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Available at: http://www.pmf.ni.ac.rs/filomat

From Graph Theory to Nano Topology

N. A. Arafaa, M. Shokryb, M. Hassanc

aDepartment of Physics and Engineering Mathematics, Faculty of Engineering,Kafrelsheikh University, Kafrelsheikh, Egypt
bDepartment of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta, Egypt

cHigh Institute Engineering and Technology, Kafrelsheikh, Egypt.

Abstract. The basic objective of this paper is to study and investigate some properties of nano-topological
space induced by a graph theory .We discuss a new measure generated by nano topology. In addition, we
apply the connections between a digraph theory and a nano topology in the urinary system as one medical
application.

1. Introduction

Pawalak [14] introduced mathematical rough set theory in the early 1980’s. The theory was based on the
discernibility of objects. Rough set theory provides systems designers with the ability to handle uncertainty.
If a concept is ‘not definable’ in a given knowledge base, rough sets can ‘approximate’ with respect to that
knowledge. From a medical point of view, the attribute-value boundaries are usually vague.

Graph theory can describe a lot of cases such that network, electrical circuits and information systems
as vertices and edges which representing the nature of the trend to be studied. One of the most important
issues in the process of blood flow and dependence of the diseases of some body organs to others.

The theory of nano topology introduced by Lellis Thivagar and Richard [9] which was defined in terms
of approximations and boundary region of a subset of a universe using an equivalence relation on it and
also defined nano closed sets, nano interior and nano closure operators. The elements of a nano topological
space are called nano open sets. It originates from the Greek word”Nanos” which means “Dwarf” in its
modern scientific sense, an order to magnitude-one billionth. The topology is named as nano topology so
because of its size since it has at most five elements.

In 2016, Lellis Thivagar et al. [7] defined the concept of nano topological space via graphs. In this paper,
the main concept based upon converting a map to graph, it must take different colors to illustrate regions
and countries for the vertices [5].So, the new methods of choosing the vertices to form nano topology may
be used to getting properties on colors of some maps. In [11] Generating and discussions topological graph
by three methods. On the other hand, it also performed comparisons and introduced independence and
dependence of two graphs through a new scale. In [16] Applied both graph and topology on some of
medical application such as the blood circulation in the human heart.
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Email addresses: NAArafa@eng.kfs.edu.eg (N. A. Arafa), mohnayle@yahoo.com (M. Shokry), monahassan636@yahoo.com (M.

Hassan)



N. A. Arafa et al. / Filomat 34:1 (2020), 1–17 2

The main contribution of the present work is that we provide a new method form to generate nano
topological induced by the vertices of the graph and study some properties on it. Throughout the paper,
we put forward the dependence scale by three comparisons. With the medical application the urinary
system in the human body, the inequality between the medical view and the results of the topological
structure on graphs investigated. In this paper, we introduce some topological concepts by using graph
theory as follows: In Section 2, we present a new method to construct nano topology induced by the graph
and improve the boundary region. In Section 3, we can put forward the new concept of independence of
two graphs by three methods. Finally, we offer practical application applied to previous studies and we
recognize its effectiveness on the essence of the healthy body (the urinary system).

2. Preliminaries

In this section, we link the applied application between rough set that convert information system to
graph theory. Some important properties studied in information system redact non important elements
from a set of object or condition, also obtained the core of set of condition. Any information system can
formed to graph, so deletion of edges and vertices in the graph corresponding in reduction in information
systems .Dependence of part of the graph corresponding to some condition on the other in the information
system [5, 7, 8, 14].

2.1. Pawlak’s Rough Sets and Nano Topology
Definition 2.1. [14] Let U be a nonempty finite set of objects called the universe and R be an equivalence relation on
U named as the indiscernibility relation. Then U is divided into disjoint equivalence classes .Elements belonging to
the same equivalence class are said to be indiscernible with one another. The pair (U,R) is said to be the approximation
space. Let X ⊆ U

(i) The lower approximation of X with respect to R is the set of all objects, which can be for certainly
classified as X with respect to R and it is denoted by LR(X), that is LR(X) = ∪x∈U{R(x) : R(x) ⊆ X},
where R(x) denotes the equivalence class determined by x ∈ X.

(ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified
as X with respect to R and it is denoted by HR(X), that is HR(X) = ∪x∈U{R(x) : R(x) ∩ X , φ}

(iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as
X nor as not- X with respect to R and it is denoted by BR(X), BR(X) = HR(X)\LR(X)

Proposition 2.2. [9]If (U,R) is an approximation space and X,Y ⊆ U, then

(i) LR(X) ⊆ X ⊆ HR(X)

(ii) LR(φ) = HR(φ) = φ and LR(U) = HR(U) = U

(iii) HR(X ∪ Y) = HR(X) ∪HR(Y)

(iv) HR(X ∩ Y) = HR(X) ∩HR(Y)

(v) LR(X ∪ Y) ⊇ LR(X) ∪ LR(Y)

(vi) LR(X ∩ Y) = LR(X) ∩ LR(Y)

(vii) LR(X) ⊆ LR(Y) and HR(X) ⊆ HR(Y) whenever X ⊆ Y

(viii) HR (Xc) = [LR(X)]c and LR (Xc) = [HR(X)]c

(ix) HR (HR(X)) = LR (HR(X)) = HR(X)

(x) LR (LR(X)) = HR (LR(X)) = LR(X)
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Study of intelligent systems characterized by in sufficient and incomplete information. Also, we con-
struct a topological structure based information system, called nano topology.

Definition 2.3. [8] Let U be nonempty finite universe of objects and R be an equivalence relation on U. Let
X ⊆ U, τR(X) =

{
U, φ,LR(X),HR(X),BR(X)

}
. Then τR(X) is topology on U, called as the nano topology with respect

to X Elements of the nano topology are known as the nano- open sets in U and the ordered pair (U, τR(X)) is called
the nano topological space. But [τR(X)]c is called as the dual nano topology of τR(X) and the elements of [τR(X)]c are
called as nano closed sets.

Definition 2.4. [9] If τR(X) is the nano topology on U with respect to X, then the set β = {U,LR(X),BR(X)} is the
basis for τR(X).

Definition 2.5. [9] If (U, τR(X)) is a nano topological space with respect to X where X ⊆ U and if A ⊆ U, then the
nano interior of A is defined as the union of all nano- open subsets of A and it is denoted by nInt(A). That is, nInt(A)
is the largest nano open subset of A .Also, The nano closure of A is defined as the intersection of all nano- closed sets
containing A and is denoted by nCl(A). That is, nCl(A) is the smallest nano closed set containing A.

Example 2.6. Let U = {a, b, c,d} with U/R = {{a}, {b}, {c,d}} and let X = {a, c} ⊆ U. Then one can deduce that,
LR(X) = {a},HR(X) = {a, c,d},BR(X) = {c,d} Then the nano topology is defined as τR(X) = {U, φ, {a}, {c, d}, {a, c, d}}

2.2. Bipartite Graphs

A graph is a pair G = (V,E) consisting of a set V of vertices and a set E of edges such that E ⊆ V ×V Two
vertices are adjacent if there is an edge that has them as ends. An isolated vertex is a vertex that is not an
end of any edge. An independent set is a set of pairwise nonadjacent vertices. A graph G is simple if every
edge links a unique pair of distinct vertices. Much of graph theory is concerned with the study of simple
graph [2].

In graph theory, there are two primary ways to represent a graph: adjacency matrix and adjacency list
[1]. The adjacency matrix of G is the |V| × |V| matrix M = (auv) where auv = 1 if (u,v) ∈ E and auv = 0
otherwise. The adjacency list is a linked list to vertices that are adjacent to it. The choice between the two
representations will be due to the information of graphs that will be input to the algorithm. For example,
if a graph has many vertices, an adjacency list would be best since it uses less spaces .While an adjacency
matrix would be best when a graph has many edges since there would be few empty entries.

A graph G = (V,E) is called bipartite if the vertex set V can be partitioned into two sets, X and Y, such
that each edge has one end in X and one end in Y . In other words, a graph G is bipartite if and only if the
vertex set V of G can be partitioned into two independent sets.

Bipartite graph play prominent roles in applications of graph theory [4,15] .For example, bipartite
graphs are useful for modeling matching problems, such as job matching problem. Bipartite graph also
play important roles in theoretical considerations. For instance, multigraphs can be described by bipartite
graphs. Therefore, it is important to characterize bipartite graphs and test bipartiteness in graph theory.

Lemma 2.7. [15] A graph is bipartite if and only if it contains no odd length cycle.

Theoretically, lemma2.7 provides a simple tool to check if a graph is bipartite. The above method may
need to find all the cycles of a graph. However, it is not an easy task [12, 18]. Traditionally, the Breadth
First Search algorithm [12] is used to check whether or not a graph is bipartite [1].

A directed graph is defined as an ordered triple G = (V,E, f ), where f is a function that maps each
element in E to an ordered pair of vertices in V. The ordered pairs of vertices are called directed edges, arcs
or arrows. An edge E = (i, j) is considered to have direction from i to j. Directed graphs are mostly suitable
for the representation of schemas describing biological pathways or procedures which show the sequential
interaction of elements at one or multiple time points and the flow of information throughout the network.
These are mainly metabolic, signal transduction or regulatory networks [6].
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3. Nano Topology on Graph Vertices and Scales

3.1. New View of Lower and Upper Approximation of Subgraphs

Improving information derived from uncertainty information, it is desirable for increasing the region
confirmed. Through this part, we provide a new method to construct a nano topological structure based
on the concept of view interior, closure and boundary of the graph.

Definition 3.1. [7] Let G = (V,E) be a graph and v ∈ V(G), then the neighbourhood of v defined as follows:
N(v) = {v} ∪ {u ∈ V(G) : −→uv ∈ E(G)}

Definition 3.2. Let G = (V,E) be a graph ,S be a subgraph of G and N(V(G)) be a neighbourhood of v in V. Then
the lower approximation operation defined as follows:

LN(V(S)) =
{
{vi} ∪

{
v j

}
: ei j ∈ E(S); vi, v j ∈ E(S)

}
.The upper approximation operation defined as follows

HN(V(S)) =
{{

vi, v j

}
: ei j ∈ E(S), vi, v j ∈ E(S)

}
∪ {vk : vk ∈ v(G − S) and eik ∈ E(G)} .

The boundary region defined as follows: BN(V(S)) = HN(V(S))\LN(V(S))

Remark 3.3. Let G = (V,E) be a graph, H is a subgraph of G. Then:

(i) LN(V(H)) ⊆ V(H) ⊆ UN(V(H))

(ii) LN(V(G)) = V(G) = UN(V(G)

(iii) If K is the empty graph, graph with no vertices, then LN(K) = φ = UN(K).

Proposition 3.4. Let G = (V,E) be a graph, H and K are two subgraphs of a graph G. Then:

(i) If V(H) ⊆ V(K) then ,LN(V(H)) ⊆ LN(V(K)) and UN(V(H)) ⊆ UN(V(K))

(ii) LN(V(H)) ∪ LN(V(K)) ⊆ LN(V(H) ∪ V(K))

(iii) LN(V(H) ∩ V(K)) = LN(V(H)) ∩ LN(V(K))

(iv) UN(V(H) ∪ V(K)) = UN(V(H)) ∪UN(V(K))

(v) UN(V(H) ∩ V(K)) ⊆ UN(V(H)) ∩UN(V(K))

Proof. From Proposition 2.2 that is obvious.

Proposition 3.5. Let G = (V,E) be a graph, H a subgraph of G. Then:

LN (LN(V(H)))⊆LN(V(H)) ⊆ UN (LN(V(H))) ⊆ V(H) ⊆ LN (UN(V(H))) ⊆ UN(V(H)) ⊆ UN (UN(V(H))) .

Proof. We will prove that UN (LN(V(H))) ⊆ V(H) ⊆ LN (UN(V(H))). Let v1 ∈ UN (LN(V(H))) . Implies, there
exist v2 ∈ LN(V(H)) such that v1v2 ∈ E(G) Therefore, v1 ∈ N(v) ⊆ V(H). Now, sincev1 ∈ V(H) then
N (v1) ⊆ UN(V(H)). Implies, v1 ∈ LN (UN(V(H)))

Proposition 3.6. Let G = (V,E) be a graph, H a subgraph of G. Then

(i) LN (UN (LN(V(H)))) = LN(V(H))

(ii) UN (LN (UN(V(H)))) = UN(V(H))
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Proof. Necessity, let v1 ∈ LN(V(H)), implies N (v1) ⊆ UN (LN(V(H))) . So v1 ∈ LN (UN (LN(V(H)))).
Sufficiency, from Proposition 3.6 we get UN (LN(V(H))) ⊆ V(H). Implies, LN (UN (LN(V(H)))) ⊆ UN(V(H))
Therefore, LN (UN (LN(V(H)))) = LN(V(H))
Necessity, form Proposition 3.6 we get UN (LN(V(H))) ⊆ V(H). Implies, UN (LN (UN(V)))) ⊆ UN(V(H))
Sufficiency, form Proposition 3.6 we get V(H) ⊆ LN (UN(V(H))) . Implies, UN(V(H)) ⊆ UN (LN (UN(V(H))))
Therefore, UN (LN (UN(V(H)))) = UN(V(H))

Definition 3.7. Let G be a graph, N(v) be a neighborhood of v in V and S be a subgraph of G, then

τN(V(S)) =
{
V(G), φ,LN(V(S)),HN(V(S)),BN(V(S))

}
forms a topology called the nano topology on V(G) with respect to V(S) .We call (V(G), τN(V(S))) as the nano
topological space induced by a graph.

Proposition 3.8. Let G = (V,E) be a graph and H and K are two subgraphs of a graph G, then the following properties
holds:

(i) IntN(G) ⊆ ClN(G)

(ii) If H ⊆ G then ln tN(H) ⊆ In tN(G) ⊆ V(G)

(iii) IntN(H ∩ K) = IntN(H) ∩ In tN(K)

(iv) IntN(H ∪ K) ⊃ IntN(H) ∪ In tN(K)

(v) If H ⊆ G then ClN(H) ⊂ V(G) ⊂ ClN(G)

(vi) ClN(H ∩ K) ⊂ ClN(H) ∩ ClN(K)

(vii) BdN(H) ⊇ BdN(G)

Proof. Obviously.

As an illustration, consider the following example.

Example 3.9. Consider the graph G = (V,E) as shown in Figure1. where V(G) = {v1, v2, v3, v4, v5, v6}

Figure 1:

(1) Let S be a subgraph of G such that V(S) = {v1, v2, v3, v4} then one can deduce that

LN(V(S)) = {v1, v2, v3, v4} ,

UN(V(S)) = {v1, v2, v3, v4, v5, v6}

BN(V(S)) = {v5, v6} ,

τN(V(S)) =
{
V(G), φ, {v1, v2, v3, v4} , {v5, v6}

}



N. A. Arafa et al. / Filomat 34:1 (2020), 1–17 6

(2) Let K be a subgraph of G such that V(K) = {v1, v2, v3, v6} then we can check that

LN(V(K)) = {v1, v2, v3, v6} ,

UN(V(K)) = {v1, v2, v3, v4, v5, v6}

BN(V(K)) = {v4, v5} ,

τN(V(K)) =
{
V(G), φ, {v1, v2, v3, v6} , {v4, v5}

}
3.2. Dependence scales of Subgraphs

The usefulness of any part of system realize how indispensable in it. We can identify this from scale
called dependence coefficient, comparisons between two maps or two electrical systems or the way to
connect water networks with each other.

Definition 3.10. If G1 = (V1,E1) ,G2 = (V2,E2) ), are simple graphs, then dependence scales of nano topology
induced by a graph, are denoted by DτN , is defined as:

D(1)τN (G1,G2) =

 |
IntτN (G1)∩ln tτN (G2)|

|ClτN (G1)∩ClτN (G2)|
, if ClτN (G1) ∩ ClτN (G2) , 0

0, otherwise.

D(2)
τN

(G1,G2) =

 |
In tτN (G1∩G2)|

|ClτN (G1∩G2)|
, if ClτN (G1 ∩ G2) , 0

0, otherwise.

D(3)τN (G1,G2) =

 |
ClτN IntτN (G1)∩ClτN In tN(G2)|

|ln tN ClN (G1)∩IntτN ClN(G2)|
, if IntτN ClN (G1) ∩ IntτN ClτN (G2) , 0

0, otherwise.

Example 3.11. Consider the graph G = (V,E) as shown in Figure 1. Let G = {v1, v2, v3, v4, v5, v6} , ln tN(H) =
{v1,v2,v3,v4} ,ClτN (H) = {v1, v2, v3, v4} IntTN (K) = {v1, v2, v3, v6} ,ClτN (K) = {v1, v2, v3, v6} , then one can deduce
that D(1)τN(H,K) = 3

6 = 0.5,D(2)τN(H,K) = 3
6 = 0.5,D(3)τN(H,K) = 6

6 = 1

From the previous example, we measure dependence scales by three ways.
Studying this scale on parts of networks, circuits, management system by two different topological struc-
tures (nano topology, relative topology). Relative topologies, we suppose throughout this subsection that
(X, τ) is a topological space and A ⊂ X.We let τA(τ) = {A∩U : U ∈ τ}One easily verifies that τA is a topology
for A which we call the relative topology for A.We say a subset β of A is open relative to A if β ∈ τA.We say
a subset β of A is closed relative to A if A ∼ B is relatively open [7]. A connected graph that not contains
any cycle called tree graph [9].

To present an important of dependence scales, we study and explain it on some types of graph as
follows:

(i) Dependence scales of topological structure of tree.

(ii) Dependence scales of topological structure on path.

(iii) Dependence scales of topological structure on bipartite graph.

Case I: Dependence scales of topological structure of tree.
Trees belong to the simplest class of graphs. Despite their simplicity, they have a rich structure.It provide a
range of useful applications as simple as a family tree to as complex as trees in data structures of computer
science.

Proposition 3.12. Let G be tree, Tn,Tm are subtree of tree, then the following properties hold:

(i) D(1)τA (Tn,Tm) ≤ D(1)τN (Tn,Tm)
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(ii) D(2)τA (Tn,Tm) ≥ D(2)τN (Tn,Tm)

(iii) D(3)
τA

(Tn,Tm) ≤ D(3)
τN

(Tn,Tm)

Proof. From Definition 3.10

Proposition 3.13. Let G be tree, Tn,Tm are subtree of tree then the following properties hold:

(i) D(1)
τA

(Tn,Tm) ≤ D(2)τA (Tn,Tm) ≤ D(3)
τA

(Tn,Tm)

(ii) D(1)τN (Tn,Tm) ≤ D(2)
τN

(Tn,Tm) ≤ D(3)
τN

(Tn,Tm)

Proof. Obviously.

Example 3.14. Consider the graph T(V.E) as shown in Figure 2. Let V(T) = {v1, v2, v3, v4, v5, v6, v7}

Figure 2:

N (v1) = {v1, v2, v3} ,N (v2) = {v1, v2, v4, v5} ,N (v3) = {v1, v2, v6, v7} ,N (v4) = {v2, v4} ,N (v5) = {v2, v5} ,N (v6) =
{v3, v6} ,N (v7) = {v3, v7} .
The induced topology by N(T) is

SβN(T) = {{v1, v2, v3} , {v1, v2, v4, v5} , {v1, v2, v6, v7} , {v2, v4} , {v2, v5} , {v3, v6} , {v3, v7}}

βN(G) =
{
ϕ, {v2} , {v3} , {v1, v3} , {v1, v2, v3} , {v1, v2, v5, v5} , {v6, v7} , {v2, v4} , {v2, v5} ,

{v3, v6} , {v3, v7}
}

τN(T) =
{
V(T), φ, {v2} , {v3} , {v1, v3} , {v2, v4} , {v3, v5} , {v3, v6} , {v3, v7} , {v1, v2, v3} ,

{v1, v2, v4, v5} , {v1, v2, v6, v7} , {v2, v3} , {v2, v3, v6} , {v2, v3, v7} , {v2, v3, v4} , {v2, v3, v5} ,

{v1, v2, v3, v4, v5} , {v1, v2, v3, v6, v7} , {v1, v2, v3, v4} , {v1, v2, v3, v5} , {v1, v3, v6} ,

{v1, v3, v7} , {v1, v2, v3, v6, v7} , {v1, v2, v3, v6} , {v1, v2, v3, v7} , {v2, v4, v5} , {v2, v3, v4, v6} ,

, {v2, v3, v4, v7} , {v1, v2, v4, v6, v7} , {v2, v3, v4, v5} , {v1, v2, v3, v4, v6, v7} ,

{v1, v2, v3, v4, v6} , {v1, v2, v3, v4, v7} , {v2, v3, v5, v6} , {v2, v3, v5, v7} , {v1, v2, v5, v6, v7} ,

{v2, v3, v5, v6} , {v1, v2, v3, v5, v6, v7} , {v1, v2, v3, v5, v6} , {v1, v2, v3, v5, v7} , {v3, v6, v7} ,

{v2, v3, v6, v7} , {v1, v2, v3, v4, v5, v6} , {v1, v3, v6, v7} , {v2, v3, v4, v5, v6} , {v2, v3, v4, v6, v7} ,

{v1, v2, v3, v4, v6, v7} , {v2, v3, v5, v6, v7} , {v1, v2, v3, v4, v5, v7} , {v2, v3, v4, v5, v7}
}

Let V (T1) = A = {v2, v4, v5}

τA (T1) =
{
V(T), φ, {v2} , {v2, v4} , {v2, v4, v5}

}
τc

A (T1) =
{
V(T), φ, {v1, v3, v6, v7} , {v1, v3, v5, v6, v7} , {v1, v3, v4, v5, v6, v7}

}
Let V (T2) = B = {v2, v4}

τA (T2) =
{
V(G), φ, {v2} , {v2, v4}

}
τc

A (T2) =
{
V(G), φ, {v1, v3, v5, v6, v7} , {v1, v3, v4, v5, v6, v7}

}
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IntτA (T1) = {v2, v4, v5} ,ClτA (T1) = V(T),ClτA IntτA (T1) = V(T), In tτA ClτA (T1) = V(T)

IntτA (T2) = V(G),ClτA (T2) = V(T),ClτA IntτA (T2) = V(T), In ttA ClτA (T2) = V(T)

Then we can deduce that dependence scales relative topological tree

D(1)τA (T1,T2) =
2
7
,D(2)τA (T1,T2) =

2
7
,D(3)τA (T1,T2) =

7
7

= 1

Determined dependance scales using nano topological graph
Let T1 be a subgraph of G such that V (T1) = {v2, v4, v5} then

LN (V (T1)) = {v2, v4, v5} ,

UN (V (T1)) = {v1, v2, v3, v4, v5} ,

BN (V (T1)) = {v1, v3}

τN (V (T1)) =
{
V(T), φ, {v2, v4, v5} , {v1, v3} , {v1, v2, v3, v4, v5}

}
τc

N (V (T1)) =
{
V(T), φ, {v2, v4, v5, v6, v7} , {v1, v3, v6, v7} , {v6, v7}

}
Let G2 be a subgraph of G such that V (T2) = {v2, v4} then

LN (V (T2)) = {v2, v4} ,

UN (V (T2)) = {v1, v2, v3, v4, v5} ,

BN (V (T2)) = {v1, v3, v5}

τN (V (T2)) =
{
V(T), φ, {v1, v3, v5} , {v2, v4} , {v1, v2, v3, v4, v5}

}
τc

N (V (T2)) =
{
V(T), φ, {v6, v7} , {v2, v4, v6, v7} , {v1, v3, v5, v6, v7}

}

IntτN (T1) = {v2, v4, v5} ,ClτN (T1) = {v2, v4, v5, v6, v7} ,ClτN IntτN (T1) = {v2, v4, v5, v6, v7} ,
In tτN ClτN (T1) = V(T)
In tτN (T2) = {v2, v4} , ,ClτN (T2) = {v2, v4, v6, v7} ,ClτN In tτN (T2) = {v2, v4, v6, v7} , In tN ClτN (T2) = V(T).
Then we can deduce that

D(1)τN (T1,T2) =
2
4
,D(2)τN (T1,T2) =

2
4
,D(3)

τN
(T1,T2) =

4
7

Case II: Dependence scales of topological structure on path graph.
A path graph or linear graph is a graph whose vertices can be listed in the order v1, v2, . . . , vn such that the
edges are {vi, vi+1} where i = 1, 2, . . . ,n − 1 . Paths are often important in their role as subgraphs of other
graphs, in which case they are called paths in that graph. A path is a particularly simple example of a tree,
and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths
is called a linear forest.

Proposition 3.15. Let P = (V,E) be path graph with n ≥ 1 vertices and Pn,Pm subgraph of P, then the following
properties hold:

(i) D(1)
τA

(Pn,Pm) ≤ D(1)
τN

(Pn,Pm)

(ii) D(2)
τA

(Pn,Pm) ≥ D(2)
τN

(Pn,Pm)

(iii) D(3)
τA

(Pn,Pm) ≤ D(3)
τN

(Pn,Pm)

Proof. Follows from the fact that In tτA ≥ IntτN
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Proposition 3.16. Let P = (V,E) be path graph with n ≥ 1 vertices and Pn,Pm subgraph of P, then the following
properties hold:

(i) D(1)
τA

(Pn,Pm) ≤ D(2)
τA

(Pn,Pm) ≤ D(3)
τA

(Pn,Pm)

(ii) D(1)τN (Pn,Pm) ≤ D(2)
τN

(Pn,Pm) ≤ D(3)τN (Pn,Pm)

Proof. Follows from Definition 3.10

Proposition 3.17. Let P = (V,E) be a path graph with length= n , then the following properties hold:

(i) |ClτN (boundary of vertices)| ≤ len1th(P)

(ii) If length(P) = 4, |ClτN (boundary of vertices)| =length(P)

Proof. Obviously.

Case III: Dependence scale of topological structure on bipartite graph.

Proposition 3.18. Let BP = (V,E) be bipartite graph with V = (A,B) and H subgraph of BP, then the following
properties hold:

(i) If H = {v1} ⊆ Athen LN(H) = φ and conversly then D(1,2,3)τN(H,BP) = 0

(ii) The elements of closure of {v1} ⊆ A are belong to set B

Proof. Obviously.

Proposition 3.19. Let BP = (V,E) be bipartite graph with V = (A,B) and H,K subgraphs of BP, | | is cardinality
measure. Then the following properties hold:

(i) If H = {v1} ⊆ A then LN(H) ≤ |ClN(H)| ≤ |B| and vice versa

(ii) If H = {v1} ,K = {v2} ⊆ A then |ClN(H) ∪ ClN(K)| ≤ |B| and vice versa.

(iii) From |E| ≤ C|V|2 . If H = {v1} ⊆ A then |E (ClN (v1))| ≤ C|B|2 and vice versa.

Proof. Directly from properties of bipartite graph.

4. Medical Application via Graph Theory

Understanding complex systems often require a bottom-up analysis towards a systems biology ap-
proach. The need to investigate a system, not only as individual components but also as a whole, emerges.
This can be done by examining the elementary constituents individually and then how these are connected.
The myriad components of a system and their interactions are best characterized as networks and they are
mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this
section, we demonstrate approaches, models and methods from the graph theory universe and we discuss
ways in which they can be used to reveal hidden properties and features of a network. This network
profiling combined with knowledge extraction will help us to better understand the biological significance
of the system.
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4.1. The Urinary System in Human Body[20]
The urinary system is a group of organs in the body concerned with filtering out excess fluid and other

substances from the bloodstream. The substances are filtered out from the body in the form of urine.

Figure 3: Urinary System in Human Body Figure 4: Structure of Urinary System

The major structures of the urinary system and functions are:

• Two kidneys extract wastes from the blood, balance body fluids, and form urine.

• Two ureters conduct urine from the kidneys to the urinary bladder.

• The urinary bladder serves as a reservoir for urine.

• The urethra conducts urine from the bladder to the outside of the body for elimination.

Medical tests play a prominent role in the life of rights to make sure that the retreat of diseases, perhaps
the most prominent of those analyzes macroeconomic analysis functions. It plays a key role in the eval-
uation of kidney functions and identify the diseases that cause an imbalance in the performance of those
functions or to predict the emergence of a satisfactory situation .

Creatinine is the producer of the waste are produced continuously during the collapse of normal mus-
cle. The total liquidation of creatinine from the blood in the urine, and does not absorb any part thereof.
Checking the proportion of creatinine in the blood, it is usually the total liquidation of creatinine from the
blood. If the high level of creatinine in the blood, it indicates a problem in the function of kidneys. Is the
measurement of creatinine is optimal to test kidney functions.
• Creatinine and Urea Blood levels of creatinine and urea reflects the function of the kidneys. Creatinine
and urea are two by- products that are normally removed from the blood by the kidney. When the kidney
function slows down, the blood levels of creatinine and urea increase. Normal value of serum creatinine is
0.9 to 1.4 mg/dl and normal value of blood urea nitrogen (BUN) is 20 to 40 mg/dl. Higher values suggest
damage to the kidneys. Creatinine level is a more reliable guide of kidney function as compared to BUN.
• ABG- Arterial Blood Gases Test (High ph in the blood). Any degree between 7.35-7.4. This condition is
safety region.
• Glumerular filtration rate GFR Test is an indication of the kidney’s condition and its role in renal physi-
ology.
(GFR) describes the flow rate of filtered fluid through the kidney 90-120mg/m.

4.2. Representing a Graph on the Urinary System in Human Body
Through the medical application, we can a new clarifying graph model. Generating two topological

graph structure on the application with discussing a new scale explaining the importance of each organ in



N. A. Arafa et al. / Filomat 34:1 (2020), 1–17 11

the system.
Considering every organ as vertices (Renal Artery as v1, Renal Vein as v2,Right Kidney as v3, Left Kidney
as v4, Bladder as v5). Considering the channels of liquid between the organs as edges.

Figure 5: Conversion of the urinary system to mathematical model

The vast majority of algorithms of interest operate on data. Therefore, there are particular ways of
organizing data that play a critical role in the design and analysis of algorithms. From that, we can say that
data structures are simply ways of organizing data[18]. Based on the mathematical model of urinary system
and the corresponding nano topological graph, we will detect and predict the diseases of the urinary by
the new algorithm. Similarity, detect the diseases using new algorithm induced by the relative topological
graph.
Algorithm of nano topology to detect diseases of the urinary system:
Step 1: By taking Definition 3.7 generates nano topological graph.
Step 2: From results of tests measuring serum, construct subgraphs from graph model.
Step 3: To follow diseases of the urinary system, we divide the urinary system to subsets

and study the corresponding relative topology.
Step 5: Check dependence scales by definition 3.10 is called safety numbers.
Step 6: From result, we can conclude verifies the medical results.

Initiate of the implementation of the statements
Step 1: N (v1) = {v1, v3, v4, v5} ,N (v2) = {v2} ,N (v3) = {v2, v3, v5} ,N (v4) = {v2, v4, v5}N (v5) = {v2, v5} . The
induced topology by N(G)

SβN(G) = {{v2} , {v2, v5} , {v2, v3, v5} , {v2, v4, v5} , {v1, v3, v4, v5}}

βN(G) =
{
φ, {v2} , {v5} , {v2, v5} , {v2, v4, v5} , {v2, v3, v5} , {v1, v3, v4, v5} , {v4, v5} , {v3, v5}

}
τN(G) =

{
V(G), φ, {v5} , {v5} , {v2, v5} , {v4, v5} , {v2, v5} , {v2, v4, v5} , {v3, v4, v5} , {v2, v3, v5} ,

{v1, v3, v4, v5} , {v2, v3, v4, v5}
}

Step 2: Study some tests on the urinary system, abnormal rate of the blood levels of creatinine and urea.
Step 3: Because of observed only with marked damage to functioning nephrons of right or left kidney. It
is a gift from God to us that we can live with only one kidney .
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Figure 6: The left kidney failure Figure 7: The right kidney failure

Case I) If the right kidney failure from Figure 6.Then

V (G1) = A = {v1, v2, v3, v5}

τA (G1) =
{
V(G), φ, {v2} , {v5} , {v2, v5} , {v3, v5} , {v2, v3, v5} , {v1, v3, v5}

}
Case II) If the left kidney failure from Figure 7. Then

V (G2) = B = {v1, v2, v4, v5}

τA (G2) =
{
V(G), φ, {v2} , {v5} , {v2, v5} , {v2, v5, v5} , {v1, v4, v5}

}

IntτN (G1) = {v1, v2, v3, v5} ,ClτN (G1) = V(G),ClrN IntτN (G1) = V(G), IntTN ClN (G1) = V(G)

ln tτN (G2) = {v1,v2,v4,v5} ,ClTN (G2) = V(G),ClTN lntTN (G2) = V(G), ln tτN ClTN (G2) = V(G)

Case III) Abnormal of ABG- Arterial Blood Gases Test

Figure 8: Increasing the toxicity in Renal Artery

The following tables observe all potential diseases of the urinary system from the point of the nano
topological graph. Also, it presents dependence (safety) scales by three methods.
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Table1: Nano Topological Graph
V(G) LN(V(G)) HN(V(G)) BN(V(G)) τN(V(G))Nano topologies
{v1} φ V(G) V(G) {V(G), φ}
{v2} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
{v3} φ V(G) V(G) {V(G), φ}
{v4} φ V(G) V(G) {V(G), φ}
{v5} φ V(G) V(G) {V(G), φ}
{v1, v2} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
{v1, v3} φ V(G) V(G) {V(G), φ}
{v1, v4} φ V(G) V(G) {V(G), φ}
{v1, v5} φ V(G) V(G) {V(G), φ}
{v2, v3} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
{v2, v4} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
{v2, v5} {v2, v5} V(G) {v1, v3, v4}

{
V(G), φ, {v2, v5} {v1, v3, v4}

}
{v3, v4} φ V(G) V(G) {V(G), φ}
{v3, v5} φ V(G) V(G) {V(G), φ}
{v4, v5} φ V(G) V(G) {V(G), φ}
[v1, v2, v3} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
[v1, v2, v4} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
[v1, v2, v5} {v2, v5} V(G) {v1, v3, v4}

{
V(G), φ, {v2, v5} {v1, v3, v4}

}
[v1, v3, v4} φ V(G) V(G) {V(G), φ}
[v1, v3, v5} φ V(G) V(G) {V(G), φ}
[v1, v4, v5} φ V(G) V(G) {V(G), φ}
[v2, v3, v4} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
[v2, v3, v5} {v2, v3, v5} V(G) {v1, v4}

{
V(G), φ, {v1, v4} , {v2, v3, v5}

}
[v2, v4, v5} [v2, v4, v5} V(G) {v1, v3}

{
V(G), φ, {v1, v3} , {v2, v4, v5}

}
[v3, v4, v5} φ V(G) V(G) {V(G), φ}
{v1, v2, v3, v4} (v2) V(G) {v1, v3, v4, v5}

{
V(G), φ, {v2} , {v1, v3, v4, v5}

}
{v1, v2, v3, v5} {v2, v3, v5} V(G) {v1, v4}

{
V(G), φ, {v1, v4} , {v2, v3, v5}

}
{v1, v2, v4, v5} {v2, v4, v5} V(G) {v1, v3}

{
V(G), φ, {v1, v3} , {v2, v4, v5}

}
{v1, v3, v4, v5} {v1, v3, v4, v5} V(G) {v2}

{
V(G), ϕ, {v2} {v1, v3, v4, v5}

}
{v2, v3, v4, v5} {v2, v3, v4, v5} V(G) {v1}

[
V(G), ϕ, {v1} , {v2, v3, v4, v5}

}
V(G) V(G) V(G) φ {V(G), φ}
φ φ φ φ {V(G), φ}
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Table 2: Dependence (safety) Scales of Nano Topological Graph.
V(G) D(1)τN (G1,G) D(2)τN (G1,G) D(3)

τN
(G1,G)

{v1} 0 0 0
{v2} 1/2 2/5 1/2
{v3} 0 0 0
{v4} 0 0 0
{v5} 0 0 0
{v1, v2} 1/5 1/5 1/5
{v1, v3} 0 0 0
{v1, v4} 0 0 0
{v1, v5} 0 0 0
{v2, v3} 1/5 1/5 1/5
{v2, v4} 1/5 1/5 1/5
{v2, v5} 2/5 2/5 2/5
{v3, v4} 0 0 0
{v3, v5} 0 0 0
{v4, v5} 0 0 0
[v1, v2, v3} 1/5 1/5 1/5
[v1, v2, v4} 1/5 1/5 1/5
[v1, v2, v5} 2/5 2/5 2/5
[v1, v3, v4} 0 0 0
[v1, v3, v5} 0 0 0
[v1, v4, v5} 0 0 0
[v2, v3, v4} 1/5 1/5 1/5
[v2, v3, v5} 3/5 3/5 3/5
[v2, v4, v5} 3/5 3/5 3/5
[v3, v4, v5} 0 0 0
{v1, v2, v3, v4} 1/5 1/5 1/5
{v1, v2, v3, v5} 3/5 3/5 3/5
{v1, v2, v4, v5} 3/5 3/5 3/5
{v1, v3, v4, v5} 4/5 4/5 4/5
{v2, v3, v4, v5} 4/5 4/5 4/5
V(G) 1 1 1
φ 0 0 0

The graph medical results from nano topological graph

(i) There symmetric between safety coefficient by the nano topological graph on urinary system based
on right kidney and left kidney .

D(1)τN ≥ 0.5, D(1)τN (G1,G) = 0.6,D(1)τN (G2,G) = 0.6

(ii) There is no effect between the failure of left or right kidney about another.

DτN ≤ 0.5

(iii) The urinary system cannot operate by singleton organ.

DτN = 0

(iv) There is not overlap between the renal Artery and renal Vein

DτN = 0

(v) Tumor eradication or malformation defect operation of the urinary system

DτN ≤ 0.5

.
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Determine safety coefficient µτN (G1,G) using a relative topological graph
Algorithm of relative topology to detect diseases of the urinary system:
Step 1: By taking Definition 3.7 of the neighbourhood of vertices, generate general topological graphs.
Step 2: From results of tests measuring serum, construct subgraphs from graph model.
Step 3: To follow diseases of the urinary system, we divide the urinary system to subsets and study the
corresponding relative topology.
Step 4: Check dependence scales by Definition 3.10 is called safety numbers.
Step 5: From result, we can conclude verifies the medical results.

Apply the five steps of the algorithm on the urinary system. We obtain measurements of the safety scales
in the following table.

Table 3: Safety Scales of Relative Topological Graph.
V(G) D(1)τN (G1,G) D(2)τN (G1,G) D(3)

τN
(G1,G)

{v1} 1/5 1 1/5
{v2} 1/5 1 1/5
{v3} 1/5 1 1/5
{v4} 1/5 1 1/5
{v5} 1/5 1 1/5
{v1, v2} 2/5 1 2/5
{v1, v3} 2/5 1 2/5
{v1, v4} 2/5 1 2/5
{v1, v5} 2/5 1 2/5
{v2, v3} 2/5 1 2/5
{v2, v4} 2/5 1 2/5
{v2, v5} 2/5 1 2/5
{v3, v4} 2/5 1 2/5
{v3, v5} 2/5 1 2/5
{v4, v5} 2/5 1 2/5
[v1, v2, v3} 3/5 1 3/5
[v1, v2, v4} 3/5 1 3/5
[v1, v2, v5} 3/5 1 3/5
[v1, v3, v4} 3/5 1 3/5
[v1, v3, v5} 3/5 1 3/5
[v1, v4, v5} 3/5 1 3/5
[v2, v3, v4} 3/5 1 3/5
[v2, v3, v5} 3/5 1 3/5
[v2, v4, v5} 3/5 1 3/5
[v3, v4, v5} 3/5 1 3/5
{v1, v2, v3, v4} 4/5 1 4/5
{v1, v2, v3, v5} 4/5 1 4/5
{v1, v2, v4, v5} 4/5 1 4/5
{v1, v3, v4, v5} 4/5 1 4/5
{v2, v3, v4, v5} 4/5 1 4/5
V(G) 1 1 1
φ 0 0 0

The graph medical results from relative topology induced by graph

(i) There symmetric between safety coefficient by the nano topological graph on urinary system based
on right kidney and left kidney . D(1)τA ≥ 0.5,D(1)

τA
(G1,G) = 0.8,D(1)

τA
(G2,G) = 0.8

(ii) There is no effect between the failure of left or right kidney about another.
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D(1)τA ≤ 0.5,D(1)τA (G1,G2) = 0.4

(iii) The urinary system cannot operate by singleton organ. DτN ≤ 0.2

(iv) There is not overlap between the renal Artery and renal Vein DτN ≤ 0.2

(v) Tumor eradication or malformation defect operation of the urinary system DτN ≤ 0.5 .

Reduce cost, time and effort from the most important goals, from the previous tables’ results; we can
obtain the core of important of medical tests expressive of the case of urinary system in Table 4. The new
scale is called (PRED) that indicates necessary medical tests to organs of the urinary system as a percentage
value.

Table 4: Medical tests corresponding analysis safety scales.

V(G) PRED%
{v1} 47%
{v2} 47%
{v3} 47%
{v4} 47%
{v5} 47%
{v1, v2} 60%
{v1, v3} 60%
{v1, v4} 60%
{v1, v5} 60%
{v2, v3} 60%
{v2, v4} 60%
{v2, v5} 60%
{v3, v4} 60%
{v3, v5} 60%
{v4, v5} 60%
[v1, v2, v3} 73%
[v1, v2, v4} 73%
[v1, v2, v5} 73%
[v1, v3, v4} 73%
[v1, v3, v5} 73%
[v1, v4, v5} 73%
[v2, v3, v4} 73%
[v2, v3, v5} 73%
[v2, v4, v5} 73%
[v3, v4, v5} 73%
{v1, v2, v3, v4} 87%
{v1, v2, v3, v5} 87%
{v1, v2, v4, v5} 87%
{v1, v3, v4, v5} 87%
{v2, v3, v4, v5} 87%
V(G) 100%
φ 0%

Conclusions
In the present application, we give a digraph of the urinary system .Results of application techniques of

the digraph, which we obtained are most useful in solving the liquid flow system in the urinary system. We



N. A. Arafa et al. / Filomat 34:1 (2020), 1–17 17

investigate nano topological properties in that we can deduce some diseases that affect the urinary system
in the human body.
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