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Abstract. In this paper, we define a non-Newtonian superposition operator Py where f : N X R(N), —
R(N); by nPs (x) = (f (k, xk));f:l for every non-Newtonian real sequence x = (x;). Chew and Lee [4] have
characterized Ps : £, — ¢y and P : ¢cg — ¢y for 1 < p < co . The purpose of this paper is to generalize these
works respect to the non-Newtonian calculus. We characterize Py : £ (N) = €1 (N), NPf : co (N) — €1 (N)
,NPs:c(N) = €1 (N) and nPy : £, (N) — {1 (N), respectively. Then we show that such nPy : {o (N) — €1 (N)
is *-continuous if and only if f(k,.) is *-continuous for every k € IN.

1. Introduction and Preliminaries

Non-Newtonian calculus was firstly introduced and worked by Michael Grossman and Robert Katz
between years 1967 and 1970. They published the book about fundamentals of non-Newtonian calculus and
which includes some special calculus such as geometric, harmonic, bigeometric, anageometric. Tiirkmen
and Basar [22] obtained some results on sequence spaces with respect to geometric calculus. After, Cakmak
and Basar [5] obtained some properties of continuous functions in non-Newtonian calculus. Also, Duyar,
Sagir and Ogur [8] studied on some properties of non-Newtonian real line.

The sequence spaces and operator theory have also wide application area. There exist many studies
that are done until today on superposition operator which is one of the non-linear operators. Under
the assumption that f(k,.) is continuous on R for every k € IN , Chew and Lee [4] have characterized
Pr: €, - tyand Py : ¢g — {1 for 1 < p < co. Dedagich and Zabreiko [7] have given the necessary and
sufficient conditions for the superposition operators on the sequence spaces ¢,, {» and co. After, some
properties of superposition operator, such as boundedness, compactness, were studied by Sama-ae [19],
Sagir and Giingor [11, 16], Kolk and Raidjoe [12], Ogur [14, 15] and many others. The purpose of this
paper is to generalize these works respect to the non-Newtonian calculus. In this article, we define a
non-Newtonian superposition operator yPf where f : N x R(N), — R(N)g by nP (x) = (f (k, x¢));-, for
every non-Newtonian real sequence x = (xx) and we characterize non-Newtonian superposition operators
on £e (N) , €, (N), co (N) and ¢ (N) into ¢1 (N). Finally, we show that such yP; which acting from £« (N) to
t1 (N) , is *-continuous if and only if f(k, .) is *-continuous for every k € IN.
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A generator is defined as an injective function with domain R and the range of generator is a subset of R.

Let take any generator o with range A = R(N),. Let define a—addition, a—subtraction, a—multiplication,
a—division and a—order as follows;

a—addition xty=a (Ofl (x) +a”t (y))

a—subtraction x-y=a (0&_1 (x) —a™ (3/))

a—multiplication xXy = a (a‘l () xa™t (y))

a—division x]y = a(Dé_l (x) fa7! (y)),y #0,a7!(y) # 0
a—order x<y (x<y) @ a”t () <al(y) (“_1 () <a™ (y))

for x, y € R(N), [10].

(R(N)q, +, X, <) is totally ordered field [6].

The numbers x>0 are a—positive numbers and the numbers x<0 are a—negative numbers in R(N),.
a—integers are obtained by successive a—addition of 1 to 0 and successive a—subtraction of 1 from 0. For
each integer n, we set 1 = a (n).

a—absolute value of a number x € IR(N), is defined by

x if x50
x|, = a(|a‘1 (x)|) =3 0 if x=0
0-x if x<0

For x € R(N),, {x" = a( Yot (x)) and xP* = a {[a’l (x)]p}.

Grossman and Katz described the *-calculus with the help of two arbitrary selected generators. In this
study, we studied according to *-calculus. Let take any generators a and f§ and let * (“star”) is shown the
ordered pair of arithmetics (¢—arithmetic, f—arithmetic). The following notations will be used.

a—arithmetic  f — arithmetic

Realm A(=R(N)))  B(=R(N))
Summation + ¥
Subtraction = =
Multiplication X X
Division / /
Ordering < <

In the *—calculus, a—arithmetic is used on arguments and f—arithmetic is used on values.

The isomorphism from g—arithmetic to f—arithmetic is the unique function i(iota) that possesses the
following three properties.

1. 7is one-to-one.

2. 1is on A and onto B.

3. For any numbers u and v in A,

t(u) ¥, t(u=v) =1(u)=c(v),
L)Xt (), 1(ufv) = 1) ]1(0),0#0

u < v i(u)<i(v).

t (u+v)

1 (uXv)

It turns out that ¢ (x) = {a‘l (x)} for every number x in A and that for every integer n, we set ¢ (1) = #i [10].

In non-Newtonian metric space, the definitions of a—accumulation point of a set, a—convergence of a
sequence and a—bounded sequence are given in the studies which are numbered[6, 17]. The definitions of
*-limit and *-continuity of the function f : X ¢ R(N), — R(N); are introduced by Sagir and Erdogan[17].
Duyar and Erdogan introduced a—series and its a—convergence[9]. Non-Newtonian interior point and
non-Newtonian open set are defined by Binbasioglu and others[3].
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Let X be a vector space over the field R(N), and ||.||, be a function from X to R*(N), U {0} satisfying the
following non-Newtonian norm axioms. For x, y € X and A € R(N),,

(NN1) |lx]l, =0 © x =0,

(NN2) [IAXx]l, = Al X [}l

NN3) [, + o]

Then (X, ||.|l,) is said to be a non-Newtonian normed space.

The non-Newtonian sequence spaces S(N), {w (N), ¢ (N), co (N) and £, (N) over the non-Newtonian real
field R(N), are defined as following;:

S(N) = {x = (xx) : Yk € N, x; € R(N),}

()= {" = (x) € S(N) = “sup v, <+°°},
kelN

c(N) = {x = () € SON) : 3 € RN, 3 @ lim 1], = 0},

¢ (N) = {x = () € S(N) = “ lim e, = 0},

t, (N) = {x = (xx) € S(N) : akOZj,l | [l <-i-oo} (1<p<o).

The sequence spaces f (N), ¢ (N), ¢o (N) are non-Newtonian normed spaces with the non-Newtonian

norm ||.|l,c which is defined as ||x|l,.c = ¢sup |xl, and the sequence space ¢, (N) is a non-Newtonian
keN
1

normed space with the non-Newtonian norm ||.||,, which is defined as [|x]l, , = ( a kalﬁ’*)[p]ﬂ [6].

Let S be space of real number sequences, X and Y be two sequence spaces on R. Let function f : NxR —
R be given. Superposition operator Py is mapping from X into S which is in the form of Py (x) = (f (k, X)) -
If P¢(x) € Y for all x = (x;) € X, then it is said that Pf acts from X into Y and it is denoted by Py : X — Y.

The function f satisfies the following conditions:

(A1) f(k,0) =0forall k € N.

(A2) f(k,.) is continuous for all k € IN.

(A2") f(k,.) is bounded on every bounded subset of R for all k € IN.

If the function f (k, .) satisfies the condition (A;), then it satisfies the condition (Ay") [7, 20].

2. Results and Discussion

Definition 2.1. Let S(N) be space of non-Newtonian real number sequences, X(N) be a sequence space on R(N), and
Y(N) be a sequence space on R(N)g. Let function f : N X R(N), — R(N)g be given. Non-Newtonian superposition
operator NPy is mapping from X(N) into S(N) which is in the form of NPy (x) = (f (k, x¢))peq- If NPf(x) € Y(N) for
all x = (xx) € X(N), then it is said that NPy acts from X (N) into Y (N) and it is denoted by NPy : X (N) — Y (N).

The function f satisfies the following conditions:

(NA1) f(k,0) =0 for all k € N.

(NA,) f(k,.)is *-continuous for all k € IN.

(NAy') f(k,.) is B—bounded on every a—bounded subset of R(N), for all k € IN.

Let A = {A; : i € I} be a family of a—open sets at R(N),. If E C ‘UIAi for subset E C R(N),, then the family
1€

A s called an a—open cover of the set E. If Iy C I is a finite subset and E C U A;, then family Ay = (A;);y, is

i€ly
called a finite a—subcover of the set E.

If a finite @—subcover can be selected from every a—open cover of set E C IR(N),, then it is said that E is
a—compact set.

Theorem 2.2. (*-Heine Borel): Every a—closed interval [a, b] on R(N), is a—compact.
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Proof. Let A ={A; : i € I} be an a—open cover of a—closed interval [a,b]. Then it is written that [a, b] .UIAi
1€

and there exists an a—number 30 for every a € A; such that B, (a,7r) C A; since A, is a—open set. Since

a(x) efa,b]c iLeJIA,- =>Jdipel, a(x) €A, @ xeal(4,),
we have
[ @), a7 ()] a™ (4) .
1€

Hence the family {a~! (A;)} is an open cover of the closed interval [a‘l (a),a”? (b)]. By Heine-Borel theorem,
there exists finite subfamily {iy, iz, .., i,} such that

[ @, a7 ()] kL:Jla‘l (Ay).
Since

xe€ UIAi =>Jdigel,xeA,=a(x)ea(A)=al(x) e Ula_l (A)
1€ 1€

=S x€E a(Ua‘l (A,-))
iel

and

rea (Ula’l (A,-)) S ol Weva ()= Foel a”l W ea (Ay)

1€ 1€
= x €A, :erIAi,
1€
. s _ -1 -1 n 1 ] _ n )

we get [2,b] = a ([a (a),a (b)]) Ca (kL:Jloc (A,k)) kL:JlAik. O

Proposition 2.3. If the function f : N X R(N), — R(N)g is *-continuous, it is f—bounded on every a—bounded
subset of R(N),.

Proof. Let Ebean a—bounded subset of R(N),. Then there exista, b € R(N), such thatE C {a, b]. The function
f is *-continuous for every z € [a, b]. Then there exists an a—real number 6,30 such that | f)=f (z)| s <A for

p—real number A30 with |x-z|, <6,. Then, we have
|f W], A% @),

for every x € B, (z,6;). Additionally, there exist z1, 2y, ..., z,, € [a, b] such that [a,b] c kaJlBa (zk, 65,) since the

set [a, b] is a—compact and {a,b] c U B, (z,0;). Thus, we have |f (x)|ﬁ SAF |f (Zk)lﬁ for every x € B, (zk, 0z,),
I

z€la,b

where k = 1,2,...,n. If M = Pmax{ A+ |f (z)|, : 1 <k < ny, then |f (x)|, €M for all x € B, (2,65, ). We get
ﬁ ﬁ k g

(f (x)|ﬂ <M for all x € E since E C {a,b] kng“ (2, 04). O

Corollary 2.4. If the function f (k,.) satisfies the condition (NA,), then it satisfies the condition (NAy’).

Theorem 2.5. Let us suppose that f : N X R(N), — R(N)g satisfies the condition (NAy'). Then NPy : Lo (N) —
t1 (N) if and only if there exists a p—sequence (cx) € €1 (N) such that |f (k, t)|ﬁ Zcx for each a—number p>0 and k € N

whenever ||, <.
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Proof. Let x = (x) € € (N). Then, there exists an a—real number M>0 such that |x|, <M for all k € IN.
By assumption, there exists a f—sequence ¢, € £; (N) such that | f(k, xk)| P <ci for all k € IN. Then, we have

ﬁkz |f (k, Xk)|ﬁ < B kZ Ck = ||Ck||ﬁ,1 . Since NPf (x) = (f (k, Xk));:il , we obtain that NPf (x) e &1 (N) .
-1 =1
Conversely, let NPy : € (N) — €1 (N). For each a—number ;DO and for all k € IN, we define
A(p) = {t e RWN), : |t <}

and

B(k u) = ﬁsup{|f(k,t))ﬁ :teA(y)}.

We see that ( f &, t)| p <B (k, u) whenever [t|, <u. We shall show that (B(k, u));.; € {1 (N) for all a—real
number u>0. Suppose that there exists an a—number p130 such that (B (k, y1)),2; € €1 (N). Then, we have

g 2. B(k, p1) = +oo. So, there exists a sequence of positive integers g = 0 < n; < np < ... <n; < ... such that
k=1

8 Z B (k, u1) 31 for all i € N and there exists a p—number ¢; such that

k=n;_1+1

B Z B (k, u1) = (it =i-1) X351, (1)

k:n,;1+1

Let i € N be fixed. Since f satisfies (NA"), 0<B (k, 1) <¥oo for all k € N such that ;-1 + 1 < k < n;. From
the definition of B (k, ui1), there exists a (x¢) € A (u1) such that

|f (k, xk)|ﬁ SB(k, u1)~ei . (2)

From 1 and 2, we have

P i |f(k'xk)|ﬁ5ﬁ i B (k1) = i 31

k=‘rl,‘,1+1 k=n,’,1 +1 k=l’l,‘,1 +1

for all i € N. Thus, we have (f (k, x¢));=; € ¢1 (N). Since |xil, <u1, we get (xx) € € (N) for all k € N. This
contradicts the assumption. The proof is completed by putting B (k, u) = ¢ forallk e N. O

AGE!
Example 2.6. Let f : IN X R(N), — R(N)g be defined by f (k,t) = gTﬂﬁfor all k € IN and for all t € R(N),.
Since f is *—continuous, it is clear that f satisfies (NA2'). Let u,t € R(N), such that u>0 and |t|, Lu. Then
AGE ]
8k
(Bl i
8l
L) #1
g

t(w) 1
8ks

|f &), p

INA:

If we choose (cx) = ( ﬁ), we get NPy : Lo (N) — €1 (N) by Theorem 2.5.

The next theorem characterizes non-Newtonian superposition operator acting from cg (N) into £; (N).
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Theorem 2.7. Let us suppose that f : N X R(N), — R(N)g satisfies the condition (NAy"). Then yPy : co (N) —
€1 (N) if and only if there exist an a—number u>0 and a f—sequence (cx) € ¢; (N) such that |f (k, t)|5 <cy when |t|, <u
forall k € N.

Proof. Let x = (xx) € ¢o (N). Since ¢ ]}im x¢ = 0, there exists an integer i € N such that |x|, <y especially for

a—number p>0 when k > i. By assumption, there exists a ¢, € ¢; (N) such that | f(k, xk)| 5 ¢ for all k > i

Then
N
k=i

lexllg -

INA:

p 2 If oo,
k=i

INA:

Hence we get yPy (x) € €1 (N).
Conversely, let NPy : ¢o (N) — €1 (N). For each >0 and for all k € N, we define

A(p) = {t € RN : [ty <}

and
B(k,u) = ﬁsup{|f(k,t))ﬁ it eA(y)}.

Then, we see that | f(k, t)| 5 <B (k, 1) whenever [t|, <p. We shall show that there exists an a—number 1y >0 such

that (B (k, 1))y € {1 (N). Suppose that (B (k, 1)), & ¢1 (N) for all u>0. Then, we can write 4 ), B (k, 2(‘i)a) =
k=1
Foo for all i € N. Thus, there exists a sequence of positive integers ng = 0 < 1y <1, < ... <#n; < ... such that

ni L .
B Y B (k, 2(—1)[,) >1 for all i € IN and there exists a f—number ¢; such that

k=1 +1
ni
o Y Bk 270) = (i) e 3)
k=n;_1+1
Let i € N be fixed. Then, we have 0<B (k, 2(‘i)w) <Y oo forall k € N with n_1 + 1 < k < n;. From the definition
of B (k, 2(—:‘)“), there exists a (x;) € A (2(—:‘)“) such that

|f (e, x| 4 SB (k, 200) 2. (4)
By 3 and 4, we have
n; n; ) 1
o ), [Fhalse Y, BR2™)=, Y esi
k=n;_1+1 k=n;j_1+1 k=ni_1+1

for all i € N. Thus, we obtain that (f (k,x));.; ¢ €1 (N). For all k € N, since () € A(2<_i)(v) with
ni.1 +1 < k < n;, we have |xi|, <2 Hence ¢ %im x; = 0 and (x¢) € co (N). This contradicts the assumption.
Then, there exists an a—number p;>0 such that (B (k, u1));-, € ¢ (N). The proof is completed by putting
ck =B(k,up) forallke N. O

]L )%t (1) ﬂ)]ﬁ
Example 2.8. Let f : N X R(N), — R(N)g be defined by f (k,t) = 7 B for all k € IN and for all
t € R(N),. Since f is *—continuous, it is clear that f satisfies (NAy'). Let i, t € R(N), such that p = 1 and |t|, <1.
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Then
e (B)] % [o (8) 1]
), = ———8
@l x (el )
g o B
< gTﬁﬁ.

If we choose (cx) = (%ﬁ)for all k € N, then, we get NPy : co (N) — &1 (N) by Theorem 2.7.

Theorem 2.9. Let us suppose that f : N X R(N), — R(N)g satisfies the condition (NAy'). Then nPy : ¢(N) —
€1 (N) if and only if there exist an a—number u>0 and a p—sequence (cy) € €1 (N) such that ( f(k, t)| 5 <cr when
[t=z|, <p for all z € R(N), and for all k € N.

Proof. Let x = (x¢) € ¢ (N). Then, there exists a z € R(N), such that ¢ I}im xx =zand ¢ I}im (x¢~z) = 0. Thus,

there exists an integer i € N such that |xx—z|, <p especially for a—number >0 when k > i. By assumption,
there exists a ¢x € €1 (N) such that | f(k, xk)| s <¢y for all k > i. Then

Y
k=i

2 llels -

IN:

OMIAER]
k=i

A:

Hence, we obtain that yPy (x) € 1 (N).
Conversely, let NP : ¢ (N) — €1 (N). For each z € R(N),, y>0 and for all k € N, we define

Az, p) = {t € R(N)q : t-2l, <y}

and
B(k,u) = 5sup{|f(k,t))ﬁ it EA(z,y)}.

Then, we can see that | f(k, t)| p <B (k, 1) whenever |t=z|, <u. Thus, there exists an a—number p1>0 such that

(B (k, 1)) € €1 (N). Suppose that (B (k, 1));o; ¢ {1 (N) for all u>0. Then, we can write g Y, B (k, 2(‘%) = foo
k=1
for all i € IN. Hence, there exists a sequence of positive integers np = 0 < n; < np < ... < n; < ... such that

8 Z: B (k, 2(‘%) 31 for alli € N and there exists a f—number ¢; such that

k=n;_1+1

i
o Y Bk 270) = (i) xeS (5)
k=n;_1+1
Let i € N be fixed. Then, we have that 0<B (k, 2(‘%) <¥oo for all k € N with ;1 + 1 < k < n;. From the
definition of B (k, 2=0a ), there exists a (xx) € A (z, 2(‘i)a) such that

|f (e, x| ;5B (k, 200) ;. (6)
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From 5 and 6,
n; n; . n;
o ), [FEalse Y, BR2™)=, Y esi
k=n;_1+1 k=n;_1+1 k=n;_1+1

for all i € N. Thus, we obtain that (f (k, x));-, ¢ {1 (N). Since (x¢) € A (z, 2(‘1')") with n;_1 + 1 < k < n; for all
k € IN, we have that |x;~z|, <29, Hence ¢ %im X = z and (xx) € c(N). This contradicts the assumption.

Then there exists an a—number 130 such that (B (k, 41));.; € €1 (N). The proof is completed by putting
ck =B(k,u1) forallke N. O

| (6)]
Example 2.10. In geometric calculus, a = Iand = exp, let f : NXIR(N), — R(N)g be defined by f (k,t) = T ﬁﬁ

t

forall k € IN and for all t € R(N),. Then the function f : N X R — R* is in the form f (k,t) = e[3k]. It is clear
that f satisfies (NAy'). Let take any z > 0. Let t € R be such that uy = 1 and |t —z| < 1. Then |t| < 1 + |z| and since

|—t| < 1+ |Z|, it is obtained that
3k 3k
Y () (Lt
3k 3k . 3k
|f(k,xk)|ﬁ =exp4lnfe =¢ <e

1+ |z
3k

If we choose (cx) = | e forall k € IN, then, we get NPr : ¢ (N) — €1 (N) by Theorem 2.9.

Theorem 2.11. Let us suppose that f : N X R(N), — R(N)g satisfies the condition (NAy'). Then Py : £, (N) —

01 (N) ifand only if there exist a—numbers i, >0 and a f—sequence (cx) € {1 (N) such that |f (k, t)|ﬁ ZexFe(n) X (t)|Zﬁ

when |t|, <u for all k € N.

Proof. Let x = (x) € £, (N). Since , ), [xi[2* <400, then “%im [xgli* = 0. There exists an integer i € IN such
k=1 — 00

that Jx 5" <uPe especially for a—number u>0 when k > i. By assumption, there exists a ¢, € ¢; (N) such that

|f (kx| Zet e () e (B when for all k > i. Then

A D R O RS I AC Al
k=i k=i k=i

leellg 1 () S 1l ()l -

Hence, we obtain y Py (x) € {1 (N).
Conversely, let yPy : £, (N) — £; (N). For each a—numbers i, 17>O and for all k € IN, we define

INA:

IA:

Ak, u) = {t € RIN), : |} < *min {y, n(‘l)dkl_l (|f (k, xk)|ﬁ)}}
and
B(k,n,u) = ﬂsup{lf(k, Dl teAlkn, #)}-

Then, we can see that ‘ f(k, t)| 6 <B(k,n, 1) whenever t € A(k, 1, 1) and |#|, <n. Additionally, if t ¢ A (k,n, )
and [t|, <u, then, we have |f (k, t)|;; <i(u) X |L(t)|;ﬂ. Hence, we get |f (k, t))ﬁ <B(k,n, u) ¥ (u) X IL(t)IZB when
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|t|l, <u. We shall show there exist a—numbers w1,7;>0 such that (B (k, 11, #1))121 € €1 (N). Suppose that
(B(k,n, )y & €1 (N) for all 1, n>0. Then it is written that 4 ) B (k, Dla, 2(‘1')") = Yoo foralli € N. Thus there
k=1

nl . . - X3
exists a sequence of positive integers 110 = 0 <n; <np <..<n; <..suchthat g ) B (k, 21“/2(_1)11) 31 for
k:n,-_l +1
all i € IN and #; is the smallest integer that satisfies this condition. Otherwise, there exists a f—number ¢;

such that
i
p Z B (k, 21,20 ) = (i1, 11,y ) e S 7)
k=n;_1+1

Let i € N be fixed. Then, we have that 0<B (k, 21}./2(—1‘)“) <% oo for all k € N with n;_; + 1 < k < n;. From the
definition of B (k, Dla, 2(”%), there exists a (x;) € A (k, Dla, 2(’%) such that

|f (e, x| ;5B (k, 2%, 2000) ¢, (8)

From 7 and 8 we have

n

B i |f(k/xk)|ﬁ5ﬁ Z B(k,Qif',Q(‘i)a)Lﬁ i ;31

k=n;_1+1 k=ni,1 +1 k=l’l,‘,1 +1

for all i € N. Thus, we get (f (k, xx))ee; ¢ €1 (N). Since (xx) € A (k, 21'(",2("')«) with n,_1 +1 < k < n; for all
k € IN, we have

e €207 and. el €200 (If (&, xk>)ﬁ). ©)

ni .. . . e e
Additionally, 3 Y B (k, e, 2(")11) <1. From 9, it is obtained that

k=n;_1+1
ni ni=1
o Ykl = oY el
k=n,;1+1 k=n;_1+1
77,'—1
: (D¢l 19 (=a
<, Y Ay (|f(k,xk)|ﬁ)+2
k=n;j_1+1
ni—l
< ey Z B(k,zia,2(*i)a)_G_Z(*i)a
k=n;_1+1
.2
< —a
la

Hence we have that (x;) € £, (N). This contradicts the assumption. Then there exist a—numbers 1,7 30
such that (B (k, 1, yl));o:l € {1 (N). The proof is completed by putting cx = B (k, 1, 41) forallk e N. O

Example 2.12. Let f : N X R(N)y, — R(N)g be defined by f (k,t) = (gikﬁﬁ-'f- |L(t)|2’3)$'<|1(t)|ﬁ for all k € N and
t € R(N),. It is clear that f satisfies the condition (NAy'). Let i, t € R(N), such that u = 2 and |t|, <2. Then

|f .1, (%/ﬁn(t)l?)s&h(t)lﬁ

Bont
gTﬁﬁ+2X|l(f)|ﬁ .
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If we choose (cx) = (%ﬁ)for all k € N and n = 2, then, we obtain NPy : €, (N) — {1 (N) by Theorem 2.11.

Theorem 2.13. Non-Newtonian superposition operator NPy : € (N) — €1 (N) is *continuous on e (N) if and

only if the function f (k,.) is *-continuous R(N), for all k € IN.

Proof. Suppose that NPy is non-Newtonian continuous on £s (N). Let k € N, t; € R(N), and 30 be given.
(k) _

. . . . . . 1 =k
Since NPy is non-Newtonian continuous at toxe® € £, (N) with e, = { 0 Z L oWe have

|| NPf(2) = NPy (toke(k))“ﬁl ze (10)

when Ht4 <t0>'<e(k)>H <6 forall z = (z) € L (N). Let t € R(N), be such that |t-to|, <6. If y, is defined in the
a,00

formofynz{ é Z;i , (yn) € €s (N) and

ol = ||y (t0>'<e<k>)“m 6.
By 10, we get
|f (k, t) =f (k, t0)|ﬁ = ” NPr(y) = NPy (t‘o>'<e(k))||ﬁ’1 Le.

Hence, the function f (k, .) is *-continuous on R(N), for all k € IN.

Conversely, suppose that the function f (k,.) is *-continuous on R(N), for all k € IN. We shall
show that yPy is non-Newtonian continuous on £« (N). Let x = (x;) € { (N) and €30 be given. Since f
is *-continuous, it is clear that f satisfies (NAy"). Since NPy : o (N) — £1 (N), there exists a f—sequence
(cx) € €1 (N) such that

|f 1) 5 <o with [t <p (11)

for all >0 and k € N by Theorem 2.5. Since x € {« (N), there exists an a—number y>0 such that |x|, ﬁ%a
for all k € IN. Hence, by 11, there exists a f—sequence (cx) € £1 (N) such that

|f (1) 5 Sk (12)
for all k € N. Additionally, by 11, there exists a f—sequence (c;() € {1 (N) such that

|f (k, D], Zc; with 18], <y (13)

for all k € IN. Since (cx), (CZ) € {1 (N), there exists a N € IN such that

(e8] (e8]

L€ v €
’;ch<3—.ﬂ and /;ZCk<3—.‘B. (14)

k=N k=N

Since f (k, .) is *-continuous at xi, there exists an a—number 530 with 6 = *min {i, %a} such that

B whenever [t—x|, <6 (15)

£ 0= ), 20—
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forallk € {1,2,..,N -1} and t € R(N),. Let z = (z) € £« (N) be given with ||z—x||, o, <6. Then |zx—xk|, <6 for

allke Nand |f (k,zx) = f (k,xk)| <;ﬁ forallk €{1,2,..., N — 1} from 15. Then, we obtain
P8k (N=1)
N-1 .
o 2 1f (k20 = f (e o, p. (16)
k=1

Since |zl, < |zk+Xkly F Xkl <6+7§/a<7/, by 13, |f (k, zk)'ﬁ <c, for all k € N. Thus,we have that

s el £ 5) e (17)
pary k=N
. &
< 5-5 (18)
ﬁZ)f(k,Zk)LS < ﬁZC; (19)
k=N k=N
. €

from 12 and 14. Then, by 16, 17 and 19,

InPr@ =nPr@ll, = ) 1F Gz =f x|,
k=1

N-1 o
2 Y ez =f kol + 5 ) |f k20,
k=1 k=N
‘T'ﬁZ ‘f(k,Xk)L;
k=N
. E & &
< 3PraPrEP
= E&.

This completes the proof. [J

3. Concluding Remarks

The necessary and sufficient conditions for the characterization of non-Newtonian superposition oper-
ators have been formulated, as stated in Theorem 2.5, Theorem 2.7, Theorem 2.9 and Theorem 2.11. For the
future, we will formulate the necessary and sufficient conditions for f—boundedness and characterization
from ¢, (N) into £, (N) of non-Newtonian superposition operators.
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