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Abstract. In this paper, we define a non-Newtonian superposition operator NP f where f : N × R(N)α →
R(N)β by NP f (x) =

(
f (k, xk)

)∞
k=1 for every non-Newtonian real sequence x = (xk). Chew and Lee [4] have

characterized P f : `p → `1 and P f : c0 → `1 for 1 ≤ p < ∞ . The purpose of this paper is to generalize these
works respect to the non-Newtonian calculus. We characterize NP f : `∞ (N)→ `1 (N) , NP f : c0 (N)→ `1 (N)
, NP f : c (N)→ `1 (N) and NP f : `p (N)→ `1 (N), respectively. Then we show that such NP f : `∞ (N)→ `1 (N)
is *-continuous if and only if f (k, .) is *-continuous for every k ∈N.

1. Introduction and Preliminaries

Non-Newtonian calculus was firstly introduced and worked by Michael Grossman and Robert Katz
between years 1967 and 1970. They published the book about fundamentals of non-Newtonian calculus and
which includes some special calculus such as geometric, harmonic, bigeometric, anageometric. Türkmen
and Başar [22] obtained some results on sequence spaces with respect to geometric calculus. After, Çakmak
and Başar [5] obtained some properties of continuous functions in non-Newtonian calculus. Also, Duyar,
Sağır and Oğur [8] studied on some properties of non-Newtonian real line.

The sequence spaces and operator theory have also wide application area. There exist many studies
that are done until today on superposition operator which is one of the non-linear operators. Under
the assumption that f (k, .) is continuous on R for every k ∈ N , Chew and Lee [4] have characterized
P f : `p → `1 and P f : c0 → `1 for 1 ≤ p < ∞ . Dedagich and Zabreiko [7] have given the necessary and
sufficient conditions for the superposition operators on the sequence spaces `p, `∞ and c0. After, some
properties of superposition operator, such as boundedness, compactness, were studied by Sama-ae [19],
Sağır and Güngör [11, 16], Kolk and Raidjoe [12], Oğur [14, 15] and many others. The purpose of this
paper is to generalize these works respect to the non-Newtonian calculus. In this article, we define a
non-Newtonian superposition operator NP f where f : N × R(N)α → R(N)β by NP f (x) =

(
f (k, xk)

)∞
k=1 for

every non-Newtonian real sequence x = (xk) and we characterize non-Newtonian superposition operators
on `∞ (N) , `p (N), c0 (N) and c (N) into `1 (N). Finally, we show that such NP f which acting from `∞ (N) to
`1 (N) , is *-continuous if and only if f (k, .) is *-continuous for every k ∈N.
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A generator is defined as an injective function with domainR and the range of generator is a subset ofR.
Let take any generator α with range A = R(N)α. Let define α−addition, α−subtraction, α−multiplication,
α−division and α−order as follows;

α−addition x+̇y = α
(
α−1 (x) + α−1 (

y
))

α−subtraction x−̇y = α
(
α−1 (x) − α−1 (

y
))

α−multiplication x×̇y = α
(
α−1 (x) × α−1 (

y
))

α−division x/̇y = α
(
α−1 (x) /α−1 (

y
))
, y , 0̇, α−1(y) , 0

α−order x<̇y
(
x≤̇y

)
⇔ α−1 (x) < α−1 (

y
) (
α−1 (x) ≤ α−1 (

y
))

for x, y ∈ R(N)α [10].
(R(N)α, +̇, ×̇, ≤̇) is totally ordered field [6].
The numbers x>̇0̇ are α−positive numbers and the numbers x<̇0̇ are α−negative numbers in R(N)α.

α−integers are obtained by successive α−addition of 1̇ to 0̇ and successive α−subtraction of 1̇ from 0̇. For
each integer n, we set ṅ = α (n).

α−absolute value of a number x ∈ R(N)α is defined by

|x|α = α
(∣∣∣α−1 (x)

∣∣∣) =


x i f x>̇0̇
0̇ i f x = 0̇

0̇−̇x i f x<̇0̇
.

For x ∈ R(N)α, p
√

xα = α
(

p
√
α−1 (x)

)
and xpα = α

{[
α−1 (x)

]p}
.

Grossman and Katz described the *-calculus with the help of two arbitrary selected generators. In this
study, we studied according to *-calculus. Let take any generators α and β and let * (”star”) is shown the
ordered pair of arithmetics (α−arithmetic, β−arithmetic). The following notations will be used.

α−arithmetic β − arithmetic
Realm A (= R(N)α) B

(
= R(N)β

)
Summation +̇ +̈
Subtraction −̇ −̈

Multiplication ×̇ ×̈

Division /̇ /̈
Ordering <̇ <̈

In the ∗−calculus, a−arithmetic is used on arguments and β−arithmetic is used on values.
The isomorphism from a−arithmetic to β−arithmetic is the unique function ı(iota) that possesses the

following three properties.
1. ı is one-to-one.
2. ı is on A and onto B.
3. For any numbers u and v in A,

ι (u+̇v) = ι (u) +̈ι (v) , ι (u−̇v) = ι (u) −̈ι (v) ,

ι (u×̇v) = ι (u) ×̈ι (v) , ι
(
u/̇v

)
= ι (u) /̈ι (v) , v , 0̇

u <̇ v⇐⇒ ι (u) <̈ι (v) .

It turns out that ι (x) = β
{
α−1 (x)

}
for every number x in A and that for every integer n, we set ι (ṅ) = n̈ [10].

In non-Newtonian metric space, the definitions of α−accumulation point of a set, α−convergence of a
sequence and α−bounded sequence are given in the studies which are numbered[6, 17]. The definitions of
*-limit and *-continuity of the function f : X ⊂ R(N)α → R(N)β are introduced by Sağır and Erdogan[17].
Duyar and Erdogan introduced α−series and its α−convergence[9]. Non-Newtonian interior point and
non-Newtonian open set are defined by Binbaşıoğlu and others[3].
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Let X be a vector space over the field R(N)α and ‖.‖α be a function from X to R+(N)α ∪
{
0̇
}

satisfying the
following non-Newtonian norm axioms. For x, y ∈ X and λ ∈ R(N)α,

(NN1) ‖x‖α = 0̇⇔ x = 0̇,
(NN2) ‖λ×̇x‖α = |λ|α ×̇ ‖x‖α ,
(NN3)

∥∥∥x+̇y
∥∥∥
α
≤̇ ‖x‖α +̇

∥∥∥y
∥∥∥
α
.

Then (X, ‖.‖α) is said to be a non-Newtonian normed space.
The non-Newtonian sequence spaces S(N), `∞ (N), c (N), c0 (N) and `p (N) over the non-Newtonian real

field R(N)α are defined as following:
S(N) = {x = (xk) : ∀k ∈N, xk ∈ R(N)α}

`∞ (N) =

{
x = (xk) ∈ S(N) : α sup

k∈N
|xk|α <̇+̇∞

}
,

c (N) =
{
x = (xk) ∈ S(N) : ∃l ∈ R(N)α 3 α lim

n→∞
|xk−̇l|α = 0̇

}
,

c0 (N) =
{
x = (xk) ∈ S(N) : α lim

n→∞
|xk|α = 0̇

}
,

`p (N) =

{
x = (xk) ∈ S(N) : α

∞∑
k=1
|xk|

pα
α <̇+̇∞

} (
1 ≤ p < ∞

)
.

The sequence spaces `∞ (N), c (N), c0 (N) are non-Newtonian normed spaces with the non-Newtonian
norm ‖.‖α,∞ which is defined as ‖x‖α,∞ = α sup

k∈N
|xk|α and the sequence space `p (N) is a non-Newtonian

normed space with the non-Newtonian norm ‖.‖α,p which is defined as ‖x‖α,p =

(
α

∞∑
k=1
|xk|

pα
α

)1
p


α [6].

Let S be space of real number sequences, X and Y be two sequence spaces onR. Let function f :N×R→
R be given. Superposition operator P f is mapping from X into S which is in the form of P f (x) =

(
f (k, xk)

)∞
k=1.

If P f (x) ∈ Y for all x = (xk) ∈ X, then it is said that P f acts from X into Y and it is denoted by P f : X→ Y.
The function f satisfies the following conditions:
(A1) f (k, 0) = 0 for all k ∈N.
(A2) f (k, .) is continuous for all k ∈N.
(A2’) f (k, .) is bounded on every bounded subset of R for all k ∈N.
If the function f (k, .) satisfies the condition (A2), then it satisfies the condition (A2’) [7, 20].

2. Results and Discussion

Definition 2.1. Let S(N) be space of non-Newtonian real number sequences, X(N) be a sequence space onR(N)α and
Y(N) be a sequence space on R(N)β. Let function f :N ×R(N)α → R(N)β be given. Non-Newtonian superposition
operator NP f is mapping from X(N) into S(N) which is in the form of NP f (x) =

(
f (k, xk)

)∞
k=1. If NP f (x) ∈ Y(N) for

all x = (xk) ∈ X (N), then it is said that NP f acts from X (N) into Y (N) and it is denoted by NP f : X (N)→ Y (N).
The function f satisfies the following conditions:
(NA1) f (k, 0̇) = 0̈ for all k ∈N.
(NA2) f (k, .) is *-continuous for all k ∈N.
(NA2’) f (k, .) is β−bounded on every α−bounded subset of R(N)α for all k ∈N.

LetA = {Ai : i ∈ I} be a family of α−open sets atR(N)α. If E ⊂ ∪
i∈I

Ai for subset E ⊂ R(N)α, then the family

A is called an α−open cover of the set E. If I0 ⊂ I is a finite subset and E ⊂ ∪
i∈I0

Ai, then familyA0 = (Ai)i∈I0
is

called a finite α−subcover of the set E.
If a finite α−subcover can be selected from every α−open cover of set E ⊂ R(N)α, then it is said that E is

α−compact set.

Theorem 2.2. (*-Heine Borel): Every α−closed interval [̇a, b]̇ on R(N)α is α−compact.
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Proof. LetA = {Ai : i ∈ I} be an α−open cover of α−closed interval [̇a, b]̇. Then it is written that [̇a, b]̇ ⊂ ∪
i∈I

Ai

and there exists an α−number r>̇0̇ for every a ∈ Ai such that Bα (a, r) ⊂ Ai since Ai is α−open set. Since

α (x) ∈ [̇a, b]̇ ⊂ ∪
i∈I

Ai ⇒ ∃i0 ∈ I, α (x) ∈ Ai0 ⇒ x ∈ α−1 (
Ai0

)
,

we have[
α−1 (a) , α−1 (b)

]
⊂ ∪

i∈I
α−1 (Ai) .

Hence the family {α−1 (Ai)} is an open cover of the closed interval
[
α−1 (a) , α−1 (b)

]
. By Heine-Borel theorem,

there exists finite subfamily {i1, i2, .., in} such that[
α−1 (a) , α−1 (b)

]
⊂

n
∪

k=1
α−1 (

Aik
)
.

Since

x ∈ ∪
i∈I

Ai ⇒ ∃i0 ∈ I, x ∈ Ai0 ⇒ α−1 (x) ∈ α−1 (
Ai0

)
⇒ α−1 (x) ∈ ∪

i∈I
α−1 (Ai)

⇒ x ∈ α
(
∪
i∈I
α−1 (Ai)

)
and

x ∈ α
(
∪
i∈I
α−1 (Ai)

)
⇒ α−1 (x) ∈ ∪

i∈I
α−1 (Ai)⇒ ∃i0 ∈ I, α−1 (x) ∈ α−1 (

Ai0
)

⇒ x ∈ Ai0 ⇒ x ∈ ∪
i∈I

Ai ,

we get [̇a, b]̇ = α
([
α−1 (a) , α−1 (b)

])
⊂ α

( n
∪

k=1
α−1 (

Aik
))

=
n
∪

k=1
Aik .

Proposition 2.3. If the function f : N × R(N)α → R(N)β is *-continuous, it is β−bounded on every α−bounded
subset of R(N)α.

Proof. Let E be anα−bounded subset ofR(N)α. Then there exist a, b ∈ R(N)α such that E ⊆ [̇a, b]̇. The function
f is *-continuous for every z ∈ [̇a, b]̇. Then there exists an α−real number δz>̇0̇ such that

∣∣∣ f (x) −̈ f (z)
∣∣∣
β
<̈λ for

β−real number λ>̈0̈ with |x−̇z|α <̇δz. Then, we have∣∣∣ f (x)
∣∣∣
β
<̈λ+̈

∣∣∣ f (z)
∣∣∣
β

for every x ∈ Bα (z, δz). Additionally, there exist z1, z2, ..., zn ∈ [̇a, b]̇ such that [̇a, b]̇ ⊂
n
∪

k=1
Bα

(
zk, δzk

)
since the

set [̇a, b]̇ is α−compact and [̇a, b]̇ ⊂ ∪
z∈[̇a,b]̇

Bα (z, δz). Thus, we have
∣∣∣ f (x)

∣∣∣
β
<̈λk+̈

∣∣∣ f (zk)
∣∣∣
β

for every x ∈ Bα
(
zk, δzk

)
,

where k = 1, 2, ...,n . If M = β max
{
λk+̈

∣∣∣ f (zk)
∣∣∣
β

: 1 ≤ k ≤ n
}
, then

∣∣∣ f (x)
∣∣∣
β
≤̈M for all x ∈ Bα

(
zk, δzk

)
. We get∣∣∣ f (x)

∣∣∣
β
≤̈M for all x ∈ E since E ⊆ [̇a, b]̇ ⊂

n
∪

k=1
Bα

(
zk, δzk

)
.

Corollary 2.4. If the function f (k, .) satisfies the condition (NA2), then it satisfies the condition (NA2’).

Theorem 2.5. Let us suppose that f : N × R(N)α → R(N)β satisfies the condition (NA2’). Then NP f : `∞ (N) →
`1 (N) if and only if there exists a β−sequence (ck) ∈ `1 (N) such that

∣∣∣ f (k, t)
∣∣∣
β
≤̈ck for each α−number µ>̇0̇ and k ∈N

whenever |t|α ≤̇µ.
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Proof. Let x = (xk) ∈ `∞ (N). Then, there exists an α−real number M>̇0̇ such that |xk|α ≤̇M for all k ∈ N.
By assumption, there exists a β−sequence ck ∈ `1 (N) such that

∣∣∣ f (k, xk)
∣∣∣
β
≤̈ck for all k ∈ N. Then, we have

β

∞∑
k=1

∣∣∣ f (k, xk)
∣∣∣
β
≤̈ β

∞∑
k=1

ck = ‖ck‖β,1 . Since NP f (x) =
(

f (k, xk)
)∞

k=1 , we obtain that NP f (x) ∈ `1 (N) .

Conversely, let NP f : `∞ (N)→ `1 (N). For each α−number µ>̇0̇ and for all k ∈N, we define

A
(
µ
)

=
{
t ∈ R(N)α : |t|α ≤̇µ

}
and

B
(
k, µ

)
= β sup

{∣∣∣ f (k, t)
∣∣∣
β

: t ∈ A
(
µ
)}
.

We see that
∣∣∣ f (k, t)

∣∣∣
β
≤̈B

(
k, µ

)
whenever |t|α ≤̇µ. We shall show that

(
B
(
k, µ

))∞
k=1 ∈ `1 (N) for all α−real

number µ>̇0̇. Suppose that there exists an α−number µ1>̇0̇ such that
(
B
(
k, µ1

))∞
k=1 < `1 (N). Then, we have

β

∞∑
k=1

B
(
k, µ1

)
= +̈∞. So, there exists a sequence of positive integers n0 = 0 < n1 < n2 < ... < ni < ... such that

β

ni∑
k=ni−1+1

B
(
k, µ1

)
>̈1̈ for all i ∈N and there exists a β−number εi such that

β

ni∑
k=ni−1+1

B
(
k, µ1

)
−̈ (n̈i−̈n̈i−1) ×̈εi>̈1̈. (1)

Let i ∈ N be fixed. Since f satisfies (NA2’), 0̈≤̈B
(
k, µ1

)
<̈+̈∞ for all k ∈ N such that ni−1 + 1 ≤ k ≤ ni. From

the definition of B
(
k, µ1

)
, there exists a (xk) ∈ A

(
µ1

)
such that∣∣∣ f (k, xk)

∣∣∣
β
>̈B

(
k, µ1

)
−̈εi . (2)

From 1 and 2, we have

β

ni∑
k=ni−1+1

∣∣∣ f (k, xk)
∣∣∣
β
>̈ β

ni∑
k=ni−1+1

B
(
k, µ1

)
−̈ β

ni∑
k=ni−1+1

εi>̈1̈

for all i ∈ N. Thus, we have
(

f (k, xk)
)∞

k=1 < `1 (N). Since |xk|α ≤̇µ1, we get (xk) ∈ `∞ (N) for all k ∈ N. This
contradicts the assumption. The proof is completed by putting B

(
k, µ

)
= ck for all k ∈N.

Example 2.6. Let f : N ×R(N)α → R(N)β be defined by f (k, t) =

∣∣∣ι (t) −̈1̈
∣∣∣
β

8̈kβ
β for all k ∈ N and for all t ∈ R(N)α.

Since f is ∗−continuous, it is clear that f satisfies (NA2’). Let µ, t ∈ R(N)α such that µ>̇0̇ and |t|α ≤̇µ. Then

∣∣∣ f (k, t)
∣∣∣
β

=

∣∣∣ι (t) −̈1̈
∣∣∣
β

8̈kβ
β

≤̈

|ι (t)|β +̈1̈

8̈kβ
β

≤̈
ι
(
µ
)
+̈1̈

8̈kβ
β.

If we choose (ck) =

(
ι
(
µ
)
+̈1̈

8̈kβ
β

)
, we get NP f : `∞ (N)→ `1 (N) by Theorem 2.5.

The next theorem characterizes non-Newtonian superposition operator acting from c0 (N) into `1 (N).
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Theorem 2.7. Let us suppose that f : N × R(N)α → R(N)β satisfies the condition (NA2’). Then NP f : c0 (N) →
`1 (N) if and only if there exist an α−number µ>̇0̇ and a β−sequence (ck) ∈ `1 (N) such that

∣∣∣ f (k, t)
∣∣∣
β
≤̈ck when |t|α ≤̇µ

for all k ∈N.

Proof. Let x = (xk) ∈ c0 (N). Since α lim
k→∞

xk = 0̇, there exists an integer i ∈ N such that |xk|α ≤̇µ especially for

α−number µ>̇0̇ when k ≥ i. By assumption, there exists a ck ∈ `1 (N) such that
∣∣∣ f (k, xk)

∣∣∣
β
≤̈ck for all k ≥ i.

Then

β

∞∑
k=i

∣∣∣ f (k, xk)
∣∣∣
β
≤̈ β

∞∑
k=i

ck

≤̈ ‖ck‖β,1 .

Hence we get NP f (x) ∈ `1 (N).
Conversely, let NP f : c0 (N)→ `1 (N). For each µ>̇0̇ and for all k ∈N, we define

A
(
µ
)

=
{
t ∈ R(N)α : |t|α ≤̇µ

}
and

B
(
k, µ

)
= β sup

{∣∣∣ f (k, t)
∣∣∣
β

: t ∈ A
(
µ
)}
.

Then, we see that
∣∣∣ f (k, t)

∣∣∣
β
≤̈B

(
k, µ

)
whenever |t|α ≤̇µ. We shall show that there exists anα−numberµ1>̇0̇ such

that
(
B
(
k, µ1

))∞
k=1 ∈ `1 (N). Suppose that

(
B
(
k, µ

))∞
k=1 < `1 (N) for allµ>̇0̇. Then, we can write β

∞∑
k=1

B
(
k, 2̇(−i)α

)
=

+̈∞ for all i ∈ N. Thus, there exists a sequence of positive integers n0 = 0 < n1 < n2 < ... < ni < ... such that

β

ni∑
k=ni−1+1

B
(
k, 2̇(−i)α

)
>̈1̈ for all i ∈N and there exists a β−number εi such that

β

ni∑
k=ni−1+1

B
(
k, 2̇(−i)α

)
−̈ (n̈i−̈n̈i−1) ×̈εi>̈1̈. (3)

Let i ∈N be fixed. Then, we have 0̈≤̈B
(
k, 2̇(−i)α

)
<̈+̈∞ for all k ∈Nwith ni−1 + 1 ≤ k ≤ ni. From the definition

of B
(
k, 2̇(−i)α

)
, there exists a (xk) ∈ A

(
2̇(−i)α

)
such that∣∣∣ f (k, xk)

∣∣∣
β
>̈B

(
k, 2̇(−i)α

)
−̈εi. (4)

By 3 and 4, we have

β

ni∑
k=ni−1+1

∣∣∣ f (k, xk)
∣∣∣
β
>̈ β

ni∑
k=ni−1+1

B
(
k, 2̇(−i)α

)
−̈ β

ni∑
k=ni−1+1

εi>̈1̈

for all i ∈ N. Thus, we obtain that
(

f (k, xk)
)∞

k=1 < `1 (N). For all k ∈ N, since (xk) ∈ A
(
2̇(−i)α

)
with

ni−1 + 1 ≤ k ≤ ni, we have |xk|α ≤̇2̇(−i)α . Hence α lim
k→∞

xk = 0̇ and (xk) ∈ c0 (N). This contradicts the assumption.

Then, there exists an α−number µ1>̇0̇ such that
(
B
(
k, µ1

))∞
k=1 ∈ `1 (N). The proof is completed by putting

ck = B
(
k, µ1

)
for all k ∈N.

Example 2.8. Let f : N × R(N)α → R(N)β be defined by f (k, t) =

∣∣∣∣ι (t) ×̈ (
ι (t) −̈1̈

)∣∣∣∣
β

3̈kβ
β for all k ∈ N and for all

t ∈ R(N)α. Since f is ∗−continuous, it is clear that f satisfies (NA2’). Let µ, t ∈ R(N)α such that µ = 1̇ and |t|α ≤̇1̇.
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Then

∣∣∣ f (k, t)
∣∣∣
β

=
|ι (t)|β ×̈

∣∣∣ι (t) −̈1̈
∣∣∣
β

3̈kβ
β

≤̈

|ι (t)|β ×̈
(
|ι (t)|β +̈1̈

)
3̈kβ

β

≤̈
2̈

3̈kβ
β.

If we choose (ck) =

(
2̈

3̈kβ
β

)
for all k ∈N, then, we get NP f : c0 (N)→ `1 (N) by Theorem 2.7.

Theorem 2.9. Let us suppose that f : N × R(N)α → R(N)β satisfies the condition (NA2’). Then NP f : c (N) →
`1 (N) if and only if there exist an α−number µ>̇0̇ and a β−sequence (ck) ∈ `1 (N) such that

∣∣∣ f (k, t)
∣∣∣
β
≤̈ck when

|t−̇z|α ≤̇µ for all z ∈ R(N)α and for all k ∈N.

Proof. Let x = (xk) ∈ c (N). Then, there exists a z ∈ R(N)α such that α lim
k→∞

xk = z and α lim
k→∞

(xk−̇z) = 0̇. Thus,

there exists an integer i ∈ N such that |xk−̇z|α ≤̇µ especially for α−number µ>̇0̇ when k ≥ i. By assumption,
there exists a ck ∈ `1 (N) such that

∣∣∣ f (k, xk)
∣∣∣
β
≤̈ck for all k ≥ i. Then

β

∞∑
k=i

∣∣∣ f (k, xk)
∣∣∣
β
≤̈ β

∞∑
k=i

ck

≤̈ ‖ck‖β,1 .

Hence, we obtain that NP f (x) ∈ `1 (N).
Conversely, let NP f : c (N)→ `1 (N). For each z ∈ R(N)α, µ>̇0̇ and for all k ∈N, we define

A
(
z, µ

)
=

{
t ∈ R(N)α : |t−̇z|α ≤̇µ

}
and

B
(
k, µ

)
= β sup

{∣∣∣ f (k, t)
∣∣∣
β

: t ∈ A
(
z, µ

)}
.

Then, we can see that
∣∣∣ f (k, t)

∣∣∣
β
≤̈B

(
k, µ

)
whenever |t−̇z|α ≤̇µ. Thus, there exists an α−number µ1>̇0̇ such that(

B
(
k, µ1

))∞
k=1 ∈ `1 (N). Suppose that

(
B
(
k, µ

))∞
k=1 < `1 (N) for all µ>̇0̇. Then, we can write β

∞∑
k=1

B
(
k, 2̇(−i)α

)
= +̈∞

for all i ∈ N. Hence, there exists a sequence of positive integers n0 = 0 < n1 < n2 < ... < ni < ... such that

β

ni∑
k=ni−1+1

B
(
k, 2̇(−i)α

)
>̈1̈ for all i ∈N and there exists a β−number εi such that

β

ni∑
k=ni−1+1

B
(
k, 2̇(−i)α

)
−̈ (n̈i−̈n̈i−1) ×̈εi>̈1̈. (5)

Let i ∈ N be fixed. Then, we have that 0̈≤̈B
(
k, 2̇(−i)α

)
<̈+̈∞ for all k ∈ N with ni−1 + 1 ≤ k ≤ ni. From the

definition of B
(
k, 2̇(−i)α

)
, there exists a (xk) ∈ A

(
z, 2̇(−i)α

)
such that∣∣∣ f (k, xk)

∣∣∣
β
>̈B

(
k, 2̇(−i)α

)
−̈εi. (6)
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From 5 and 6,

β

ni∑
k=ni−1+1

∣∣∣ f (k, xk)
∣∣∣
β
>̈ β

ni∑
k=ni−1+1

B
(
k, 2̇(−i)α

)
−̈ β

ni∑
k=ni−1+1

εi>̈1̈

for all i ∈ N. Thus, we obtain that
(

f (k, xk)
)∞

k=1 < `1 (N). Since (xk) ∈ A
(
z, 2̇(−i)α

)
with ni−1 + 1 ≤ k ≤ ni for all

k ∈ N, we have that |xk−̇z|α ≤̇2̇(−i)α . Hence α lim
k→∞

xk = z and (xk) ∈ c (N). This contradicts the assumption.

Then there exists an α−number µ1>̇0̇ such that
(
B
(
k, µ1

))∞
k=1 ∈ `1 (N). The proof is completed by putting

ck = B
(
k, µ1

)
for all k ∈N.

Example 2.10. In geometric calculus, α = I and β = exp, let f :N×R(N)α → R(N)β be defined by f (k, t) =
|ι (t)|β

3̈kβ
β

for all k ∈ N and for all t ∈ R(N)α. Then the function f : N × R → R+ is in the form f (k, t) = e

 t
3k


. It is clear

that f satisfies (NA2’). Let take any z > 0. Let t ∈ R be such that µ = 1 and |t − z| ≤ 1. Then |t| ≤ 1 + |z| and since
|t|
3k
≤

1 + |z|
3k

, it is obtained that

∣∣∣ f (k, xk)
∣∣∣
β

= exp

ln

e

 |t|3k



 = e

 |t|3k


≤̈e

1 + |z|
3k


.

If we choose (ck) =

e

1 + |z|
3k


 for all k ∈N, then, we get NP f : c (N)→ `1 (N) by Theorem 2.9.

Theorem 2.11. Let us suppose that f : N ×R(N)α → R(N)β satisfies the condition (NA2’). Then NP f : `p (N)→
`1 (N) if and only if there existα−numbersµ, η>̇0̇ and aβ−sequence (ck) ∈ `1 (N) such that

∣∣∣ f (k, t)
∣∣∣
β
≤̈ck+̈ι

(
η
)
×̈ |ι (t)|pββ

when |t|α ≤̇µ for all k ∈N.

Proof. Let x = (xk) ∈ `p (N). Since α

∞∑
k=1
|xk|

pα
α <̇+̇∞, then α lim

k→∞
|xk|

pα
α = 0̇. There exists an integer i ∈ N such

that |xk|
pα
α ≤̇µ

pα especially for α−number µ>̇0̇ when k ≥ i. By assumption, there exists a ck ∈ `1 (N) such that∣∣∣ f (k, xk)
∣∣∣
β
≤̈ck+̈ι

(
η
)
×̈ |ι (t)|pββ when for all k ≥ i. Then

β

∞∑
k=i

∣∣∣ f (k, xk)
∣∣∣
β
≤̈ β

∞∑
k=i

ck+̈ι
(
η
)
×̈ β

∞∑
k=i

|ι (xk)|pββ

≤̈ ‖ck‖β,1 +̈ι
(
η
)
×̈ ‖ι (x)‖β,p .

Hence, we obtain NP f (x) ∈ `1 (N).
Conversely, let NP f : `p (N)→ `1 (N). For each α−numbers µ, η>̇0̇ and for all k ∈N, we define

A
(
k, η, µ

)
=

{
t ∈ R(N)α : |t|pαα ≤̇

α min
{
µ, η(−1)α×̇ι−1

(∣∣∣ f (k, xk)
∣∣∣
β

)}}
and

B
(
k, η, µ

)
= β sup

{∣∣∣ f (k, t)
∣∣∣
β

: t ∈ A
(
k, η, µ

)}
.

Then, we can see that
∣∣∣ f (k, t)

∣∣∣
β
≤̈B

(
k, η, µ

)
whenever t ∈ A

(
k, η, µ

)
and |t|α ≤̇η. Additionally, if t < A

(
k, η, µ

)
and |t|α ≤̇µ, then, we have

∣∣∣ f (k, t)
∣∣∣
β
≤̈ι

(
µ
)
×̈ |ι (t)|pββ . Hence, we get

∣∣∣ f (k, t)
∣∣∣
β
≤̈B

(
k, η, µ

)
+̈ι

(
µ
)
×̈ |ι (t)|pββ when
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|t|α ≤̇µ. We shall show there exist α−numbers µ1, η1>̇0̇ such that
(
B
(
k, η1, µ1

))∞
k=1 ∈ `1 (N). Suppose that(

B
(
k, η, µ

))∞
k=1 < `1 (N) for all µ, η>̇0̇. Then it is written that β

∞∑
k=1

B
(
k, 2̇iα , 2̇(−i)α

)
= +̈∞ for all i ∈N. Thus there

exists a sequence of positive integers n0 = 0 < n1 < n2 < ... < ni < ... such that β

ni∑
k=ni−1+1

B
(
k, 2̇iα , 2̇(−i)α

)
>̈1̈ for

all i ∈ N and ni is the smallest integer that satisfies this condition. Otherwise, there exists a β−number εi
such that

β

ni∑
k=ni−1+1

B
(
k, 2̇iα , 2̇(−i)α

)
−̈ (n̈i−̈n̈i−1) ×̈εi>̈1̈. (7)

Let i ∈ N be fixed. Then, we have that 0̈≤̈B
(
k, 2̇iα , 2̇(−i)α

)
<̈+̈∞ for all k ∈ N with ni−1 + 1 ≤ k ≤ ni. From the

definition of B
(
k, 2̇iα , 2̇(−i)α

)
, there exists a (xk) ∈ A

(
k, 2̇iα , 2̇(−i)α

)
such that∣∣∣ f (k, xk)

∣∣∣
β
>̈B

(
k, 2̇iα , 2̇(−i)α

)
−̈εi. (8)

From 7 and 8 we have

β

ni∑
k=ni−1+1

∣∣∣ f (k, xk)
∣∣∣
β
>̈ β

ni∑
k=ni−1+1

B
(
k, 2̇iα , 2̇(−i)α

)
−̈ β

ni∑
k=ni−1+1

εi>̈1̈

for all i ∈ N. Thus, we get
(

f (k, xk)
)∞

k=1 < `1 (N). Since (xk) ∈ A
(
k, 2̇iα , 2̇(−i)α

)
with ni−1 + 1 ≤ k ≤ ni for all

k ∈N, we have

|xk|α ≤̇2̇(−i)α and |xk|
pα
α ≤̇2̇(−i)α×̇ι−1

(∣∣∣ f (k, xk)
∣∣∣
β

)
. (9)

Additionally, β

ni−1∑
k=ni−1+1

B
(
k, 2̇iα , 2̇(−i)α

)
≤̈1̈. From 9, it is obtained that

α

ni∑
k=ni−1+1

|xk|
pα
α = α

ni−1∑
k=ni−1+1

|xk|
pα
α +̇

∣∣∣xni

∣∣∣
α

≤̇ α

ni−1∑
k=ni−1+1

2̇(−i)α×̇ι−1
(∣∣∣ f (k, xk)

∣∣∣
β

)
+̇2̇(−i)α

≤̇ 2̇(−i)α×̇ α

ni−1∑
k=ni−1+1

B
(
k, 2̇iα , 2̇(−i)α

)
+̇2̇(−i)α

≤̇
2̇

2̇iα
α.

Hence we have that (xk) ∈ `p (N). This contradicts the assumption. Then there exist α−numbers µ1, η1>̇0̇
such that

(
B
(
k, η1, µ1

))∞
k=1 ∈ `1 (N). The proof is completed by putting ck = B

(
k, η1, µ1

)
for all k ∈N.

Example 2.12. Let f : N × R(N)α → R(N)β be defined by f (k, t) =

(
1̈

9̈kβ
β+̈ |ι (t)|pββ

)
×̈ |ι (t)|β for all k ∈ N and

t ∈ R(N)α. It is clear that f satisfies the condition (NA2’). Let µ, t ∈ R(N)α such that µ = 2̇ and |t|α ≤̇2̇. Then∣∣∣ f (k, t)
∣∣∣
β

=

(
1̈

9̈kβ
β+̈ |ι (t)|pββ

)
×̈ |ι (t)|β

≤̈
2̈

9̈kβ
β+̈2̈×̈ |ι (t)|pββ .
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If we choose (ck) =

(
2̈

9̈kβ
β

)
for all k ∈N and η = 2̇, then, we obtain NP f : `p (N)→ `1 (N) by Theorem 2.11.

Theorem 2.13. Non-Newtonian superposition operator NP f : `∞ (N) → `1 (N) is *-continuous on `∞ (N) if and
only if the function f (k, .) is *-continuous R(N)α for all k ∈N.

Proof. Suppose that NP f is non-Newtonian continuous on `∞ (N). Let k ∈ N, t0 ∈ R(N)α and ε>̈0̈ be given.

Since NP f is non-Newtonian continuous at t0×̇e(k)
∈ `∞ (N) with e(k)

n =

{
1̇ n = k
0̇, n , k , we have

∥∥∥∥ NP f (z) −̈ NP f

(
t0×̇e(k)

)∥∥∥∥
β,1
<̈ε (10)

when
∥∥∥∥t−̇

(
t0×̇e(k)

)∥∥∥∥
α,∞

<̇δ for all z = (zk) ∈ `∞ (N). Let t ∈ R(N)α be such that |t−̇t0|α <̇δ. If yn is defined in the

form of yn =

{
t n = k
0̇, n , k ,

(
yn

)
∈ `∞ (N) and

|t−̇t0|α =
∥∥∥∥y−̇

(
t0×̇e(k)

)∥∥∥∥
α,∞

<̇δ.

By 10, we get∣∣∣ f (k, t) −̈ f (k, t0)
∣∣∣
β

=
∥∥∥∥ NP f

(
y
)
−̈ NP f

(
t0×̇e(k)

)∥∥∥∥
β,1
<̈ε.

Hence, the function f (k, .) is *-continuous on R(N)α for all k ∈N.
Conversely, suppose that the function f (k, .) is *-continuous on R(N)α for all k ∈ N. We shall

show that NP f is non-Newtonian continuous on `∞ (N). Let x = (xk) ∈ `∞ (N) and ε>̈0̈ be given. Since f
is *-continuous, it is clear that f satisfies (NA2’). Since NP f : `∞ (N) → `1 (N), there exists a β−sequence
(ck) ∈ `1 (N) such that∣∣∣ f (k, t)

∣∣∣
β
≤̈ck with |t|α ≤̇µ (11)

for all µ>̇0̇ and k ∈ N by Theorem 2.5. Since x ∈ `∞ (N), there exists an α−number γ>̇0̇ such that |xk|α ≤̇
γ

2̇
α

for all k ∈N. Hence, by 11, there exists a β−sequence (ck) ∈ `1 (N) such that∣∣∣ f (k, t)
∣∣∣
β
≤̈ck (12)

for all k ∈N. Additionally, by 11, there exists a β−sequence
(
c∗k
)
∈ `1 (N) such that∣∣∣ f (k, t)

∣∣∣
β
≤̈c∗k with |t|α ≤̇γ (13)

for all k ∈N. Since (ck) ,
(
c∗k
)
∈ `1 (N), there exists a N ∈N such that

β

∞∑
k=N

ck<̈
ε

3̈
β and β

∞∑
k=N

c∗k<̈
ε

3̈
β. (14)

Since f (k, .) is *-continuous at xk, there exists an α−number δ>̇0̇ with δ = α min
{
1̇,
γ

2̇
α
}

such that

∣∣∣ f (k, t) −̈ f (k, xk)
∣∣∣
β
<̈

ε

3̈×̈
(
N̈−̈1̈

)β whenever |t−̇xk|α <̇δ (15)
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for all k ∈ {1, 2, ...,N − 1} and t ∈ R(N)α. Let z = (zk) ∈ `∞ (N) be given with ‖z−̇x‖α,∞ <̇δ. Then |zk−̇xk|α <̇δ for

all k ∈N and
∣∣∣ f (k, zk) −̈ f (k, xk)

∣∣∣
β
<̈

ε

3̈×̈
(
N̈−̈1̈

)β for all k ∈ {1, 2, ...,N − 1} from 15. Then, we obtain

β

N−1∑
k=1

∣∣∣ f (k, zk) −̈ f (k, xk)
∣∣∣
β
<̈
ε

3̈
β. (16)

Since |zk|α ≤̇ |zk+̇xk|α +̇ |xk|α <̇δ+̇
γ

2̇
α<̇γ, by 13,

∣∣∣ f (k, zk)
∣∣∣
β
≤̈c∗k for all k ∈N. Thus,we have that

β

∞∑
k=N

∣∣∣ f (k, xk)
∣∣∣
β
≤̈ β

∞∑
k=N

ck (17)

<̈
ε

3̈
β (18)

β

∞∑
k=N

∣∣∣ f (k, zk)
∣∣∣
β
≤̈ β

∞∑
k=N

c∗k (19)

<̈
ε

3̈
β (20)

from 12 and 14. Then, by 16, 17 and 19,∥∥∥ NP f (z) −̈ NP f (x)
∥∥∥
β

= β

∞∑
k=1

∣∣∣ f (k, zk) −̈ f (k, xk)
∣∣∣
β

≤̈ β

N−1∑
k=1

∣∣∣ f (k, zk) −̈ f (k, xk)
∣∣∣
β
+̈ β

∞∑
k=N

∣∣∣ f (k, zk)
∣∣∣
β

+̈ β

∞∑
k=N

∣∣∣ f (k, xk)
∣∣∣
β

<̈
ε

3̈
β+̈
ε

3̈
β+̈
ε

3̈
β

= ε.

This completes the proof.

3. Concluding Remarks

The necessary and sufficient conditions for the characterization of non-Newtonian superposition oper-
ators have been formulated, as stated in Theorem 2.5, Theorem 2.7, Theorem 2.9 and Theorem 2.11. For the
future, we will formulate the necessary and sufficient conditions for β−boundedness and characterization
from `p (N) into `q (N) of non-Newtonian superposition operators.
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