \left| \{ p(n) < k \le q(n) : |x_k - L| \ge \varepsilon \} \right|.$$

Hence for all $n \in \mathbb{N}$ we have

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}} \left| \left\{ p\left(n\right) < k \le q\left(n\right) : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$

$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{\left(q'\left(n\right) - p'\left(n\right)\right)^{\beta}} \left| \left\{ p'\left(n\right) < k \le q'\left(n\right) : \left|x_{k} - L\right| \ge \varepsilon \right\} \right| \ge \delta \frac{\left(q\left(n\right) - p\left(n\right)\right)^{\alpha}}{\left(q'\left(n\right) - p'\left(n\right)\right)^{\beta}} \right\} \in I.$$

Therefore $DS_{p',q'}^{\beta}(I) \subseteq DS_{p,q}^{\alpha}(I)$. (*ii*) Omitted. \square

Theorem 2.13. Let $\{p(n)\}, \{q(n)\}, \{p'(n)\}\}$ and $\{q'(n)\}$ be four sequences of non-negative integers defined as in (2) and α and β be two real numbers such that $0 < \alpha \le \beta \le 1$.

- (i) If (3) holds then $Dw_r^{\beta}[p',q'](I) \subset Dw_r^{\alpha}[p,q](I)$,
- (ii) If (4) holds and $x = (x_k)$ be a bounded sequence, then $Dw_r^{\alpha}[p,q](I) \subset Dw_r^{\beta}[p',q'](I)$.

Proof. Omitted. □

Theorem 2.14. Let $\{p(n)\}, \{q(n)\}, \{p'(n)\}\}$ and $\{q'(n)\}$ be four sequences of non-negative integers defined as in (2) and α and β be two real numbers such that $0 < \alpha \le \beta \le 1$. Then

- (i) Let (3) holds, if a sequence is strongly $Dw_r^{\beta}[p',q'](I)$ —convergent to L, then it is $DS_{p,q}^{\alpha}(I)$ —convergent to L,
- (ii) Let (4) holds and $x = (x_k)$ be a bounded sequence, if a sequence is $DS_{p,q}^{\alpha}(I)$ —convergent to L then it is strongly $Dw_r^{\beta}[p',q'](I)$ —convergent to L.

Proof. (i) Omitted.

(ii) Suppose that $DS_{p,q}^{\alpha}(I) - \lim x_k = L$ and $\{x_k\} \in \ell_{\infty}$. Then there exists some M > 0 such that $|x_k - L| < M$ for all k, then for every $\varepsilon > 0$ we may write

$$\begin{split} &\frac{1}{(q'(n)-p'(n))^{\beta}} \sum_{p'(n)+1}^{q'(n)} |x_{k}-L|^{r} \\ &= \frac{1}{(q'(n)-p'(n))^{\beta}} \sum_{q(n)-p(n)+1}^{q'(n)-p'(n)} |x_{k}-L|^{r} + \frac{1}{(q'(n)-p'(n))^{\beta}} \sum_{p(n)+1}^{q(n)} |x_{k}-L|^{r} \\ &\leq \frac{(q'(n)-p'(n))-(q(n)-p(n))}{(q'(n)-p'(n))^{\beta}} M^{r} + \frac{1}{(q'(n)-p'(n))^{\beta}} \sum_{p(n)+1}^{q(n)} |x_{k}-L|^{r} \\ &\leq \frac{(q'(n)-p'(n))-(q(n)-p(n))^{\beta}}{(q'(n)-p'(n))^{\beta}} M^{r} + \frac{1}{(q'(n)-p'(n))^{\beta}} \sum_{p(n)+1}^{q(n)} |x_{k}-L|^{r} \\ &\leq \left(\frac{q'(n)-p'(n)}{(q(n)-p(n))^{\beta}} - 1 \right) M^{r} + \frac{1}{(q'(n)-p'(n))^{\beta}} \sum_{p(n)+1}^{q(n)} |x_{k}-L|^{r} \\ &+ \frac{1}{(q(n)-p'(n))^{\beta}} \sum_{p(n)+1}^{q(n)} |x_{k}-L|^{r} \\ &\leq \left(\frac{q'(n)-p'(n)}{(q(n)-p(n))^{\beta}} - 1 \right) M^{r} + \frac{M^{r}}{(q(n)-p(n))^{\alpha}} \left| \{p(n) < k \leq q(n) : |x_{k}-L| \geq \varepsilon \} \right| \\ &+ \frac{q'(n)-p'(n)}{(q(n)-p(n))^{\beta}} \varepsilon^{r} \end{split}$$

and so

$$\left\{ n \in \mathbb{N} : \frac{1}{\left(q'(n) - p'(n)\right)^{\beta}} \sum_{p'(n) + 1}^{q'(n)} \left| x_k - L \right|^r \ge \delta \right\}$$

$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{\left(q(n) - p(n)\right)^{\alpha}} \left| \left\{ p(n) < k \le q(n) : \left| x_k - L \right| \ge \varepsilon \right\} \right| \ge \frac{\delta}{M^r} \right\} \in I,$$

for all $n \in \mathbb{N}$. Using (4) we obtain that $Dw_r^{\beta}[p',q'](I) - \lim x_k = L$, whenever $DS_{p,q}^{\alpha}(I) - \lim x_k = L$. \square

3. Acknowledgements

This study was presented at the 2nd International Conference of Mathematical Sciences (ICMS 2018), 31 July-06 August 2018, Maltepe University, İstanbul, Turkey ([27]).

References

- [1] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33(3) (1932) 413–421.
- [2] H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995) 113–119.
- [3] H. Çakallı, C. G. Aras and A. Sönmez, Lacunary statistical ward continuity, AIP Conf. Proc. 1676, 020042 (2015), http://dx.doi.org/10.1063/1.4930468.
- [4] H. Çakallı and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(2) (2017) 71–79.
- [5] J. S. Connor, The Statistical and strong *p*—Cesàro convergence of sequences, Analysis 8 (1988) 47–63.
- [6] M. Çınar, M. Karakaş and M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory Appl. 2013(33) (2013) 11 pp.
- [7] P. Das, P. Kostyrko, W. Wilczyński and P. Malik, I and I*-convergence of double sequences, Math. Slovaca 58(5) (2008) 605–620.
- [8] M. Et, M. Çınar and M. Karakaş, On λ -statistical convergence of order α of sequences of function, J. Inequal. Appl. 2013(204) (2013) 8 pp.
- [9] M. Et, A. Alotaibi and S. A. Mohiuddine, On (Δ^m, I) -statistical convergence of order α , The Scientific World Journal 2014 (2014) Article Number: 535419, doi: 10.1155/2014/535419.
- [10] M. Et, B. C. Tripathy and A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings, Kuwait J. Sci. 41(3) (2014) 17–30.
- [11] M. Et, R. Çolak and Y. Altın, Strongly almost summable sequences of order α , Kuwait J. Sci. 41(2) (2014) 35–47.
- [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
- [13] J. Fridy, On statistical convergence, Analysis 5 (1985) 301–313.
- [14] M. Işık and K. E. Akbaş, On $\bar{\lambda}$ -statistical convergence of order α in probability, J. Inequal. Spec. Funct. 8(4) (2017) 57–64.
- [15] M. Işık and K. E. Et, On lacunary statistical convergence of order α in probability, AIP Conference Proceedings 1676, 020045 (2015), doi: http://dx.doi.org/10.1063/1.4930471.
- [16] M. Işık and K. E. Akbaş, On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability, ITM Web of Conferences 13, 01024 (2017). doi: 10.1051/itmconf/20171301024
- [17] R. Çolak, Statistical convergence of order α , Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub. 2010 (2010) 121–129.
- [18] P. Kostyrko, T. Šalát and W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/2001) 669-686.
- [19] M. Küçükaslan and M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016) 357-366.
- [20] F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2) (2000) 513–527.
- [21] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150.
- [22] T. Šalát, B. C. Tripathy and M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. No. 17 (2005) 45–54.
- [23] E. Savaş and M. Et, On $(\Delta_{\lambda}^{m}, I)$ -statistical convergence of order α , Period. Math. Hungar. 71(2) (2015) 135–145.
- [24] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [25] M. Et and H. Şengül, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α , Filomat 28(8) (2014) 1593–1602.
- [26] H. Şengül and M. Et, On I-lacunary statistical convergence of order α of sequences of sets, Filomat 31(8) (2017) 2403–2412.
- [27] H. Şengül, M. Et and M. Işık, On I-Deferred Statistical Convergence, Conference Proceedings of ICMS-18, Maltepe/ İstanbul.
- [28] H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α, Filomat 31(6) (2017) 1573–1582.
- [29] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum 2 (1951) 73–74.
- [30] M. Yılmaztürk and M. Küçükaslan, On strongly deferred Cesàro summability and deferred statistical convergence of the sequences, Bitlis Eren Univ. J. Sci. and Technol. 3 (2011) 22–25.