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Abstract. This paper considers the Balanced Multi-Weighted Attribute Set Partitioning (BMWASP) prob-
lem which requires finding a partition of a given set of objects with multiple weighted attributes into a
certain number of groups so that each attribute is evenly distributed amongst the groups. Our approach is
to define an appropriate criterion allowing to compare the degree of deviation from the ”perfect balance” for
different partitions and then produce the partition that minimizes this criterion. We have proposed a math-
ematical model for the BMWASP and its mixed-integer linear reformulation. We evaluated its efficiency
through a set of computational experiments. To solve instances of larger problem dimensions, we have
developed a heuristic method based on a Variable Neighborhood Search (VNS). A local search procedure
with efficient fast swap-based local search is implemented in the proposed VNS-based approach. Presented
computational results show that the proposed VNS is computationally efficient and quickly reaches all op-
timal solutions for smaller dimension instances obtained by exact solver and provide high-quality solutions
on large-scale problem instances in short CPU times.

1. Introduction

The motivation for our research stems from Belgrade Business School, where students from the same
grade must be divided into groups in such a way that each group provides a good representation of
the classroom population. School administration chooses student attributes and determine their relative
importance. For example, some of attributes are gender, age, current grades, country of origin, etc. After
the attributes and their weights are determined, it is necessary to form groups and measure the quality of
their composition and balance. This problem can be seen as general Balanced Multi-Weighted Attribute Set
Partitioning (BMWASP) problem which requires finding a partition of a given set of objects with multiple
weighted attributes into a certain number of groups so that the groups are as balanced as possible with
respect to the number of elements possessing each attribute.

BMWASP problem arises in many real-life applications, ranging from assigning students to study
groups [14] to designing level schedules for JIT assembly lines [18]. Specially to properly isolate and nullify
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any nuisance or confounding variables in many true experimental designs BMWASP can be used to divide
objects into two balanced rather than randomly groups (test group and a control). One example is education,
where researchers want to monitor the effect of a new teaching method upon groups of children. Other
areas include evaluating the effects of counseling, testing medical treatments, and measuring psychological
constructs. Both groups are pre-tested, and both are post-tested, the ultimate difference being that one
group was administered the treatment.

1.1. Review of the literature related to BMWASP

Generally, the objective of balanced partitioning (classification) is the reverse of the standard classifica-
tion problem. Cormack [5] defines classification as the process by which objects are allocated to groups so
that objects within a group are similar to one another. Thus the balanced partitioning addresses the ques-
tion of how to create similar groups containing dissimilar objects. In the literature can be found different
variants of balanced partitioning problem, each in turn considering different assumptions, constraints and
objective functions.

In [7] Desrosiers et al. use a centroid to represent each group of entities, and propose two different ways
of measuring the balance among groups min-sum and min-max objectives. Model with min-sum objective
minimizes the sum of weighted distances between team centroids and the target vector of attributes. Model
with min-max objective minimizes the maximum weighted distance between team centroids and the target
vector of attributes. The authors apply their method to partition 120 MBA students in groups of 5 at HEC,
Montreal. In [1] Baker and Benn presented case study which consists of assigning 235 students to eight
tutor groups. They used mixed linear programming formulation with min-sum objective. In [13] Krass et
al. enforce balance through hard constraints and problem observed as satisfiability (feasibility of perfectly
balanced partition), rather than an optimization problem. The authors analyze one representative practical
application to design student groups at the Rotman School of Management, University of Toronto. The
goals of the analysis in [13] are to understand which classes of balancing problems may contain infeasible
instances and how prevalent such instances are within these classes. Another approach that can achieve the
balancing between the groups is to maximize the diversity in each group [4, 6, 12]. The maximum diverse
grouping problem (MDGP) consists of finding a way to divide a set of elements into mutually disjoint
groups so that the total diversity among the elements belonging to the same group is maximized [10]. In
[3] Bhadury et al. propose simplified model where the population comes partitioned into ‘families’ with a
high degree of intra-familial similarity and inter-familial dissimilarity. A network flow problem, known as
the dining problem, is used to assign students to different projects.

Our problem formulation differs from others in the literature because the data is binary and multidi-
mensional with weight coefficients. By contrast, Behestian et al. [2] use either one-dimensional attributes
or composite scores in an attempt to integrate attributes that are not easily commensurable Mingers and
O’Brien [16] developed a heuristic algorithm and compared it to a mixed linear programming formulation
for the balanced partitioning involving only binary-valued attributes.

1.2. Main contribution

Our approach for solving BMWASP is to define an appropriate criterion allowing to compare the
degree of deviation from the ”perfect balance” for different partitions and then produce the partition that
minimizes this criterion. First we propose an mathematical formulation for the BMWASP to minimization
the total distance from the ideal number of each attribute in each group including attributes weight. Second,
we present mixed-integer linear reformulation and evaluate its efficiency through a set of computational
experiments. Third, we propose a simple and fast method for calculating lower bounds using relaxation of
proposed formulation.

In order to solve larger problems more efficiently we have developed a heuristic method based on a
Variable Neighborhood Search (VNS) for solving BMWASP. A local search procedure with efficient fast
swap-based local search is implemented in the proposed VNS-based approach. The proposed algorithm
presented in this paper achieved all optimal solutions for smaller dimension instances obtained by exact
solver and provide high-quality solutions on large-scale problem instances in short CPU times. Following
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the constraints and objectives given by administrators at the Belgrade Belgrade Business School, we have
successfully applied proposed method to partition 229 students in 10 groups.

2. Problem formulation of BMWASP

In BMWASP, there are n objects to be partitioned in k groups. Each object si, (i = 1, 2 . . . ,n) has one
or more attributes c j, ( j = 1, 2, . . . ,m) and each attribute c j has a weight w j. The goal is to partition set of
n objects into k mutually disjoint groups such that each group contains approximately the same number
of objects possessing each attribute. In process of partitioning objects into groups attributes with greater
weight have a higher priority than the attributes with less weight.

2.1. Mathematical formulation
This subsection will introduce the mathematical formulation of the BMWASP problem, which requires

the following notation:

• S = {s1, s2, s3, . . . , sn} - set of n objects;

• G = {11, 12, 13, . . . , 1k} - set of k groups;

• C = {c1, c2, c3, . . . , cm} - set of m attributes;

• w j - weight of attribute c j for j = 1, 2, ... . . . ,m;

• ai j =

{
1 , if object si has attribute c j
0 , otherwise

for i = 1, 2, . . . ,n, j = 1, 2, . . . ,m;

• cav1
j =

1
k

n∑
i=1

ai j - ideal number of attribute j = 1, 2, . . .m in group

• xil =

{
1 , if object si is assigned to group 1l
0 , otherwise

for i = 1, 2, . . . ,n, l = 1, 2, . . . , k;

Using the above notation BMWASP problem are defined as follows:

Minimize
m∑

j=1

k∑
l=1

w j

∣∣∣∣y jl − cav1
j

∣∣∣∣ (1)

subject to:

y jl =

n∑
i=1

ai jxil, j = 1, 2, . . .m, l = 1, 2, . . . , k; (2)

k∑
l=1

xil = 1, i = 1, 2, . . .n; (3)

n∑
i=1

xil ≤

⌈n
k

⌉
, l = 1, 2, . . . k; (4)
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n∑
i=1

xil ≥

⌊n
k

⌋
, l = 1, 2, . . . k; (5)

xi j ∈ {0, 1} for i = 1, 2, . . . ,n, j = 1, 2, . . . ,m; (6)

We will denote this formulation as BMWASP-O throughout the article. The objective function (1) minimizes
the total distance from the ideal number of each attribute in each group including attributes weight.
Constraint (2) is used to define the number of each attribute in each group. The constraits (3) ensure that
each object is assigned to exactly one group. Constraints (4) and (5) impose maximum and minimum group
sizes, respectively. The above model allows groups to differ in size if n is not divisible by k. Else constraints
(4) and (5) in BMWASP-O can be replaced with

n∑
i=1

xil =
n
k
, l = 1, 2, . . . k. (7)

2.2. MILP reformulation
The proposed BMWASP-O is Non Linear Programming (NLP) formulation, because of the non-linear

absolute value function. Absolute value functions are very difficult to perform standard optimization
procedures on. They are not continuously differentiable functions, nonlinear, and relatively difficult to
operate on. However, through simple manipulation of the absolute value expression, these difficulties can
be avoided and the problem can be reformulated as Mixed-Integer Linear Programming (MILP) [15]. The
motivation for our reformulation, denoted as the BMWASP-I stems from the desire to solve larger problems
to optimality more efficiently.

Let d jl = y jl − cav1
j for j = 1, 2, . . .m, l = 1, 2, . . . , k. For each d jl we begin by defining two new non-

negative variables d+
jl and d−jl. Then substitute d+

jl − d−jl for d jl in each constraint and in objective function.

Also add sign restrictions d+
jl ≥ 0 and d−jl ≥ 0. The absolute value expression

∣∣∣d jl

∣∣∣ =
∣∣∣∣d+

jl − d−jl

∣∣∣∣ can be simplified
whenever either d+

jl = 0 or d−jl = 0. Algebraically, if the product of the variables is zero d+
jl · d

−

jl = 0 then the

above absolute value expression can be written as the sum of the two variables
∣∣∣∣d+

jl − d−jl

∣∣∣∣ =
∣∣∣∣d+

jl

∣∣∣∣+∣∣∣∣d−jl∣∣∣∣ = d+
jl+d−jl.

Imposing the restriction that one or the other variable is zero, the formulation becomes:

Minimize
m∑

j=1

k∑
l=1

(w j · d+
jl + w j · d−jl) (8)

subject to:

y jl =

n∑
i=1

ai jxil, j = 1, 2, . . .m, l = 1, 2, . . . , k; (9)

k∑
l=1

xil = 1, i = 1, 2, . . .n; (10)

n∑
i=1

xil ≤

⌈n
k

⌉
, l = 1, 2, . . . k; (11)
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n∑
i=1

xil ≥

⌊n
k

⌋
, l = 1, 2, . . . k; (12)

d+
jl − d−jl = y jl − cav1

j , j = 1, 2, . . .m, l = 1, 2, . . . , k; (13)

xi j ∈ {0, 1} i = 1, 2, . . . ,n, j = 1, 2, . . . ,m; (14)

d+
jl ≥ 0, d−jl ≥ 0 j = 1, 2, . . .m, l = 1, 2, . . . , k. (15)

Constraint ( d+
jl · d

−

jl = 0 j = 1, 2, . . .m, l = 1, 2, . . . , k ) is not necessary and can be eliminated. Consider a
simple problem:

Minimize (d+ + d−) subject to: d+
− d− = C; d+

≥ 0 and d− ≥ 0.

If C ≥ 0 then min(d+ + d−) = C at (d+, d−) = (C, 0), else if C < 0 then min(d+ + d−) = −C at (d+, d−) = (0,−C). In
both cases minimization will automatically cause d+

· d− = 0 and this non-linear constraint is not necessary.
Some of decision variables are integers, while other variables are allowed to be non-integers. So the model
is an Mixed Integer Linear Programming (MILP) formulation.

2.3. Relaxation
Lower bound is a value which is guaranteed less than or equal to the optimal solution, so if a solution

obtained by some algorithm, reaches the lower bound, the solution must be optimal. Using relaxation of
the problem that is easier to solve we propose a simple and fast method for calculating lower bounds.

We relax the problem by breaking the connection between objects and attributes. In this case the
arrangement of objects in groups was irrelevant and problem can be easy solved as a assignment problem
of available attributes to groups. So, we obtain one lower bound by calculating value of objective function
for ideal assignment of each attribute.

Let I = (n,m, k,w j,A) be an instances of BMWASP problem with k groups, n objects where each object is
characterized by a vector of m attributes, through attribute matrix A, such that ai j = 1 if object i possesses
attribute j, and ai j = 0 otherwise. Then

LB =

m∑
j=1

w j

(
θ j · λ j + (k − θ j) · (1 − λ j)

)
(16)

where is

θ j =

n∑
i=1

ai j mod k; (17)

λ j =


max(∆ j, 1 − ∆ j) , ∆ j ≤

1
2

min(∆ j, 1 − ∆ j) , ∆ j ≥
1
2

; ∆ j =

n∑
i=1

ai j

k
−

 n∑
i=1

ai j

k

 . (18)

If a perfectly balanced partition exists, value of objective function is equal to LB.
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3. Variable neighborhood search

VNS metaheuristic was introduced by Mladenovic and Hansen [17] for solving the traveling salesman
problem (TSP). After that, VNS has been applied by more and more researchers to solve continuous and
discrete optimization problems [11].

VNS metaheuristic combines local search with systematic changes of neighborhood in the descent and
escape from local optimum. The basic VNS employs a set of predefined neighborhoods. By sequentially
exploring these neighborhoods, local optima solutions in different neighborhood structure can be obtained,
and thus, better solutions can be reached through this process. In VNS, one solution in the current
neighborhood is selected as the incumbent solution. Then, local search is performed on the selected solution
to generate several neighboring solutions. By comparing the neighboring solutions with the incumbent
one, the current solution will be replaced by the best solution found thus far or remain its state if no better
solution is found. Then, the neighborhood will turn to the first one if a better solution is found or turn to
the next one if the incumbent solution remains itself. By systematically changing the current neighborhood,
VNS directs the search to a promising field, and thus, global optimal solutions will be found.

The main steps of the basic VNS are given as follows:

1. Initialization: Select a set of neighborhood structures Np(p = 1, . . . , pmax), find an initial solution x, set
p = 1, choose a stopping condition.

2. Shaking: Generate a solution x′ ∈ Np(x) at random.

3. Local search: Apply a local search method starting with x′ to find local optimum x′′.

4. Move or not: If x′′ is better than the incumbent, then set x = x′′ and p = 1, otherwise set p = p + 1 (or
if p = pmax set p = 1).

5. Test stop condition: If stop condition is not satisfied then go to step 2. Otherwise return the best
solution x.

Inspired by successful application of VNS for forming four member heterogeneous groups within CSCL
(Computer supporting collaborative learning) [20] and in other numerous fields [8, 9], we have developed
a variant of VNS for solving the BMWASP. The advantage of the proposed VNS is in the implemented fast
interchange method used within local search in order to obtain improvements in an efficient manner. In
the following subsections, all aspects of the proposed VNS-based method will be explained in detail.

3.1. Solution space of BMWASP

The solution space in BMWASP includes all possible partitions of n objects into k groups where each
created group 1l contains at least

⌊
n
k

⌋
and at most

⌈
n
k

⌉
objects. The number of ways to arrange n objects in k

groups is:

Cn,k =
n!(⌈

n
k

⌉
!
)k̂
·

(⌊
n
k

⌋
!
)(k−k̂)

· k̂! · (k − k̂)!
,

where k̂ is the number of groups which contain exactly
⌈

n
k

⌉
objects, i.e., k̂ = k, if n is divisible by k, else k̂ = (n

mod k). For example, the number of possible ways to arrange 20 objects into 4 where each group contains
5 objects is C20,4 = 488 864 376. In Appendix A we described procedure to derive number Cn,k.

3.2. The structure of the VNS method for BMWASP

For that purpose VNS algorithm receives six input parameters: n - number of objects, m - number
of possible attributes for each object, k - number of groups for partitioning, pmax - maximum size of the
neighborhood, w j - weights of attributes and ai j - matrix with associated attributes for each object. The
pseudo-code of the VNS based heuristic is given in Algorithm 1.
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input : n,m, k, pmax, w j, ai j
output: solution xbest

1 xcurrent ← RandomSolution();
2 xcurrent ← RVNS(xcurrent);
3 p← 1;
4 while stop condition is not satisfied do
5 xtemp ← Shaking(xcurrent, p);
6 xtemp ← LocalSearch(xtemp);
7 if xtemp is better than xcurrent then
8 xcurrent ← xtemp;
9 p← 1;

10 else
11 p← p + 1 ;
12 if p > pmax then
13 p← 1;
14 end
15 end
16 end
17 xbest ← xcurrent;

Algorithm 1: VNS scheme

Initial feasible solution xcurrent is obtained in the first two steps from a random solution followed by
Reduced VNS algorithm (RVNS), which consists of repetition of shake phase. The idea is to use the RVNS
method to quickly find a good initial solution for the basic VNS part. The stopping condition of the
RVNS procedure is reaching a maximum number of iterations without improving the current solution.
The maximum number of iterations is 30000. The initial value of variable p (size of the neighborhood) are
defined at step 3. The central part of the VNS algorithm consists of the loop executed in lines 4-16. Loop
is repeated until a stopping condition is met, which is 30 iterations without an improvement. In step 5,
shaking routine is performed on the solution xcurrent. The shaking phase moves the current best solution
to a random p-neighborhood which contains solutions obtained by p swapping a single pair of objects
belonging to different groups. After shaking, local search is applied over xtemp in line 6. In steps 7-9, the
current solution is updated if xtemp is better then xcurrent and value of parameter p is set to 1. Otherwise, if
xtemp is not accepted the size of the neighborhood p is increased by one. The value of parameter p is reset to
1 in steps 12-14 if it exceeds value of given parameter pmax. Finally, after the main loop terminates, in step
17 the best found solution by VNS is claimed to be xbest.

For local search we use best-improvement strategy and swap neighborhood which contains solutions
obtained by swapping a single pair of objects belonging to different groups. The pseudo-code of local
search part is given in Algorithm 2. In the first line value of the objective function for the initial solution
is calculated. This step is not necessary if the value of the objective function is updated in shaking phase
similar as described below. Initial solution is claimed to be the best (xbest) in step 2 and objective function
for the best solution is initialized in step 3. The initial value of variable improvement is defined at step 4.
The central part of local search consists of the loop executed in lines 5-36 while it is possible to improve
the solution by swapping. For each single pair of objects belonging to different groups in steps 11-14 is
obtained xtemp solutions by swapping them and then updates the objective function value.

Let object si1 be in group 1l1 and object si2 in group 1l2 of the current solution xcurrent. Denote with xtemp
the solution obtained after moving the object si1 into group 1l2 and the object si2 into group 1l1 . Since the
object si1 is removed from the group 1l1 and inserted in the group 1l2 , new number of attributes in group
1l1 and 1l2 contribute to the objective function value of the new solution. But, because the others groups 1l,
where l = 1, 2, . . . k and l , l1, l , l2 are unchanged, number of attributes in these groups do not contribute
to the objective function value of the new solution. In order to use the previous fact and speed up local
search we maintain matrix y such that y jl is the number of objects in group 1l which contain attribute c j.
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We have also initialized array cav1
j (for example, after loading the data) which define the ideal number of

attribute c j in groups . So, in one iteration through all attributes in steps 15-27 we can finally calculate the
objective values of the neighboring solution. Condition in line 16 skips attributes which not contribute to
the objective function value. Before update number of attributes for groups involved in swapping in step
17 objective function value is reduced. Then after matrix y is updated (in steps 18-24) objective function
value is increased for new contribution of attribute c j in these groups. In steps 28-31, the best solution is
updated if xtemp is better then current xbest and value of parameter improvement is set to true. It is obvious
that the change of the objective value for each solution from swap neighborhood is done in O(m).

input : solution xinitial
output: solution xbest

1 finitial ← CalculateCost(xinitial);
2 xbest ← xinitial;
3 fbest ← finitial;
4 improvement← true ;
5 while improvement do
6 improvement← false;
7 for l1 = 1 to k − 1 do
8 foreach object si1 in group 1l1 do
9 for l2 = l1 + 1 to k do

10 foreach object si2 in group 1l2 do
11 xtemp ← xinitial;
12 ftemp ← finitial;
13 x

1l1
temp ←

(
x
1l1
temp \ {si1 }

)
∪ {si2 };

14 x
1l2
temp ←

(
x
1l2
temp \ {si2 }

)
∪ {si1 };

15 foreach attribute c j do
16 if ai1, j , ai2, j then
17 ftemp ← ftemp − w j · |y jl1 − cav1

j | − w j · |y jl2 − cav1
j |;

18 if ai1, j = 1 and ai2, j = 0 then
19 y j,l1 ← y j,l1 − 1;
20 y j,l2 ← y j,l2 + 1;
21 else
22 y j,l1 ← y j,l1 + 1;
23 y j,l2 ← y j,l2 − 1;
24 end
25 ftemp ← ftemp + w j · |y jl1 − cav1

j | + w j · |y jl2 − cav1
j |;

26 end
27 end
28 if ftemp < fbest then
29 xbest ← xtemp;
30 improvement← true ;
31 end
32 end
33 end
34 end
35 end
36 end

Algorithm 2: Local search scheme
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4. Experimental results

In this section, we evaluate efficiency of BMWASP-O model and MILP reformulation BMWASP-I through
a set of computational experiments. The results of computational experiments conducted to verify the
performance of the proposed VNS algorithm are presented as follows.

Computational experiments were first performed on problem instances that were generated randomly
by varying the values of objects from 10 to 250, included 12 levels of attributes value and 7 levels of groups
partitions. We have also performed experiments on a real-life problem instance with 229 objects and 116
attributes for each of them that was derived from a real situation in Belgrade Business School.

To the best of our knowledge, the public test instances available for this problem does not exist. In order
to evaluate the proposed algorithm and models, 300 problems are designed in various conditions. The
following parameters are considered to design and generate these problems:

– numbers of objects: 10, 25, 50, 100, 250.
– numbers of attributes for each object: 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100.
– numbers of groups: 2, 5, 10, 15, 20, 25, 30.
– attributes for each object: discrete uniform distributionU{0, 1}.
– weight for each attribute: discrete uniform distributionU{1, 3}.

This distribution of parameters provides a good range of problems and the proposed algorithm can be tested
and evaluated in various conditions. For example, the notation o50a20g5 means a 50-object, 20-attribute, 5
group problem. The letters o, a and g are abbreviations for object, attribute and group, respectively.

Mathematical programming and constraint programming are two technologies for solving complex
planning and optimization problems. A constraint programming solver proves optimality by showing
that no better solution than the current one can be found, while an mathematical programming solver
uses a lower bound proof provided by cuts and linear relaxation. ILOG CPLEX provides CP Optimizer
for solving a constraint programming problems with a large set of arithmetic-logical constraints and high-
performance MIP optimizer for solving a mixed-integer programming problems using a very general
and robust algorithm based on branch & cut. Computational experiments with proposed mathematical
formulations were carried out by using CPLEX CP 12.5 solver for BMWASP-O formulation and CPLEX
MIP 12.5 solver for BMWASP-I formulation. For all instances time limit is set to 14400s (4 hours). The
proposed VNS was implemented on .NET Framework platform (Mono open source implementation) using
C# programming language. As noted earlier, VNS algorithm runs until the limit of 30 iterations without
an improvement is reached. The values of parameter pmax is set to min(dn/6e, 20). All computational tests
were performed on an Intel Core i5-2400 CPU 3.10GHz with 4GB of RAM memory under Ubuntu operating
system.

Table 1 present complete computational results obtained with CPLEX optimizers and proposed VNS
algorithm for small instances with up to 25 objects. First column refers to the name of the instance. The
second, third, fourth and fifth column present, for the optimal solution obtained with CPLEX CP and MIP
Optimizer, the value of the objective function and time in seconds required by CPLEX Optimizer to calculate
it. Sixth column present the value of the objective function for the best solution obtained by VNS in the 20
independent runs. Seventh and eighth column refers to average execution time, and standard deviation of
objective function value. Finally, last column present lower bound value obtained with proposed method
in section 2. The optimal values of objective function obtained with VNS algorithm are in bold.

CP optimizer was able to solve 31 small instance, while MIP optimizer solved 42 instance. VNS found
all known optimal solutions very quickly, and have similar execution time as CPLEX on small instances,
but significantly smaller execution time on the larger ones.

The results of conducted experimental study on 252 larger instances showed that the BMWASP-I formu-
lation is superior over the BMWASP-O. CPLEX CP solver has not been able to solve any instances optimality
with the specified time limit. CPLEX MIP solver was capable of solving 57 of 252 instances optimality with
the specified time limit. A very common difficulty with MIP solver is running out of memory when the
branch and cut tree becomes so large that insufficient memory.
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Table 1: Comparison of computational results on small instances

Instance CP (BMWASP-O) MIP (BMWASP-I) VNS algorithm LB
name f t f t fbest tav1 σ

o10a5g2 3.00 0.26 3.00 0.08 3.00 0.07 0.00 3.00
o10a10g2 11.00 0.56 11.00 0.03 11.00 0.14 0.00 11.00
o10a15g2 26.00 0.48 26.00 0.08 26.00 0.20 0.00 22.00
o10a20g2 26.00 0.55 26.00 0.09 26.00 0.24 0.00 18.00
o10a30g2 48.00 0.57 48.00 0.06 48.00 0.36 0.00 20.00
o10a40g2 52.00 0.61 52.00 0.08 52.00 0.47 0.00 26.00
o10a50g2 94.00 0.75 94.00 0.11 94.00 0.59 0.00 50.00
o10a60g2 104.00 0.94 104.00 0.09 104.00 0.69 0.00 72.00
o10a70g2 134.00 0.98 134.00 0.12 134.00 0.80 0.00 68.00
o10a80g2 144.00 1.06 144.00 0.13 144.00 0.90 0.00 84.00
o10a90g2 158.00 1.16 158.00 0.17 158.00 1.01 0.00 88.00
o10a100g2 195.00 1.20 195.00 0.15 195.00 1.15 0.00 89.00

Average time: 0.76 0.10 0.60
o10a5g5 13.60 6.45 13.60 0.05 13.60 0.08 0.00 13.60
o10a10g5 33.20 48.57 33.20 0.10 33.20 0.13 0.00 31.20
o10a15g5 56.40 71.27 56.40 0.16 56.40 0.20 0.00 40.80
o10a20g5 59.20 78.42 59.20 0.15 59.20 0.26 0.00 37.60
o10a30g5 134.00 180.10 134.00 0.55 134.00 0.37 0.00 87.20
o10a40g5 172.00 293.40 172.00 0.77 172.00 0.49 0.00 118.40
o10a50g5 210.80 335.90 210.80 0.50 210.80 0.59 0.00 144.80
o10a60g5 261.60 493.00 261.60 1.01 261.60 0.70 0.00 173.60
o10a70g5 306.40 516.66 306.40 1.70 306.40 0.83 0.00 195.20
o10a80g5 340.40 590.85 340.40 0.85 340.40 0.93 0.00 258.40
o10a90g5 419.20 811.50 419.20 2.18 419.20 1.05 0.00 282.40
o10a100g5 452.40 901.74 452.40 2.39 452.40 1.20 0.00 286.40

Average time: 360.65 0.87 0.60
o25a5g2 1.00 5.60 1.00 0.03 1.00 0.11 0.00 1.00
o25a10g2 14.00 180.92 14.00 0.06 14.00 0.19 0.00 14.00
o25a15g2 15.00 208.28 15.00 0.04 15.00 0.34 0.89 15.00
o25a20g2 27.00 670.43 27.00 0.08 27.00 0.41 1.73 25.00
o25a30g2 48.00 2620.94 48.00 0.11 48.00 0.64 3.69 34.00
o25a40g2 66.00 3647.57 66.00 0.22 66.00 0.85 3.51 34.00
o25a50g2 94.00 5565.21 94.00 0.36 94.00 1.01 3.86 48.00
o25a60g2 - - 130.00 0.52 130.00 1.18 4.26 72.00
o25a70g2 - - 146.00 1.15 146.00 1.40 2.89 64.00
o25a80g2 - - 194.00 1.70 194.00 1.57 3.28 72.00
o25a90g2 - - 209.00 1.52 209.00 1.94 8.57 85.00
o25a100g2 - - 252.00 2.50 252.00 1.90 5.71 110.00

Average time: - 0.70 1.00
o25a5g5 - - 20.80 0.16 20.80 0.12 0.00 20.80
o25a10g5 - - 23.20 0.22 23.20 0.27 0.93 23.20
o25a15g5 - - 61.20 14.46 61.20 0.42 0.96 59.20
o25a20g5 - - 88.00 74.08 88.00 0.55 1.75 79.20
o25a30g5 - - 130.00 713.30 130.00 0.82 1.51 100.00
o25a40g5 - - 176.80 2121.98 176.80 1.10 2.19 116.80
o25a50g5 - - - - 220.00 1.27 5.38 139.20
o25a60g5 - - - - 345.60 1.61 3.32 187.20
o25a70g5 - - - - 359.60 1.78 5.88 206.40
o25a80g5 - - - - 433.60 1.86 3.43 242.40
o25a90g5 - - - - 528.00 2.36 4.47 284.80
o25a100g5 - - - - 586.80 2.84 6.66 312.80

Average time: - - 1.30
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Proposed VNS algorithm has reached 54 of 57 known optimal solutions in a quite short amount of
computational time. Also for three more instances (o250a15g10, o250a15g15 and o250a15g20) solutions
obtained by VNS algorithm reaches the lower bound. As noted earlier, lower bound is a value which is
guaranteed less than or equal to the optimal solution, so if a objective function of solution obtained by VNS
reaches the lower bound, the solution must be optimal. The proposed method also provides solutions on
large-scale instances in reasonable amount of CPU time. Detailed results obtained with VNS algorithm for
all instances are given in Table 4, Table 5 and Table 6 in Appendix B.

To perform an objective comparison of running times, we compare average CPU time of the proposed
VNS algorithm with the average CPU time of the CP solver, but only for the instances for which both
algorithms reached the same solution. In the same way, we compare the average CPU times of the
proposed VNS and the MIP solver. The summary of comparison of CPU times is presented in Table 2. On
average, the proposed VNS algorithm has shorter average CPU time compared to both CP solver and MIP
solver on the subset of test instances on which the same solution is reached.

Table 2: Comparison of the average CPU times

Comparison No. of instances with the same solution VNS (tav1) CP/MIP solver (tav1)
VNS vs CP 31 (31 + 0) 0.50 556.00
VNS vs MIP 96 (42 + 54) 5.98 50.81

4.1. Application of BMWASP in Belgrade Belgrade Business School
In Belgrade Belgrade Business School, 229 students from the same grade must be divided into 10

groups in such way that each group provides a good representation of the classroom population. School
administration chooses 116 student attributes and determine their relative importance.

Table 3 shows comparison of computational results obtained with CPLEX CP solver, CPLEX MIP solver
and VNS algorithm. CPLEX CP Optimizer was interrupted after 28800 seconds (8 hours) and CPLEX
MIP optimizer was interrupted after 86400 seconds (24 hours). Figure 1 presents the improvement of the
objective function by this three methods during the execution time (in seconds).

Table 3: Comparasion of computational results - Belgrade Belgrade Business School

Property Value

CPLEX CP Optimizer

objective value after 8h 1151.20
number of improved solutions 75
memory usage 149.20 MB
explored branches 7 326 914

CPLEX MIP Optimizer

lower bound 390.40
upper bound 709.80
number of improved solutions 19
memory usage 658.20 MB
iterations 118 828 066

LB lower bound 390.40

VNS

best objective value 653.00
average objective value 671.84
average execution time 567.60s
memory usage 36.50 MB
standard deviation 11.81
relative standard deviation 1.8

The obtained results showed that the average value of the objective function obtained by VNS algorithm
in less than 10 minutes is much better than that achieved by the parallel CPLEX CP Optimizer with 4 workers
after 8 hours. The results also showed that CPLEX MIP Optimizer can not find better upper and lower
bound then proposed VNS algorithm and method for calculating lower bounds.
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Figure 1: Improvement of the objective function value during execution

5. Conclusion

The Balanced Multi-Weighted Attribute Set Partitioning (BMWASP) problem requires finding a partition
of a given set of objects with multiple weighted attributes into a certain number of groups so that the groups
are as balanced as possible with respect to the number of elements possessing each attribute. Our approach
is to define an appropriate criterion allowing to compare the degree of deviation from the ”perfect balance”
for different partitions and then produce the partition that minimizes this criterion.

We have proposed an mathematical formulation BMWASP-O and its mixed-integer linear reformulation
BMWASP-I in order to solve larger problems to optimality more efficiently. For testing purposes we have
created 300 new instances. In order to solve large-scale instances we suggested a new variant of Variable
Neighborhood Search (VNS) with efficient fast swap-based local search. Results of experimental study
showed that the BMWASP-I formulation is superior over the BMWASP-O. Based on extensive computational
tests, we have showed that our new heuristic quickly reaches all known optimal solutions and provides
high-quality solutions on large-scale problem instances in short CPU times.

Finally we have successfully applied BMWASP and proposed VNS algorithm at the Belgrade Belgrade
Business School for forming study groups.
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[11] P. Hansen, N. Mladenović, and J. A. M. Pérez. Variable neighbourhood search: methods and applications. Annals of Operations

Research, 175(1):367–407, 2010.
[12] R. Hubscher. Assigning students to groups using general and context-specific criteria. IEEE Transactions on Learning Technologies,

3(3):178–189, 2010.
[13] D. Krass and A. Ovchinnikov. Constrained group balancing: Why does it work. European Journal of Operational Research,

206(1):144–154, 2010.
[14] B. Krauss, J. Lee, and D. Newman. Optimizing the assignment of students to classes in an elementary school. INFORMS

Transactions on Education, 14(1):39–44, 2013.
[15] B. A. McCarl and T. H. Spreen. Applied mathematical programming using algebraic systems. Cambridge, MA, 1997.
[16] J. Mingers and F. A. O’Brien. Creating student groups with similar characteristics: a heuristic approach. Omega, 23(3):313–321,

1995.
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Appendix A

Number of partitions
Denote by Fn,n1,n2,...,nk the number of ways to arrange n objects in k groups, where group 1l contain nl

objects (n =
∑k

l=1 nl). In next sequential procedure [19] we derive the number Fn,n1,n2,...,nk .

1. First, we assign n1 objects to the 11 group. The number of possible ways to choose n1 of the n objects
is equal to the number of combinations of n1 elements from n. So, number of possible ways to form
group 11 is (

n
n1

)
=

n!
n1!(n − n1)!

.

2. Then, we assign n2 objects to the second group 12. There were n objects, but n1 have already been
assigned to the first group 11. So, there are n−n1 objects left, that can be assigned to the second group.
The number of possible ways to choose n2 of the remaining n − n1 objects is equal to the number of
combinations of n2 elements from n − n1. So, number of possible ways to form group 12 is(

n − n1

n2

)
=

(n − n1)!
n2!(n − n1 − n2)!

,

and number of possible ways to form the first two groups 11, 12 is(
n
n1

)
·

(
n − n1

n2

)
=

n!
n1!(n − n1)!

·
(n − n1)!

n2!(n − n1 − n2)!
=

n!
n1!n2!(n − n1 − n2)!

.

3. An so on, until we are left with nk objects and the last group 1k. There is only one way to form the last
group, which can also be written as(

n − n1 − n2 − · · · − nk−1

nk

)
=

(n − n1 − n2 − · · · − nk−1)!
nk!(n − n1 − n2 − · · · − nk)!

.
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Therefore, multiplying these factors we get(
n
n1

)
·

(
n − n1

n2

)
· . . . ·

(
n − n1 − n2 − · · · − nk−1

nk

)
=

n!
n1!n2! · . . . · nk−1!(n − n1 − n2 − · · · − nk−1)!

·
(n − n1 − n2 − · · · − nk−1)!
nk!(n − n1 − n2 − · · · − nk)!

=
n!

n1!n2! · . . . · nk!(n − n1 − n2 − · · · − nk)!

=
n!

n1!n2! · . . . · nk!0!

=
n!

n1!n2! · . . . · nk!
.

(19)

In BMWASP each group contains at least
⌊

n
k

⌋
and at most

⌈
n
k

⌉
objects. If some groups contain the same

number of objects then the labeling of these groups does not matter. Then we can label the group 1 to be
group 2 and group 2 to be group 3 and so on. Denote by k̂ the number of groups which contain

⌈
n
k

⌉
objects,

then k− k̂ groups contain
⌊

n
k

⌋
objects (if n is divisible by k then k̂ = k). We have total k̂! · (k− k̂)! ways to label

the groups. Thus, the final number of ways to arrange n objects in k groups with these conditions is:

Fn,n1,n2,...,nk = Cn,k =
n!(⌈

n
k

⌉
!
)k̂
·

(⌊
n
k

⌋
!
)(k−k̂)

· k̂! · (k − k̂)!
.
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Appendix B

Table 4: Computational results obtained with VNS algorithm

Instance fbest tav1 σ LB Instance fbest tav1 σ LB
o25a5g10 24.40 0.10 0.00 24.40 o50a5g2 5.00 0.20 0.00 5.00
o25a10g10 76.60 0.30 0.43 76.60 o50a10g2 4.00 0.50 0.00 4.00
o25a15g10 111.00 0.50 1.32 103.80 o50a15g2 8.00 0.90 1.01 8.00
o25a20g10 184.20 0.60 1.47 154.60 o50a20g2 15.00 1.30 1.75 15.00
o25a30g10 262.00 0.90 1.93 199.20 o50a30g2 34.00 1.80 2.75 26.00
o25a40g10 403.40 1.20 1.93 300.80 o50a40g2 61.00 2.70 4.68 39.00
o25a50g10 521.20 1.30 1.52 371.80 o50a50g2 93.00 3.00 5.45 53.00
o25a60g10 615.20 1.70 2.83 416.00 o50a60g2 133.00 3.70 7.27 77.00
o25a70g10 767.20 2.00 3.15 445.60 o50a70g2 144.00 4.60 7.38 60.00
o25a80g10 744.60 2.30 3.47 466.60 o50a80g2 193.00 5.20 8.78 79.00
o25a90g10 991.20 2.20 1.13 628.60 o50a90g2 233.00 5.80 10.90 99.00
o25a100g10 1073.60 2.80 4.69 684.40 o50a100g2 250.00 5.90 13.02 108.00
o50a5g5 19.20 0.30 0.00 19.20 o50a5g10 31.00 0.30 0.00 31.00
o50a10g5 37.60 0.70 0.00 37.60 o50a10g10 62.60 0.80 0.00 62.60
o50a15g5 44.80 1.80 1.65 44.80 o50a15g10 108.00 2.30 1.66 108.00
o50a20g5 75.20 2.30 1.63 75.20 o50a20g10 155.80 2.80 3.11 146.00
o50a30g5 147.20 3.30 3.95 111.20 o50a30g10 267.80 4.20 5.24 196.60
o50a40g5 190.00 4.40 5.13 138.40 o50a40g10 397.40 5.70 8.03 293.20
o50a50g5 260.00 5.80 7.66 153.60 o50a50g10 548.00 7.20 6.32 379.20
o50a60g5 369.20 6.60 7.43 200.80 o50a60g10 622.00 7.70 6.74 393.20
o50a70g5 458.40 7.90 8.43 240.80 o50a70g10 816.60 8.90 8.21 471.40
o50a80g5 503.20 8.60 11.04 252.80 o50a80g10 961.80 11.20 7.30 589.20
o50a90g5 572.80 11.50 12.48 272.80 o50a90g10 1115.20 12.40 9.57 651.40
o50a100g5 644.00 11.50 13.14 321.60 o50a100g10 1222.80 13.00 9.33 704.40
o50a5g15 72.27 0.30 0.00 72.27 o50a5g20 81.90 0.30 0.00 81.90
o50a10g15 70.40 1.30 1.34 70.40 o50a10g20 141.30 0.70 0.00 141.30
o50a15g15 175.47 2.50 3.12 169.60 o50a15g20 246.20 2.20 1.24 227.20
o50a20g15 203.33 3.00 3.11 174.67 o50a20g20 294.10 3.00 2.87 262.00
o50a30g15 360.00 4.10 8.03 286.13 o50a30g20 536.40 4.00 3.87 410.60
o50a40g15 654.67 6.00 10.17 485.07 o50a40g20 682.40 6.70 3.74 493.30
o50a50g15 802.67 8.80 7.83 570.67 o50a50g20 914.20 7.60 3.95 594.50
o50a60g15 905.47 8.60 7.32 614.40 o50a60g20 1237.90 9.90 7.96 879.50
o50a70g15 1161.07 9.40 9.61 792.53 o50a70g20 1293.60 8.80 4.80 895.60
o50a80g15 1285.20 11.80 9.91 830.67 o50a80g20 1809.20 9.80 7.93 1152.00
o50a90g15 1540.67 12.40 10.87 978.13 o50a90g20 1878.90 13.50 7.06 1184.90
o50a100g15 1765.73 14.10 7.31 1101.33 o50a100g20 2341.10 13.40 10.66 1499.60
o50a5g25 57.12 0.40 0.00 49.44
o50a10g25 97.36 1.20 0.82 70.24
o50a15g25 195.76 2.20 1.60 98.56
o50a20g25 312.00 2.80 1.49 162.24
o50a30g25 578.24 3.50 3.64 226.88
o50a40g25 677.12 4.70 3.06 319.68
o50a50g25 1016.24 6.00 2.57 545.76
o50a60g25 1252.24 6.80 4.37 600.64
o50a70g25 1303.28 8.80 3.74 488.80
o50a80g25 1605.84 10.50 2.52 706.88
o50a90g25 2028.08 11.00 3.70 900.32
o50a100g25 2286.08 11.70 4.23 1016.00
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Table 5: Computational results obtained with VNS algorithm

Instance fbest tav1 σ LB Instance fbest tav1 σ LB
o100a5g2 6.00 0.70 0.00 6.00 o100a5g5 16.80 1.20 0.00 16.80
o100a10g2 10.00 1.50 0.00 10.00 o100a10g5 32.80 3.30 0.00 32.80
o100a15g2 4.00 3.30 0.00 4.00 o100a15g5 50.40 7.70 0.39 50.40
o100a20g2 31.00 4.10 0.00 31.00 o100a20g5 54.80 13.80 1.83 45.60
o100a30g2 34.00 9.70 3.02 32.00 o100a30g5 108.40 24.00 3.70 77.60
o100a40g2 56.00 13.20 5.24 38.00 o100a40g5 207.60 30.90 6.81 144.00
o100a50g2 82.00 18.50 4.32 52.00 o100a50g5 271.20 43.70 7.12 160.80
o100a60g2 124.00 21.90 6.52 66.00 o100a60g5 340.40 49.40 9.09 149.60
o100a70g2 156.00 23.60 7.18 76.00 o100a70g5 493.20 52.30 15.45 220.80
o100a80g2 184.00 34.30 9.42 64.00 o100a80g5 597.60 78.40 16.73 281.60
o100a90g2 227.00 37.80 10.18 101.00 o100a90g5 647.20 80.40 17.91 305.60
o100a100g2 273.00 41.90 15.47 111.00 o100a100g5 714.40 86.90 16.34 276.80
o100a5g10 17.00 1.60 0.00 17.00 o100a5g15 66.13 1.50 0.00 66.13
o100a10g10 57.20 5.10 0.00 57.20 o100a10g15 82.67 7.10 0.80 82.67
o100a15g10 107.00 12.10 1.25 107.00 o100a15g15 145.07 16.40 1.94 141.87
o100a20g10 140.40 17.70 4.88 122.80 o100a20g15 195.73 24.90 5.03 176.27
o100a30g10 255.20 28.80 6.31 192.20 o100a30g15 386.53 35.10 6.50 303.47
o100a40g10 397.60 43.70 8.71 252.20 o100a40g15 628.40 51.60 14.61 427.20
o100a50g10 519.80 51.90 16.10 324.40 o100a50g15 795.33 60.60 18.09 516.53
o100a60g10 783.80 55.70 16.62 428.40 o100a60g15 1040.67 79.20 19.79 624.00
o100a70g10 937.40 77.00 12.56 511.00 o100a70g15 1208.67 78.40 18.39 720.53
o100a80g10 1077.20 100.10 22.55 507.60 o100a80g15 1280.13 111.10 18.20 670.67
o100a90g10 1239.80 86.20 18.95 626.20 o100a90g15 1668.00 116.00 29.06 830.40
o100a100g10 1395.00 111.60 17.58 687.80 o100a100g15 2096.67 126.90 25.68 1085.87
o100a5g20 82.60 1.50 0.00 82.60 o100a5g25 45.12 1.70 0.00 45.12
o100a10g20 152.20 4.70 0.00 152.20 o100a10g25 133.28 7.80 0.85 133.28
o100a15g20 275.20 12.60 0.51 275.20 o100a15g25 198.72 22.40 4.56 177.92
o100a20g20 348.60 25.40 3.77 337.00 o100a20g25 343.04 28.10 9.49 276.48
o100a30g20 492.60 38.90 7.73 415.50 o100a30g25 555.68 42.70 13.00 362.40
o100a40g20 802.40 47.70 11.37 621.70 o100a40g25 824.80 54.90 11.71 468.64
o100a50g20 901.80 62.40 9.44 646.30 o100a50g25 989.68 66.70 9.19 543.68
o100a60g20 1303.70 76.70 17.36 908.30 o100a60g25 1502.96 78.60 13.07 692.16
o100a70g20 1583.30 96.70 10.80 1063.00 o100a70g25 1756.72 107.50 19.05 886.56
o100a80g20 1837.50 98.40 25.65 1229.10 o100a80g25 2002.72 128.60 16.30 875.68
o100a90g20 2431.40 91.20 14.24 1568.10 o100a90g25 2196.96 117.70 26.05 1053.60
o100a100g20 2488.50 124.40 20.60 1524.60 o100a100g25 2598.32 135.70 25.52 1259.52
o100a5g30 102.73 1.60 0.00 102.73
o100a10g30 267.67 4.90 0.00 267.67
o100a15g30 364.20 17.70 2.41 354.13
o100a20g30 439.60 32.20 2.75 419.53
o100a30g30 756.80 40.30 8.48 645.60
o100a40g30 1265.47 45.30 9.22 1018.00
o100a50g30 1510.60 72.90 12.30 1184.93
o100a60g30 1901.20 89.70 15.54 1395.87
o100a70g30 2365.07 88.10 13.36 1723.20
o100a80g30 2695.40 104.60 16.40 1899.20
o100a90g30 3075.93 111.00 13.49 2141.67
o100a100g30 3714.67 129.00 21.48 2582.47
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Table 6: Computational results obtained with VNS algorithm

Instance fbest tav1 σ LB Instance fbest tav1 σ LB
o250a5g2 6.00 4.00 0.00 6.00 o250a5g5 13.60 126.80 0.00 13.60
o250a10g2 7.00 9.00 0.00 7.00 o250a10g5 29.60 17.60 0.00 29.60
o250a15g2 14.00 16.90 0.00 14.00 o250a15g5 35.20 46.80 0.00 35.20
o250a20g2 19.00 28.80 0.00 19.00 o250a20g5 46.80 89.00 1.80 44.00
o250a30g2 28.00 68.70 2.18 24.00 o250a30g5 126.40 162.90 3.81 105.60
o250a40g2 67.00 91.00 3.01 59.00 o250a40g5 181.60 210.50 5.51 128.00
o250a50g2 76.00 130.00 3.91 52.00 o250a50g5 301.20 259.90 8.78 199.20
o250a60g2 112.00 159.70 6.97 62.00 o250a60g5 372.40 364.60 14.05 211.20
o250a70g2 142.00 177.90 9.05 78.00 o250a70g5 452.80 417.60 15.83 207.20
o250a80g2 176.00 236.30 10.68 82.00 o250a80g5 556.40 512.80 15.59 212.00
o250a90g2 227.00 236.40 12.12 105.00 o250a90g5 664.80 651.20 19.56 268.80
o250a100g2 248.00 267.90 14.09 94.00 o250a100g5 812.80 612.00 23.35 292.00
o250a5g10 36.20 8.50 0.00 36.20 o250a5g15 37.87 11.00 0.00 37.87
o250a10g10 64.80 25.00 0.00 64.80 o250a10g15 83.47 28.30 0.00 83.47
o250a15g10 81.80 93.30 0.54 81.80 o250a15g15 130.40 93.10 1.67 130.40
o250a20g10 144.60 131.80 2.48 137.40 o250a20g15 239.33 160.70 5.29 223.73
o250a30g10 292.80 238.40 8.19 231.00 o250a30g15 412.80 249.50 9.06 333.07
o250a40g10 473.40 304.30 9.85 325.40 o250a40g15 562.00 348.30 11.29 347.73
o250a50g10 629.80 333.80 15.13 359.60 o250a50g15 1013.33 401.60 19.06 588.80
o250a60g10 779.00 488.80 19.98 400.40 o250a60g15 1074.93 644.00 24.33 537.60
o250a70g10 973.80 578.10 25.49 468.40 o250a70g15 1525.87 720.90 31.88 814.93
o250a80g10 1093.20 638.40 23.79 506.60 o250a80g15 1641.47 761.90 36.33 778.40
o250a90g10 1402.80 801.10 30.41 629.80 o250a90g15 2056.53 834.60 40.35 929.60
o250a100g10 1622.80 958.10 36.56 687.60 o250a100g15 2433.47 897.70 38.77 1114.67
o250a5g20 65.00 11.60 0.00 65.00 o250a5g25 79.68 12.10 0.00 79.68
o250a10g20 120.40 30.60 0.00 120.40 o250a10g25 203.20 28.80 0.00 203.20
o250a15g20 219.90 95.50 0.80 219.90 o250a15g25 190.40 141.50 3.00 185.76
o250a20g20 261.90 161.90 4.47 239.60 o250a20g25 337.44 184.80 6.31 305.60
o250a30g20 462.90 283.60 12.35 332.00 o250a30g25 664.48 282.10 9.46 541.60
o250a40g20 795.80 335.20 16.74 523.40 o250a40g25 1028.08 368.30 13.91 652.64
o250a50g20 1003.70 373.30 17.91 540.80 o250a50g25 1378.80 455.00 30.78 842.72
o250a60g20 1478.60 542.20 30.94 779.00 o250a60g25 1636.88 607.50 20.47 810.56
o250a70g20 1798.10 612.80 33.71 885.10 o250a70g25 2081.36 631.40 38.35 952.48
o250a80g20 2367.30 825.40 48.02 1142.60 o250a80g25 2784.80 802.80 33.71 1300.80
o250a90g20 2420.20 883.20 45.36 1124.00 o250a90g25 3064.48 992.40 39.99 1346.40
o250a100g20 2996.10 1050.30 36.95 1344.00 o250a100g25 3684.72 990.60 41.91 1557.44
o250a5g30 86.53 13.30 0.00 86.53
o250a10g30 215.73 27.90 0.00 215.73
o250a15g30 232.60 143.10 2.99 228.33
o250a20g30 465.13 207.40 7.05 433.60
o250a30g30 879.00 321.70 16.60 709.80
o250a40g30 1186.67 358.90 22.56 751.33
o250a50g30 1401.73 547.90 31.35 716.73
o250a60g30 1805.40 697.60 25.97 877.60
o250a70g30 2611.07 621.10 32.01 1255.67
o250a80g30 2822.53 923.70 39.25 1361.53
o250a90g30 3431.80 1043.60 52.68 1655.80
o250a100g30 4153.60 1166.00 46.11 1784.53
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