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Available at: http://www.pmf.ni.ac.rs/filomat

Relative Multifractal Box-Dimensions
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aFaculté des Sciences de Monastir, Département de Mathématiques, 5000-Monastir-Tunisia

Abstract. Given two probability measures µ and ν on Rn. We define the upper and lower relative
multifractal box-dimensions of the measure µwith respect to the measure ν and investigate the relationship
between the multifractal box-dimensions and the relative multifractal Hausdorff dimension, the relative
multifractal pre-packing dimension. We also, calculate the relative multifractal spectrum and establish the
validity of multifractal formalism. As an application, we study the behavior of projections of measures
obeying to the relative multifractal formalism.

1. Introduction and statement of the results

Multifractal analysis was first introduced by Mandelbrot in the context of turbulence [40, 41] and then
studied as a mathematical tool in increasingly general settings. It’s concerned with describing the local
singular behavior of measures or functions. More precisely, given a finite measure µ on Rn, we define the
local dimension (or the pointwise Hölder exponent) of µ at a point x, by :

αµ(x) = lim
r→0

logµ(B(x, r))
log r

,

where B(x, r) denotes the closed ball of center x and radius r. The aim of multifractal analysis of measures
is to relate the Hausdorff and packing dimensions of a level set of the local dimension of µ, to the Legendre
transform of some concave (convex) function [5–9, 15, 44–48, 50]. This is done by calculating the functions
fµ(α) = dimH

{
x : αµ(x) = α

}
and Fµ(α) = dimP

{
x : αµ(x) = α

}
for α ≥ 0, where dimH and dimP denote

respectively the Hausdorff and packing dimensions (see [40, 41, 53]).
One of the main problems about multifractal analysis is to understand the multifractal spectrum and

the Rényi dimensions, and their relationship with each other. During the past 20 years there has been
an enormous interest in computing the multifractal spectra of measures in the mathematical literature.
And within the last 15 years the multifractal spectra of various classes of measures in Euclidean space Rn,
exhibiting some degree of self-similarity have been computed rigorously, see the paper [44], the textbooks
[28, 52] and the references therein. In an attempt to develop a general theoretical framework for studying the
multifractal structure of arbitrary measures, Olsen [44] and Pesin [51] suggested various ways of defining
an auxiliary measure in very general settings.
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Let µ, ν be two probability measures on a metric space X. In [14], Billingsley applied methods from
ergodic theory to calculate the size of sets

E(α) =

{
x ∈ suppµ ∩ supp ν : lim

r→0

logµ(B(x, r))
log ν(B(x, r))

= α

}
.

Cajar [16] also studied these sets in the code space. Anyone who is familiar with multifractal analysis
will recognize this as a form of multifractal analysis. In several recent papers on multifractal analysis, this
type of multifractal analysis has re-emerged as mathematicians and physicists have begun to discuss the
idea of performing multifractal analysis with respect to an arbitrary reference measure. Cole introduced
Billingsley’s concept of Hausdorff, packing measures and dimensions about two measures in probability
space to multifractal analysis, i.e., he studied the set of points which has a given local dimension with
respect to an arbitrary probability measure. More specifically, for µ and ν be two compactly supported
Borel probability measures on Rn, the upper and lower ν-local dimensions of µ are defined as

αµ,ν(x) = lim inf
r→0

logµ(B(x, r))
log ν(B(x, r))

and αµ,ν(x) = lim sup
r→0

logµ(B(x, r))
log ν(B(x, r))

.

When αµ,ν(x) = αµ,ν(x) we refer to the common value as the ν-local dimension of µ at x, and we denote it by
αµ,ν(x). Cole calculate, for α ≥ 0, the size of the set

E(α) = Eµ,ν(α) =
{
x ∈ suppµ ∩ supp ν : αµ,ν(x) = α

}
where suppµ is the topological support of µ. In several recent papers, many authors have begun to discuss
the idea of performing multifractal analysis with respect to an arbitrary reference measure [1, 2, 9, 18–
22, 24, 27, 38, 55, 61, 63].

In [17] Cole formalised these ideas by introducing a relative formalism for the multifractal analysis
of one measure with respect to another. This formalism is based on the ideas of the classical multifractal
formalism as clarified by Halsey et al. [33], and monitors the formal treatment of this formalism donated by
Peyrière and Olsen [44, 53]. Later, Ben Nasr et al. in [11, 12] developed a necessary and sufficient condition
for the validity of the multifractal formalism. As an application, we can refer to the multifractal structure
of one graph directed self-conformal measure with respect to another (see for example [3, 17, 21]).

In the present paper we study the level sets of the (upper or lower) ν-local dimensions of a given measure
µ. We need to determine the functions

fµ,ν(α) = dimH E(α) and Fµ,ν(α) = dimP E(α).

Generally it is very difficult to obtain the singularity spectrum fµ,ν(α) directly from the definition of the
Hausdorff dimension. To avoid this difficulty, we prove that the relative multifractal formalism provides a
formula which link the singularity spectrum fµ,ν(α) to the Legendre transform of the relative multifractal
q-box-dimension. The upper and lower q-box-dimensions are then given by

τµ,ν(q) = lim sup
r→0

log Sµ,r(q)
− log ζν(r)

and τµ,ν(q) = lim inf
r→0

log Sµ,r(q)
− log ζν(r)

.

When the limit above exists for all q we speak of the q-box dimension τµ,ν(q), where

Sµ,r(q) = sup

∑
i

µ(B(xi, r))q


with the supremum is taken over all centered packings

(
B(xi, r)

)
i
of suppµ, and

ζν(r) = sup
x∈suppµ ∩ supp ν

ν
(
B(x, r)

)
.
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First, we define the lower and upper relative multifractal box-dimensions and the relative Rényi dimen-
sions. We compare them to the relative multifractal Hausdorff dimension and the multifractal pre-packing
dimension. Secondly, we calculate the ν-multifractal spectrum, where ν denotes the Borel probability
measure on n-dimensional linear space, and then, we can research the validity of the relative multifractal
formalism by means kind of analogue to those used in the validity of the classical multifractal formalism.
As an application, we study the behavior of projections of measures obeying to the relative multifractal
formalism.

2. Preliminaries

We denote the family of Borel probability measures on Rn by P(Rn). Let µ, ν ∈ P(Rn). For q, t ∈ R,
E ⊆ Rn and δ > 0, we define the generalized packing pre-measure relatively to µ and ν

P
q,t
µ,ν,δ(E) = sup

∑
i

µ(B(xi, ri))qν(B(xi, ri))t,

where the supremum is taken over all centered δ-packings of E,

P
q,t
µ,ν(E) = inf

δ>0
P

q,t
µ,ν,δ(E).

In a similar way, we define the generalized Hausdorff pre-measure relatively to µ and ν

H
q,t
µ,ν,δ(E) = inf

∑
i

µ(B(xi, ri))qν(B(xi, ri))t,

where the infinimum is taken over all centered δ-coverings of E, and

H
q,t
µ,ν(E) = sup

δ>0
H

q,t
µ,ν,δ(E),

with the conventions∞ . 0 = 0 . ∞ = 0, 0q = ∞ for q ≤ 0 and 0q = 0 for q > 0.

The function H
q,t
µ,ν is σ-subadditive but not increasing and the function P

q,t
µ,ν is increasing but not σ-

subadditive. For this reason, Cole defined the generalized Hausdorff and packing measures relatively to
tow measuresHq,t

µ,ν and Pq,t
µ,ν, by

H
q,t
µ,ν(E) = sup

F⊆E
H

q,t
µ,ν(F) and P

q,t
µ,ν(E) = inf

E⊆
⋃

i Ei

∑
i

P
q,t
µ,ν(Ei).

These functions are metric outer measures and thus measures on the Borel family of subsets of Rn. An

important feature of the Hausdorff and packing measures is that Pq,t
µ,ν ≤ P

q,t
µ,ν, and there exists an integer

ξ ∈N, such thatHq,t
µ,ν ≤ ξP

q,t
µ,ν.

The measuresHq,t
µ,ν andPq,t

µ,ν and the pre-measureP
q,t
µ,ν assign in the usual way a dimension to each subset

E of Rn. They are respectively denoted by dimq
µ,ν(E), Dimq

µ,ν(E) and ∆
q
µ,ν(E).

Proposition 2.1. [17]

1. There exists a unique number dimq
µ,ν(E) ∈ [−∞,+∞] such that

H
q,t
µ,ν(E) =


∞ if t < dimq

µ,ν(E),

0 if dimq
µ,ν(E) < t.
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2. There exists a unique number Dimq
µ,ν(E) ∈ [−∞,+∞] such that

P
q,t
µ,ν(E) =


∞ if t < Dimq

µ,ν(E),

0 if Dimq
µ,ν(E) < t.

3. There exists a unique number ∆
q
µ,ν(E) ∈ [−∞,+∞] such that

P
q,t
µ,ν(E) =


∞ if t < ∆

q
µ,ν(E),

0 if ∆
q
µ,ν(E) < t.

In addition we have

dimq
µ,ν(E) ≤ Dimq

µ,ν(E) ≤ ∆
q
µ,ν(E). (2.1)

Remark 2.2. If q = 0, we can see obviously, for t > 0, that the functions H
0,t
µ,ν,H

0,t
µ,ν,P

0,t
µ,ν and P

0,t
µ,ν do not depend

on µ, and they will be denoted respectively, by H
t
ν,H

t
ν,P

t
ν and P

t
ν. Hence, we denote ν-Hausdorff, ν-packing and

ν-pre-packing dimension by dimν,Dimν and ∆ν respectively. Then, for E ⊂ suppµ ∩ supp ν, we have

dimν(E) = dim0
µ,ν(E), Dimν(E) = Dim0

µ,ν(E), ∆ν(E) = dim0
µ,ν(E).

If E ⊆ suppµ ∩ supp ν and q, t ∈ R. We define the functions bµ,ν, Bµ,ν and ∆µ,ν by

bq
µ,ν(E) = dimq

µ,ν(E), Bq
µ,ν(E) = Dimq

µ,ν(E) and Λ
q
µ,ν(E) = ∆

q
µ,ν(E).

The special case, where E = suppµ ∩ supp ν, bq
µ,ν(E), Bq

µ,ν(E) and ∆
q
µ,ν(E) will be denoted, respectively, by

bµ,ν(q),Bµ,ν(q) and Λµ,ν(q). It is well known that the functions bµ,ν, Bµ,ν and Λµ,ν are decreasing, Bµ,ν, Λµ,ν are
convex and bµ,ν is pre-convex (see [24]) and satisfying

bµ,ν ≤ Bµ,ν ≤ Λµ,ν. (2.2)

In addition, we have the following result.

Proposition 2.3. [17] Let µ,ν ∈ P(Rn). Then, we have
1. For q < 1, 0 ≤ bµ,ν(q) ≤ Bµ,ν(q) ≤ Λµ,ν(q).
2. bµ,ν(1) = Bµ,ν(1) = Λµ,ν(1) = 0.
3. For q > 1, bµ,ν(q) ≤ Bµ,ν(q) ≤ Λµ,ν(q) ≤ 0.

For µ ∈ P(Rn) and a > 1, we write

Ta(E) = lim sup
r↘0

sup
x∈E

µ
(
B(x, ar)

)
µ
(
B(x, r)

)  .
Now, we will say that the measure µ satisfies the doubling condition if there exists a > 1 such that Ta(E) < ∞.
It is easily seen that the exact value of the parameter a is unimportant: Ta(E) < ∞, for some a > 1 if and only
if Ta(E) < ∞, for all a > 1. Also, we will write P1(E) for the family of Borel probability measures on E which
satisfy the doubling condition. We can cite as classical examples of doubling measures, the self-similar
measures and the self-conformal ones [44]. We also write

P0(E) =
{
µ ∈ P(Rn) : ∃ a > 1,∀x ∈ suppµ, Ta({x}) < ∞

}
.

We present the following technical lemma, which will be used in the proof of our main results.
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Lemma 2.4. [39] If µ ∈ P1(E) and a > 1. Then there exist constants r0, c > 0, such that

c−1
≤

µ
(
B(x, ar)

)
µ
(
B(x, r)

) ≤ c

for all x ∈ E and 0 < r < r0.

3. Relative multifractal box-dimensions and results

We define two types of upper and lower relative multifractal q-box-dimensions in Rn, and compare
them to both relative multifractal Hausdorff dimension and relative multifractal pre-packing dimension.
Let µ and ν in P(Rn) and q ∈ R. For E ⊂ Rn and r > 0, we write

ζν(r) = sup
x∈E∩ supp ν

ν
(
B(x, r)

)
and

Sq
µ,r(E) = sup

∑
i

µ(B(xi, r))q

 ,
where

(
B(xi, r)

)
i

is a centered packing of E ∩ suppµ. The upper, respectively the lower generalized

multifractal q-box-dimension C
q
µ,ν and Cq

µ,ν of E is defined by

C
q
µ,ν(E) = lim sup

r→0

log Sq
µ,r(E)

− log ζν(r)
and Cq

µ,ν(E) = lim inf
r→0

log Sq
µ,r(E)

− log ζν(r)
.

When the limit above exists for all q, we speak of the q-box-dimension Cq
µ,ν. Another natural way to define

q-box-dimensions is given by

Nq
µ,r(E) = inf

∑
i

µ(B(xi, r))q

 ,
where

(
B(xi, r)

)
i

is a centered covering of E ∩ suppµ. Now, we write

L
q
µ,ν(E) = lim sup

r→0

log Nq
µ,r(E)

− log ζν(r)
and Lq

µ,ν(E) = lim inf
r→0

log Nq
µ,r(E)

− log ζν(r)
.

If L
q
µ,ν = Lq

µ,ν, their common value at q is denoted by Lq
µ,ν.

In this section, we are interested in studying some relations between the quantities we have just defined
(Theorem 3.1) and compare them with ∆

q
µ,ν (Proposition 3.2). We will discuss them, naturally, according to

the value of q. Moreover, it is not possible, without any condition on the measure ν to prove the existence
of Lq

µ,ν or Cq
µ,ν.

Theorem 3.1. Let µ, ν ∈ P(Rn) and E ⊂ Rn.

1. For q ≤ 0, we have
L

q
µ,ν(E) = C

q
µ,ν(E) and Lq

µ,ν(E) = Cq
µ,ν(E).

2. Suppose that µ ∈ P1(E), then for q > 0 we have

L
q
µ,ν(E) = C

q
µ,ν(E) and Lq

µ,ν(E) = Cq
µ,ν(E).
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Proof. The proof is similar to the proof of Propositions 2.19 and 2.20 in [44].

Proposition 3.2. Let µ, ν ∈ P(Rn) and E ⊂ Rn, we have

1. for all q > 1, C
q
µ,ν(E) ≤ ∆

q
µ,ν(E).

2. For all q ≤ 0, Cq
µ,ν(E) ≥ ∆

q
µ,ν(E).

Proof. This is of course obvious when the term ∆
q
µ,ν(E) is infinite. So, without loss of the generality, we

assume that it is finite.

1. Let t = ∆
q
µ,ν(E) < 0 and ε > 0 such that t + ε < 0, we may choose 0 < rε < 1 such that P

q,t+ε
µ,ν,r (E) < 1 for

0 < r < rε. This is possible because of the fact that

P
q,t+ε
µ,ν (E) = lim

r→0
P

q,t+ε
µ,ν,r (E) = 0.

Now, fix 0 < r < rε and let
(
B(xi, r)

)
i
be a packing of E. We obtain∑

i

µ(B(xi, r))q
≤ sup

i
ν(B(xi, r))−(t+ε)

∑
i

µ(B(xi, r))qν(B(xi, r))t+ε

≤ sup
i
ν(B(xi, r))−(t+ε)

P
q,t+ε
µ,ν,r (E)

≤ sup
i
ν(B(xi, r))−(t+ε)

≤

[
sup

i
ν(B(xi, r))

]−(t+ε)

≤

(
Cζν(r)

)−(t+ε)
.

2. Denote t = ∆
q
µ,ν(E) ≥ 0. Let ε > 0 such that t − ε > 0 and let 0 < r0 < 1. It holds that

∞ = P
q,t− ε2
µ,ν (E) ≤ P

q,t− ε2
µ,ν,r0

(E).

This means that there exist a r0-packing
(
B(xi, ri)

)
i
of E such that∑

i

µ(B(xi, ri))qν(B(xi, ri))t− ε2 ≥ 1.

Next, for n be a integer, write

Jn =
{
i :

r0

2n+1 ≤ ri <
r0

2n

}
and An =

∑
i∈Jn

µ(B(xi, ri))q,

then

1 ≤

∑
i

µ
(
B(xi, ri)

)q
ν
(
B(xi, ri)

)t− ε2

≤ sup
j

∑
i

µ
(
B(xi, ri)

)q
ν
(
B(xi, ri)

)t−ε
ν
(
B(x j, ri)

) ε
2

≤ sup
j

∑
n

An sup
i∈Jn

ν
(
B(xi,

r0

2n )
)t−ε

ν
(
B(x j,

r0

2n )
) ε

2

≤ sup
m

sup
i

Amν
(
B(xi,

r0

2m )
)t−ε

sup
j

∑
n

ν
(
B(x j,

r0

2n )
) ε

2
.
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It’s clear that, for all j,
∑

n ν
(
B(x j,

r0
2n )

) ε
2
< ∞. Then, there exists C > 0 such that

1 ≤ C sup
m

sup
i

Amν
(
B(xi,

r0

2m )
)t−ε

.

We may choose i,N ∈N such that

CANν
(
B(xi,

r0

2N )
)t−ε
≥ 1. (3.1)

Now put r = r0
2N+1 . Then 0 ≤ r < r0 and

(
B(xi, r)

)
i∈JN

is a packing of E. It results that

Sq
µ,r(E) ≥

∑
i∈JN

µ(B(xi, r))q

≥

∑
i∈JN

[
µ(B(xi,

r0
2N+1 ))

µ(B(xi,
r0
2N ))

]q

µ(B(xi, ri))q

≥

∑
i∈JN

µ(B(xi, ri))q = AN.

Using (3.1) we get

Sq
µ,r(E) ≥ C−1ν

(
B(xi,

r0

2N )
)−(t−ε)

≥ C−1ζν(r)−(t−ε).

Now, with an additional condition on the measure ν, we will prove the existence of Lq
µ,ν and Cq

µ,ν.
Moreover, they are equal and equal to ∆

q
µ,ν. This result is true only if q ≤ 0 (Theorem 3.4). The case q > 0

treated in Theorem 3.5.

Definition 3.3. A Borel regular measure µ on Rn is called uniformly distributed if

0 < µ(B(x, r)) = µ(B(y, r)) for x, y ∈ suppµ, 0 < r < ∞.

Kirchheim and Preiss [37] characterized uniformly distributed measures in R and gave examples of such
measures in R2. Also, they proved that the support of a uniformly distributed measure on Rn is a real
analytic variety. In fact, there are several authors who characterized uniformly distributed measures, see
[23, 54].

Theorem 3.4. Let µ, ν ∈ P(Rn) and E ⊂ Rn. Suppose that ν is a uniformly distributed Borel measure, then for all
q ≤ 0, we have

Lq
µ,ν(E) = Cq

µ,ν(E) = ∆
q
µ,ν(E).

Proof. Let t = ∆
q
µ,ν(E) ≥ 0 and ε > 0. We may choose 0 < rε < 1 such thatP

q,t+ε
µ,ν,r (E) < 1 for 0 < r < rε. Now, fix

0 < r < rε and let
(
B(xi, r)

)
i
be a packing of E. We obtain, since ν is a uniformly distributed Borel measure,∑

i

µ(B(xi, r))q
≤

[
sup

i
ν(B(xi, r))

]−(t+ε) ∑
i

µ(B(xi, r))qν(B(xi, r))t+ε

≤

[
sup

i
ν(B(xi, r))

]−(t+ε)

P
q,t+ε
µ,ν,r (E)

≤

(
ζν(r)

)−(t+ε)
. (3.2)



N. Attia, B. Selmi / Filomat 33:9 (2019), 2841–2859 2848

We get Sq
µ,r(E) ≤ ζν(r)−(t+ε). Taking logarithms and letting r→ 0 we obtain

C
q
µ,ν(E) ≤ ∆

q
µ,ν(E).

Finally, we get the desired result from Theorem 3.1 and Proposition 3.2.

Theorem 3.5. Let µ, ν ∈ P1(Rn) such that ν is a uniformly distributed Borel measure and q ∈ R+. We have

C
q
µ,ν(E) = ∆

q
µ,ν(E).

Proof. This is of course obvious when the term ∆
q
µ,ν(E) is infinite. So, without loss of the generality, we

assume that it is finite.

Case 1 : q > 1. Under Proposition 3.2 we only need to prove that

C
q
µ,ν(E) ≥ ∆

q
µ,ν(E). (3.3)

Denote t = ∆
q
µ,ν(E) < 0. From Lemma 2.4, since µ ∈ P1(E) there exists a constant c > 0 and 0 < r0 < 1

such that
c−1µ(B(x, r)) ≤ µ(B(x, 2r)) ≤ cµ(B(x, r)) for all x ∈ E and 0 < r < r0.

Let ε > 0 and 1 > r0 > 0. It holds that ∞ = P
q,t− ε2
µ,ν (E) ≤ P

q,t− ε2
µ,ν,r0

(E), This means that there exists a r0-packing(
B(xi, ri)

)
i
of E such that ∑

i

µ(B(xi, ri))qν(B(xi, ri))t− ε2 ≥ 1.

Next, for n be an integer, we write

Jn =
{
i :

r0

2n+1 ≤ ri <
r0

2n

}
and An =

∑
i∈Jn

µ(B(xi, ri))q,

then

1 ≤

∑
i

µ(B(xi, ri))qν(B(xi, ri))t− ε2

≤ sup
j

∑
i

µ(B(xi, ri))qν(B(xi, ri))t−εν(B(x j, ri))
ε
2

≤ sup
j

∑
n

An sup
i∈Jn

ν
(
B(xi,

r0

2n+1 )
)t−ε

ν
(
B(x j,

r0

2n )
) ε

2
.

Since ν ∈ P1, then from Lemma 2.4, there exists c > 0 such that, for all i,

ν(B(xi,
r0

2n+1 ))

ν(B(xi,
r0
2n ))

≥ c.

It follows that

1 ≤ ct−ε sup
j

∑
n

An sup
i∈Jn

ν
(
B(xi,

r0

2n )
)t−ε

ν
(
B(x j,

r0

2n )
) ε

2

≤ ct−ε sup
m

sup
i

Amν
(
B(xi,

r0

2m )
)t−ε

sup
j

∑
n

ν
(
B(x j,

r0

2n )
) ε

2
.

It’s clear that, for all j,
∑

n ν(B(x j,
r0
2n ))

ε
2 < ∞. Then, there exists Ct,ε > 0 such that

1 ≤ Ct,ε sup
m

sup
i

Amν
(
B(xi,

r0

2m )
)t−ε

.
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We may choose i,N ∈N such that

Ct,εANν
(
B(xi,

r0

2N )
)t−ε
≥ 1. (3.4)

Now put r = r0
2N+1 . Then 0 ≤ r < r0 and

(
B(xi, r)

)
i∈JN

is a packing of E. It results that

Sq
µ,r(E) ≥

∑
i∈JN

µ(B(xi, r))q

≥

∑
i∈JN

[
µ(B(xi,

r0
2N+1 ))

µ(B(xi,
r0
2N ))

]q

µ(B(xi, ri))q.

Since µ ∈ P1 and ν is uniformly distributed Borel measure, we get from equation (3.4) that

Sq
µ,r(E) ≥ C1ν(B(xi, r))−(t−ε)

≥ C1ζν(r)−(t−ε),

where C1 is a constant in R∗+. Taking the logarithms and letting r→ 0 and ε→ 0, we get (3.3).
Case 2 : 0 ≤ q ≤ 1. The proof is similar to Case 1 and the proof of Theorem 3.4.

It is clear, from Theorem 3.1 and Proposition 3.2 that, for q ≤ 0 and E ⊂ R, we have

dimq
µ,ν(E) ≤ Lq

µ,ν(E).

The next result study the case where q ∈ R∗+.

Theorem 3.6. Let E ⊂ Rn and µ, ν ∈ P0(E). Suppose that ν is a uniformly distributed Borel measure, then

∀ q > 0, dimq
µ,ν(E) ≤ Lq

µ,ν(E).

Proof. For m ∈N, we write

Em =

{
x ∈ E :

µ(B(x, 3r))
µ(B(x, r))

< m and
ν(B(x, 3r))
ν(B(x, r))

< m for 0 < r <
1
m

}
.

Since E =
⋃

m Em, then dimq
µ,ν(E) = supm dimq

µ,ν(Em). Hence it is sufficient to prove that

dimq
µ,ν(Em) ≤ Lq

µ,ν(E), ∀m ∈N.

Let t > Lq
µ,ν(E). We must now prove thatHq,t

µ,ν(Em) < ∞.
Next, remark that for F ⊂ Em, there exists a sequence (rn)n such that rn → 0 and 0 < rn < 1, for which

t >
log Nq

µ,rn
(E)

− log ζν(rn)
for n ∈N.

Hence, for n ∈N there exists a centered covering
(
B(xni , rn)

)
i
of E satisfying

ζν(rn)−t >
∑

i

µ(B(xni , rn))q. (3.5)
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Let next n ∈ N and put J =
{
i : B(xni , rn) ∩ F , ∅

}
. For i ∈ J, choose yi ∈ B(xni , rn) ∩ F, then

(
B(yi, 2rn)

)
i

is a
centered 2rn-covering of F, whence

H
q,t
µ,ν,rn

(F) ≤

∑
i

µ(B(yi, 2rn))qν(B(yi, 2rn))t

≤

∑
i

[
µ(B(yi, 2rn))
µ(B(xni , rn))

]q

µ(B(xni , rn))q
[
ν(B(yi, 2rn))
ν(B(xni , rn))

]t

ν(B(xni , rn))t

≤

∑
i

[
µ(B(xni , 3rn))
µ(B(xni , rn))

]q

µ(B(xni , rn))q
[
ν(B(xni , 3rn))
ν(B(xni , rn))

]t

ν(B(xni , rn))t

≤ C(q, t)
∑

i

µ(B(xni , rn))qν(B(xni , rn))t,

where C(q, t) is a positive constant depending only on q and t. It follows from (3.5) and since ν is a uniformly
distributed Borel measure, that

H
q,t
µ,ν,rn

(F) ≤ C(q, t) sup
i
ν(B(xni , rn))t

∑
i

µ(B(xni , rn))q

≤ C(q, t) ζν(rn)tζν(rn)−t < ∞.

Letting n→∞ givesH
q,t
µ,ν(F) < ∞ for all F ⊂ Em, whenceHq,t

µ,ν(Em) < ∞, which yields that dimq
µ,ν(Em) ≤ t.

4. Relative Rényi dimensions

Let us introduce the multifrcatal generalization of the q-dimensions also called relative Rényi q-
dimensions based on integral representations. Let µ and ν be two probability measures on Rn. For
q ∈ R \ {0} and r > 0, we write

Tµ,ν(q) = lim inf
r→0

1
−q log ζν(r)

log
∫
µ(B(x, r))qdµ(x),

and

Tµ,ν(q) = lim sup
r→0

1
−q log ζν(r)

log
∫
µ(B(x, r))qdµ(x).

Now we define the generalized entropies due to Rényi by,

hq
r (µ) =

1
q − 1

log Sq
µ,r(suppµ) for q , 1

and

h1
r (µ) = inf

−∑
i

µ(Ei) logµ(Ei) : (Ei)i is a partition of suppµ

 .
We define the upper and lower Rényi q-dimensions Dµ,ν(q) and Dµ,ν(q) of µ with respect to ν by

Dµ,ν(q) = lim sup
r→0

log hq
r (µ)

− log ζν(r)
and Dµ,ν(q) = lim inf

r→0

log hq
r (µ)

− log ζν(r)
.

If Tµ,ν(q) = Tµ,ν(q) (respectively Dµ,ν(q) = Dµ,ν(q)) we refer to the common value as the relative Rényi
q-dimension of µ respect to ν and denote it Tµ,ν(q) (respectively Dµ,ν(q)).

The following result relates these dimensions to Λµ,ν.
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Theorem 4.1. Let µ, ν ∈ P1(Rn) such that ν is a uniformly distributed Borel measure on Rn. Then the following
holds

1. Λµ,ν(q) = max
(
(q − 1)Tµ,ν(q − 1), (q − 1)Tµ,ν(q − 1)

)
.

2. Λµ,ν(q) = max
(
(q − 1)Dµ,ν(q), (q − 1)Dµ,ν(q)

)
.

Proof. The proof is similar to the proof of Theorem 2.24 in [44].

Remark 4.2. A special case of this theorem, when ν is the Lebesgue measure on Rn, is treated by Olsen in [44].

5. Relative multifractal spectrum

The functions bµ,ν and Bµ,ν are related to the ν-multifractal spectrum of the measure µ. More precisely,
if f ∗(α) = infβ

(
αβ + f (β)

)
denotes the Legendre transform of the function f and let us define, for µ and

ν ∈ P(Rn)

αmin = sup
q>0
−

bµ,ν(q)
q

; αmax = inf
q<0
−

bµ,ν(q)
q

,

Cole in [17] to be estimated the upper bound of ν-Hausdorff and ν-packing dimensions of E(α). And he
rigorously proved the following result

Theorem 5.1. Let µ, ν ∈ P(Rn) and α ≥ 0.

1. If α ∈ (αmin, αmax), then

dimν(E(α)) ≤ b∗µ,ν(α) and Dimν(E(α)) ≤ B∗µ,ν(α).

2. If α ∈ R∗+\[αmin, αmax], then
dimν(E(α)) = Dimν(E(α)) = 0.

It is more difficult to obtain a minoration for the ν-dimensions of the sets described in this theorem.
Extra conditions are always needed to obtain a minoration for the dimensions of level sets. In general,
such a minoration is related to the existence of an auxiliary measure which is supported by the set to be
analyzed. In the case where ν equal to the n-dimensional Lebesgue measure, Olsen gave a result in such a
way and assumed the existence of a Gibbs measure (see [44]) at state q for the measure µ. In an analogous
manner, the next result gives lower bound for dimν in terms of Λµ,ν. Then, if α ≥ 0, let us introduce the
fractal sets

Eα =
{
x ∈ suppµ ∩ supp ν : αµ,ν(x) ≥ α

}
,

E
α

=
{
x ∈ suppµ ∩ supp ν : αµ,ν(x) ≤ α

}
and

E(α) = Eα
⋂

E
α
.

In the following, we will investigate the validity of the relative multifractal formalism. First of all, we
establish the conception for the validity of relative multifractal formalism. Note that, for q ∈ R

τµ,ν(q) = C
q
µ,ν(suppµ ∩ supp ν), τµ,ν(q) = Cq

µ,ν(suppµ ∩ supp ν)

and
τµ,ν,c(q) = L

q
µ,ν(suppµ ∩ supp ν), τµ,ν,c(q) = Lq

µ,ν(suppµ ∩ supp ν).

A relative multifractal formalism is said to be valid if the multifractal dimension functions satisfy

bµ,ν(q) = Bµ,ν(q) = Λµ,ν(q) = τµ,ν(q).
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Theorem 5.2. Let q ∈ R and suppose thatHq,Λµ,ν(q)
µ,ν (suppµ ∩ supp ν) > 0. Then,

dimν

(
E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)
)
≥


−Λ′µ,ν−(q)q + Λµ,ν(q), for q ≤ 0,

−Λ′µ,ν+(q)q + Λµ,ν(q), for q ≥ 0.

Proof. It is well known from Theorem 2.7 in [17] that for all δ > 0 and t ∈ R,
H
−Λ′µ,ν+(q)q+t−δ
ν (E(q)) ≥ Hq,t

µ,ν(E(q)), for q ≥ 0,

H
−Λ′µ,ν−(q)q+t−δ
ν (E(q)) ≥ Hq,t

µ,ν(E(q)), for q ≤ 0

where E(q) = E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)
. Theorem 5.4 is then an easy consequence of the following lemma.

Lemma 5.3. Hq,Λµ,ν(q)
µ,ν

(
suppµ ∩ supp ν \

(
E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)))
= 0.

Proof. Let us introduce, for α and β in R

Xα = suppµ ∩ supp ν \ Eα and Yβ = suppµ ∩ supp ν \ E
β
.

We just have to prove that

H
q,Λµ,ν(q)
µ,ν

(
Xα

)
= 0, for all α < −Λ′µ,ν+(q) (5.1)

and

H
q,Λµ,ν(q)
µ,ν

(
Yβ

)
= 0, for all β > −Λ′µ,ν−(q). (5.2)

Indeed

0 ≤ H
q,Λµ,ν(q)
µ,ν

(
suppµ ∩ supp ν \

(
E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)))
≤ H

q,Λµ,ν(q)
µ,ν

(
suppµ ∩ supp ν \

(
E
−Λ′µ,ν+(q)

))
+ H

q,Λµ,ν(q)
µ,ν

(
suppµ ∩ supp ν \

(
E
−Λ′µ,ν−(q)))

≤ H
q,Λµ,ν(q)
µ,ν

 ⋃
α<−Λ′µ,ν+(q)

Eα

 +H
q,Λµ,ν(q)
µ,ν

 ⋃
β>−Λ′µ,ν−(q)

E
β


≤

∑
α<−Λ′µ,ν+(q)

H
q,Λµ,ν(q)
µ,ν

(
Xα

)
+

∑
β>−Λ′µ,ν−(q)

H
q,Λµ,ν(q)
µ,ν

(
Yβ

)
= 0.

We only have to prove that (5.1), the proof of (5.2) is similar.
Let α < −Λ′µ,ν+(q) and take t > 0 such that Λµ,ν(q + t) < Λµ,ν(q) − αt, which implies that

P
q+t,Λµ,ν(q)−αt
µ,ν

(
suppµ ∩ supp ν

)
= 0.

If x ∈ Xα, let δ > 0 we can find 0 < rx < δ such that

µ(B(x, rx)) > ν(B(x, rx))α.
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The family
(
B(x, rx)

)
x∈Xα

is then a centered δ-covering of Xα. Using Besicovitch’s covering theorem, we can

construct ξ finite or countable sub-families
(
B(x1 j, r1 j)

)
j
,....,

(
B(xξ j, rξ j)

)
j

such that each Xα ⊆

ξ⋃
i=1

⋃
j

B(xi j, ri j)

and
(
B(xi j, ri j)

)
j
is a δ-packing of Xα. Observing that

µ(B(xi j, ri j))qν(B(xi j, ri j))Λµ,ν(q)
≤ µ(B(xi j, ri j))q+tν(B(xi j, ri j))Λµ,ν(q)−αt.

So, we give

H
q,Λµ,ν(q)
µ,ν,δ (Xα) ≤ ξ P

q+t,Λµ,ν(q)−αt
µ,ν,δ (Xα).

Letting δ→ 0, we obtain

H
q,Λµ,ν(q)
µ,ν (Xα) ≤ ξ P

q+t,Λµ,ν(q)−αt
µ,ν (Xα).

We can replace Xα by any arbitrary subset of Xα. Then, we can finally conclude that

H
q,Λµ,ν(q)
µ,ν (Xα) ≤ ξ P

q+t,Λµ,ν(q)−αt
µ,ν (suppµ ∩ supp ν) = 0.

Using Theorems 3.4 and 3.5 we get the following consequence.

Corollary 5.4. Let q ∈ R and suppose that the following hypotheses hold,

1. µ is doubling on Rn.
2. ν is a uniformly distributed and doubling Borel measure on Rn.

3. Hq,Λµ,ν(q)
µ,ν (suppµ ∩ supp ν) > 0.

Then,

dimν

(
E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)
)
≥


−Λ′µ,ν−(q)q + τµ,ν(q), for q ≤ 0,

−Λ′µ,ν+(q)q + τµ,ν(q), for q ≥ 0.

The following result proves that the conditionHq,Λµ,ν(q)
µ,ν (suppµ∩supp ν) > 0 is very close to being a necessary

and sufficient condition for the validity of the multifractal formalism.

Theorem 5.5. Let q ∈ R and µ, ν be two compactly supported Borel probability measures on Rn such that µ is
doubling and ν is a uniformly distributed and doubling Borel measure. Now, suppose that one of the following
hypotheses is satisfied,

1. dimν

(
E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)
)
≥ −Λ′µ,ν+(q)q + τµ,ν(q), for q ≤ 0,

2. dimν

(
E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)
)
≥ −Λ′µ,ν−(q)q + τµ,ν(q), for q ≥ 0.

Then,
bµ,ν(q) = Bµ,ν(q) = Λµ,ν(q) = τµ,ν(q).

Proof. We have, for q ≥ 0

E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)
⊂ E

−Λ′µ,ν−(q)
,

so that,

−Λ′µ,ν+(q)q + τµ,ν(q) ≤ dimν

(
E
−Λ′µ,ν+(q) ∩ E

−Λ′µ,ν−(q)
)
≤ dimν

(
E
−Λ′µ,ν−(q)

)
.
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Suppose that α = −Λ′µ,ν−(q). We only prove the case where q ≥ 0. The other one is similar. Then

dimν

(
E
α)
≥ αq + τµ,ν(q).

For this, from Theorem 3.5 and (2.2), we have that

bµ,ν(q) ≤ Bµ,ν(q) ≤ Λµ,ν(q) = τµ,ν(q).

It is then sufficient to prove bµ,ν(q) ≥ τµ,ν(q). Let t < τµ,ν(q) and choose β such that β < α. Then βq + t <
αq + τµ,ν(q). For p ∈Nwe consider the set

Fp =

{
x ∈ E

α
: µ(B(x, r)) ≥ ν(B(x, r))β, 0 < r <

1
p

}
.

It is clear that Fp ↗ E
α

as p→∞. It follows that there exists p > 0, such that

dimν(Fp) > βq + t⇒Hβq+t
ν (Fp) > 0.

Let 0 < δ < 1
p and

(
B(xi, ri)

)
i
is a centered δ-covering of Fp. Then,∑

i

µ(B(xi, ri))qν(B(xi, ri))t
≥

∑
i

ν(B(xi, ri))βq+t.

Hence, by Theorem 2.7 in [17],

H
q,t
µ,ν(suppµ ∩ supp ν) ≥ Hq,t

µ,ν(E
α
) ≥ Hq,t

µ,ν(Fp) ≥ Hβq+t
ν (Fp) > 0.

It follows that t ≤ bµ,ν(q). Finally, we get

bµ,ν(q) = Bµ,ν(q) = Λµ,ν(q) = τµ,ν(q).

Corollary 5.6. Assume that the hypotheses of Corollary 5.4 hold for all q ∈ R and that Λµ,ν is differentiable at q. Let
α = −Λ′µ,ν(q), there holds

Dimν

(
E(α)

)
= dimν

(
E(α)

)
= b∗µ,ν(α) = B∗µ,ν(α) = Λ∗µ,ν(α) = τ∗µ,ν(α).

Proof. Denote α = −Λ′µ,ν(q). Theorems 3.5 and 5.1 imply that

dimν

(
E(α)

)
≤ b∗µ,ν(α) ≤ B∗µ,ν(α) ≤ Λ∗µ,ν(α) = τ∗µ,ν(α).

On the other hand, Corollary 5.4 yields

dimν

(
E(α)

)
≥ αq + τµ,ν(α), for all q ∈ R.

Which implies that
dimν

(
E(α)

)
≥ τ∗µ,ν(α) = Λ∗µ,ν(α) ≥ B∗µ,ν(α) ≥ b∗µ,ν(α),

which achieves the proof.

Corollary 5.7. Assume that the hypotheses of Corollary 5.4 hold for all q ∈ R and that Λµ,ν is differentiable at q. Let
α = −Λ′µ,ν(q), there holds

Dimν

(
E(α)

)
= dimν

(
E(α)

)
= b∗µ,ν(α) = B∗µ,ν(α) = Λ∗µ,ν(α) = τ∗µ,ν,c(α)

= τ∗µ,ν,c(α) = τ∗µ,ν(α) = τ∗µ,ν(α).
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Proof. This corollary follows immediately from Corollary 5.6, inequality (2.2) and the following Lemma

Lemma 5.8.

1. bµ,ν(q) ≤ τµ,ν,c(q) = τµ,ν(q).
2. τµ,ν,c(q) = τµ,ν(q) = Λµ,ν(q).

6. Application

Singularity, exponents or spectrum and generalized dimensions are the major components of the multi-
fractal analysis. Recently, the projection behavior of dimensions and multifractal spectra of measures have
generated a large interest in the mathematical literature. The study of the behavior of Hausdorff dimen-
sion under projection type mappings dates back to the 50’s when Marstrand [42] proved a well-known
theorem according to which the Hausdorff dimension of a planar set is preserved under typical orthogonal
projections. Kaufman [36] proved the same result using potential theoretic methods. Mattila′s proof [43]
for the general case is also based on the potential theoretic approach that was later generalized to higher
dimensions by Hu and Taylor [35] and for the Hausdorff dimension of a measure by Falconer and Mattila
[30].

The behavior of the packing dimension under projections is not as straightforward as that of the
Hausdorff dimension. While the Hausdorff dimension of a set or a measure is preserved under almost all
projections, the packing dimension decrease for almost all of them [29, 30].

As a continuity to these researchs many authors have studied the relationship between multifractal
features of a measure µ on Rn and those of the projection of the measure onto m-dimensional subspaces
[4, 25, 26, 49, 58–60, 62, 64]. Other works were carried in this sense for classes of similar measures in
Euclidean and symbolic spaces [13, 32, 34, 56, 57]. We briefly recall some basic definitions and facts which
will be repeatedly used in subsequent developments. Let m be an integer with 0 < m < n and Gn,m the
Grassmannian manifold of all m-dimensional linear subspaces of Rn. Denote by γn,m the invariant Haar
measure on Gn,m, such that γn,m(Gn,m) = 1. For V ∈ Gn,m, define the projection map πV : Rn

−→ V as
the usual orthogonal projection onto V. Then, the set {πV, V ∈ Gn,m} is compact in the space of all linear
maps from Rn to Rm and the identification of V with πV induces a compact topology for Gn,m. Also, for a
Borel probability measure µ with compact support on Rn, denoted by suppµ, and for V ∈ Gn,m, define the
projection µV of µ onto V, by

µV(A) = µ(π−1
V (A)) ∀A ⊆ V.

Since µ is compactly supported and suppµV = πV(suppµ) for all V ∈ Gn,m, then for any continuous function
f : V −→ R, we have ∫

V
f dµV =

∫
f (πV(x))dµ(x)

whenever these integrals exist.

This section is devoted to the study of the behavior of projections of measures obeying to the relative
multifractal formalism. More precisely, we prove that for q < 0 if the relative multifractal formalism holds
for µ at α = −Λ′µ,ν(q), it holds for µV for all m-dimensional subspaces V. Let us recall the following useful
theorem due to Selmi et al. in [24].

Theorem 6.1. Let µ and ν be two compactly supported Borel probability measures on Rn with suppµ ⊆ supp ν.
Fix q ≤ 0 such that Λµ,ν(q) < 1. Then for all m-dimensional subspaces V,

ΛµV ,νV (q) ≤ Λµ,ν(q), BµV ,νV (q) ≤ Bµ,ν(q)

and
bµV ,νV (q) ≤ bµ,ν(q).
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In addition, if suppµ = supp ν, we have
bµV ,νV (q) = bµ,ν(q).

Theorem 6.2. Let µ, ν be two compactly supported Borel probability measures on Rn with suppµ = supp ν and
q < 0. Suppose that
(H1) ν is a uniformly distributed Borel measure on Rn.
(H2)Hq,Λµ,ν(q)

µ,ν (suppµ) > 0,
(H3) Λµ,ν(q) < 1,
(H4) Λµ,ν is differentiable at q.
Let α = −Λ′µ,ν(q), then for all m-dimensional subspaces V, we have

dimνV EµV ,νV

(
α
)

= DimνV EµV ,νV

(
α
)

= dimν Eµ,ν
(
α
)

= DimνEµ,ν
(
α
)

= b∗µ,ν(α) = B∗µ,ν(α) = Λ∗µ,ν(α) = τ∗µ,ν,c(α)

= τ∗µ,ν,c(α) = τ∗µ,ν(α) = τ∗µ,ν(α).

Proof. By using Theorem 6.1 and the hypotheses (H2), (H3), then for all m-dimensional subspaces V, we
have

bµ,ν(q) = Bµ,ν(q) = Λµ,ν(q) = bµV ,νV (q) = BµV ,νV (q) = ΛµV ,νV (q). (6.1)

Now, let us show that
0 < H

q,ΛµV ,νV (q)
µV ,νV

(suppµV), ∀ V ∈ Gn,m.

Let E ⊆ suppµ and V ∈ Gn,m. Fix δ > 0 and let
(
Bi = B(xi, ri)

)
i
be a δ-centered covering of E. Let Ei such that

π−1
V (Ei) = E ∩ B(xi, ri). Since Ei ⊂

⋃
y∈Ei

B(y, ri) then, the Besicovitch’s covering theorem provides a positive

integer Kn as well as Ki ≤ Kn families of pairwise disjoint balls Bi,k =
{
B(i,k)

j = B
(
y(i,k)

j , ri jk

)}
, 1 ≤ k ≤ Ki,

extracted from
{
B(y, ri)

}
y∈Ei

and such that

Ei ⊆

Ki⋃
k=1

⋃
j

B(i,k)
j .

One has,

∑
i

µ(Bi)qν(Bi)Λµ,ν(q)
≤

∑
i

µV(B(i,k)
j )qνV

 Ki⋃
k=1

⋃
j

B(i,k)
j


Λµ,ν(q)

≤

∑
i, j

Ki∑
k=1

µV(B(i,k)
j )qνV(B(i,k)

j )Λµ,ν(q).

From (6.1), we get

H
q,Λµ,ν(q)
µ,ν,δ (E) ≤ H

q,ΛµV ,νV (q)
µV ,νV ,δ (πV(E)).

By tending δ ↓ 0, we obtain

H
q,Λµ,ν(q)
µ,ν (E) ≤ H

q,ΛµV ,νV (q)
µV ,νV

(πV(E)).

Thus, we find that

H
q,Λµ,ν(q)
µ,ν (E) ≤ H

q,ΛµV ,νV (q)
µV ,νV

(πV(E))

≤ H
q,ΛµV ,νV (q)
µV ,νV

(πV(suppµ))

= H
q,ΛµV ,νV (q)
µV ,νV

(suppµV).
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Since E is an arbitrary set then

H
q,Λµ,ν(q)
µ,ν (suppµ) ≤ H

q,ΛµV ,νV (q)
µV ,νV

(suppµV).

Hypothesis (H2) implies that
0 < H

q,ΛµV ,νV (q)
µV ,νV

(suppµV), ∀ V ∈ Gn,m.

Theorem 6.2 is then an easy consequence of the following lemma.

Lemma 6.3. H
q,ΛµV ,νV (q)
µV ,νV

(
suppµV \ EµV ,νV (α)

)
= 0.

Proof. Let us introduce for α ∈ R, the sets

Fα =

x ∈ suppµV : lim sup
r→0

log
(
µV(B(x, r))

)
log

(
νV(B(x, r))

) > α
and

F1
α =

x ∈ supp νV : lim inf
r→0

log
(
µV(B(x, r))

)
log

(
νV(B(x, r))

) < α .
We have to prove that

H
q,ΛµV ,νV (q)
µV ,νV

(Fα) = 0 for every α > −Λ′µ,ν(q) (6.2)

and

H
q,ΛµV ,νV (q)
µV ,νV

(F1
α) = 0 for every α < −Λ′µ,ν(q). (6.3)

Let us sketch the proof of assertion (6.2). The proof of (6.3) is similar. Given α > −Λ′µ,ν(q), we can choose
t > 0 such that Λµ,ν(q − t) < Λµ,ν(q) + αt. Which implies that,

ΛµV ,νV (q − t) < ΛµV ,νV (q) + αt

and
P

q−t,ΛµV ,νV (q)+αt
µV ,νV

(
suppµV

)
= 0.

Let δ > 0, for each x ∈ Fα there exists 0 < rx < δ such that

µV(B(x, rx)) ≤ νV(B(x, rx))α.

The family
(
B(x, rx)

)
x∈Fα

is then a centered δ-covering of Fα. Using Besicovitch’s covering theorem, we can

construct ξ finite or countable sub-families
(
B(x1 j, r1 j)

)
j
,....,

(
B(xξ j, rξ j)

)
j

such that each Fα ⊆
ξ⋃

i=1

⋃
j

B(xi j, ri j)

and
(
B(xi j, ri j)

)
j
is a δ-packing of Fα. Observing that

µV(B(xi j, ri j))qνV(B(xi j, ri j))ΛµV ,νV (q)
≤ µV(B(xi j, ri j))q−tνV(B(xi j, ri j))ΛµV ,νV (q)+αt.

We obtain
H

q,ΛµV ,νV (q)
µV ,νV

(Fα) ≤ ξ P
q−t,ΛµV ,νV (q)+αt
µV ,νV

(Fα).

Notice that, in the last inequality, we can replace Fα by any arbitrary subset of Fα. Then, we can finally
conclude that

H
q,ΛµV ,νV (q)
µV ,νV

(Fα) ≤ ξ P
q−t,ΛµV ,νV (q)+αt
µV ,νV

(Fα) ≤ ξ P
q−t,ΛµV ,νV (q)+αt
µV ,νV

(
suppµV

)
= 0.
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Let us return to the proof of Theorem 6.2.

Theorem 2.10 in [17] along with (6.1) imply that

dimνV EµV ,νV

(
−Λ′µ,ν(q)

)
≥ −qΛ′µ,ν(q) + Λµ,ν(q).

So, from Theorem 5.1, the other estimation is satisfied since

DimνV EµV ,νV

(
−Λ′µ,ν(q)

)
≤ −qΛ′µ,ν(q) + ΛµV ,νV (q)

= −qΛ′µ,ν(q) + Λµ,ν(q).

Finally, Theorem 6.2 follows immediately from (6.1) and Theorem 3.4.
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