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Abstract. The aim of this paper is to introduce a topological model of fractals. Self similar fractals will be
approached as inverse limit of finite one dimensional topological spaces with alpha continuous bonding
functions. The second approach is to investigate topological graphs in terms nano topological spaces for
Lellis Thivagar. From these approximations, the dynamics of Julia sets as a special type of self similar
fractals will be studied and some physical properties of fractals through their nano topological graphs will
be applied.

1. Introduction and Preliminaries

The Nobel prize 2016 in physics was gifted to three scientists in phase transitions and topological phases
of matter, this event has directed the attention to the need of more knowledge about the topology. Topology
is a branch of mathematics whose concepts exist not only in almost all branches of mathematics, but also
in many real life applications and concerned with all questions directly or indirectly related to continuity.
Many topologists suggested topological models in biology [10–12] and in medicine [28].

Graph theory [5, 6, 42] has recently emerged as a subject in its own right as well as being an important
mathematical tool an such diverse subjects as operational research, chemistry, sociology and genetics.

A self-similar set is a set can be decomposed into subsets which are similar copies of the whole set.
Cantor set, the Koch curve and the Sierpiński gasket are the first known examples of fractal sets. The basic
ideas leading to the analysis of self-similar sets were originated in 1946 by Moran [26], and developed by
Mandelbrot et al., in numerous papers [3, 23–25, 39, 40]and Hutchinson [13]. Hata [14] investigated the
topological structure of self-similar sets and analyzed many classical sets and curves through the notion of
self-similarity. El Atik [8] represented some of self-similar fractals by finite topological spaces. Barnsley;
Hutchinson et al., [4] established properties of a new type of fractal which has partial self similarity at
all scales. Julia sets of a quadratic polynomial has one critical point. Peitgen, Douady and Hubbard [33]
studied the polynomial of degree 2 in a complex variable, specifically, pc(z) = z2 + c for z and c in C. For any
such polynomial, the filled-in Julia set is defined as the sets of points z with bounded orbits under iteration.
The Julia set is the boundary of the filled-in Julia set and denoted by Jc. Julia set and filled-in Julia set are
connected if and only if the only critical point 0 has bounded orbit; otherwise, these sets coincide and are
a Cantor set. Kameyama [17] proved that the self-similar sets are homeomorphic to quotient spaces of the
symbolic dynamics with some equivalent relations. He studied the topology of the quotient spaces of the
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symbolic dynamics, which may not be homeomorphic to self-similar sets. Also, Kameyama [18], proved a
self-similar set K is homeomorphic to a Julia set if K is embedded in a sphere S2 such that the dynamics of
K can be extended to a postcritically finite branched covering. El Atik [7] et al., studied and investigated
some properties of finite Kolmogorov or T0 spaces with the existence of an ordered relation between their
minimal neighborhoods. Sokół[41] gave a sufficient condition for function to be α-starlike function and
some of its applications. Garcı́a-Arenas and Sánchez-Granero [2] introduced and studied the concept of
directed fractal structure which is a generalization of the concept of fractal structure. A subset A of X is
said to be α-open [29] if A ⊂ Int(Cl(Int(A))). The complement of an α-open set is called α-closed [29]. The
family of all α-open sets of X is denoted by α(X). The family of all α-open sets of X containing a point x ∈ X
is denoted by α(X, x). The intersection of all α-closed sets of X containing A is called α-closure [29] of A and
is denoted by αCl(A). Each open set in a general topological space is α-open and the converse may not be
true. An α-boundary [29] of a set U of a space X (abb. αB(U))is given by αB(U) = αCl(U) − αInt(U).

Definition 1.1. [20] Consider Figure 1. Let U be a nonempty finite set of objects called the universe and R be an

Figure 1: A rough set [34]

equivalence relation on U named the indiscernibility relation. Elements belonging to the same equivalence class are
said to be indiscernible with one another. The pair (U,R) is said to be the approximation space. Let X ⊆ U,

(i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with
respect to R and it is denoted by LR(X), that is LR(X) =

⋃
x∈U
{R(x) : R(x) ⊆ X} where R(x) denotes the equivalence

class determined by x.

(ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with
respect to R and it is denoted by HR(X), that is HR(X) =

⋃
x∈U
{R(x) : R(x) ∩ X , φ}.

(iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as −X nor as
not X with respect to R and it is denoted by BR(X), that is BR(X) = HR(X) − LR(X).

According to Pawlak
′

s definition, X is called a rough set if HR(X) , LR(X).

Definition 1.2. [21] Let G(V,E) be a graph, S be a subgraph of G and R(v) be a relation of v in V. Then we define

(i) The lower approximation operation induced by a graph as follows: L : P(V(G))→ P(V(G)) such that LR(V(S)) =⋃
v∈V(G)

{v : R(v) ⊆ V(S)};
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(ii) The upper approximation operation induced by a graph as follows: H : P(V(G))→ P(V(G)) such that HR(V(S)) =⋃
v∈V(G)

{R(v) : R(v) ∩ V(S) , φ};

(iii) The boundary region is defines as BR(V(S)) = HR(V(S)) − LR(V(S)).

Definition 1.3. [21] Let G(V,E) be a graph, R(v) be a relation of v in V and S be a subgraph of G. Then τR(V(S)) =
{V(G), φ,LR(V(S)),HR(V(S)),BR(V(S))} forms a topology on V(G) called a nano topology on V(G) with respect to
V(S).

We call (V(G), τR(V(S))) a nano topological graph space.

Definition 1.4. [27] A connected topological space is said to be tree-like if no two of its points are conjugated, that
is, if for any two distinct points in the space there is a third point which separates them.

Definition 1.5. [16] A space X is said to be a connected ordered topological space (abb. COTS ) if for every three
point subset Y in X, there exists y ∈ Y such that Y meets two connected component of X − {y}.

Definition 1.6. [8] If {a} = f0(A) ∩ f1(A), there are ik, jk ∈ {0, 1} with

{a} = f0 · fi1 · · · fin (A) ∩ f1 · f j1 · · · f jn (A) for n = 1, 2, · · ·

Then two addresses 0α̂ = 0i1 · · · in · · · and 1β̂ = 1 j1 · · · jn · · · of a point a determine the topology of A. For Julia sets,
we get α̂ = β̂, and so α̂ is said to be a kneading sequence.

Definition 1.7. [8] For a compact(not necessarily completely regular) space X. If ∼ is an equivalence relation on X
defined by x ∼ y iff f (x) = f (y)for every f ∈ C(X) where C(X) is the set of all continuous functions from X onto
R. The quotient space X/ ∼ is called a completely regular modification of X.

Definition 1.8. [30] A function f : X→ Y is called:

(i) α-continuous if f−1(U) ∈ α(X), for each open set U in Y.

(ii) α-open if f (V) ∈ α(Y), for each open set V in X.

(iii) α-closed if f (V) ∈ αC(Y), for each closed set V in X.

In the present work, we suggest a new model of fractals in view point of finite topological spaces by
the concept of α-open sets which introduced by Njastad [29] and the definition of Lellis Thivagar for nano
topological spaces [20]. We study upper(lower) α-continuous multifunctions and its relation with other
types of continuous multifunctions. Also, we focus on a self-similar set A with A = A0 ∪ A1 and A0 ∩ A1
is a singleton, specially, for a tree-like [19, 27] set as a special case fractal structure in the sense that it does
not topological circles and give an algorithm which approach these types of fractals in the plane. Also, we
represent Julia sets Jc as the inverse limit of an inverse system which consist of one dimensional topological
spaces α(Xn) with bonding α-continuous functions. We study the dynamics of α(Xn) of Julia sets through
upper(lower) α-continuous multifunctions from each space into itself.

2. One dimensional of α-Kolmogorov spaces

Definition 2.1. [30] A space X is said to be:

(i) α-Kolmogorov or αT0 if for every x, y ∈ X, x , y, there exist an α-open set U of X such that either x ∈ U, y < U
or x < U, y ∈ U.

(ii) αT2 if for every x, y ∈ X, x , y, there exist two disjoint α-open sets U and V of X such that x ∈ U, y ∈ V.

Definition 2.2. In a space X, the minimal α-neighborhood (α-nbd) of a point x ∈ X is given by Ux =
⋂
{Ux : x ∈

Ux ∈ α(X)}. In other words, α-nbd of a point x is the smallest α-open set containing x.
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A topological space α(X) of any space X is defined by the minimal α-nbd of α-closed points.

Lemma 2.3. Any α-Kolmogorov space contains at least one singular point.

Proof. Suppose that Y is an α-Kolmogorov space with finite number of points less that k and contains a
singular point. Then by induction, we find a space X with k + 1 of points. Now, let x, y ∈ X, x , y. Set
Y = Ux and y < Ux. Then by hypothesis, Ux is α-subspace of X and contain a singular point. Therefore X is
also contain a singular point.

Proposition 2.4. Every α-open set in an α-Kolmogorov space X contains at least one singular point.

Proof. Let U ∈ α(X). Then U is an α-open subspace of X. By Lemma 2.3, we find an isolated point x of U in
U. Since U an α-open in X, then x is an isolated point in X.

Lemma 2.5. Let X = C ∪ V in which every {c} ⊆ C is an α-closed and {v} ⊆ V is an α-open. Then each of C and V
is an α-discrete subspace of X.

Proof. Since C is an α-closed subspace of X, then each {c} ⊆ C is an α-closed point in C. Then C − {c} is an
α-closed subset in C and so {c} is an α-open point in C. Therefore C is an α-discrete subspace. Also, V is an
α-discrete in the same manner.

Theorem 2.6. In an α-Kolmogorov space X, the following are equivalent:
(i) dim X ≤ 1,
(ii) Every singleton in X is either α-open or α-closed.

Proof. (i)⇒ (ii): Let X be an α-Kolmogorov space. By Lemma 2.3, X has an α-open point say x0 and
Ux0 = {x0}. Since dim X ≤ 1, then dimαB({x0}) = 0 and so αB({x0}) is α-discrete. Then each y0 ∈ αB({x0}) is an
α-closed in αB({x0}). Since αB({x0}) is an α-closed in X, then {y0} is so in X. set X′

= X−αCl({x0}) which is an
α-open α-Kolmogorov subspace of X. By Proposition 2.4, X′

has an α-open point set say Ux1 = {x1}which is
also α-open in X. Also dimαB({x1}) = 0, then αB({x1}) is an α-discrete. So each y1 ∈ αB({x1}) is an α-closed
in αB({x1}). Then {y1} is an α-closed in X. Put X′′

= X − αCl({x0, x1}). By continue, in the same manner, we
prove that each singleton is either α-open or α-closed.
(ii)⇒ (i): suppose that each singleton in X is either α-open or α-closed. By Lemma 2.5, we have an α-discrete
subspaces of X. So the dimension of each subspace is less than 1 and hence dim X ≤ 1.

3. Mutual relationships

Definition 3.1. [31] A multifunction F : X→ Y is said to be:

(i) upper α-irresolute at a point x ∈ X if for each α-open set V containing F(x), there exists U ∈ α(X, x) such that
F(U) ⊆ V.

(ii) lower α-irresolute at a point x ∈ X if for each α-open set V such that F(x) ∩ V , φ, there exists U ∈ α(X, x) such
that F(u) ∩ V , φ for every u ∈ U.

(iii) upper (lower) α-irresolute if F has this property at every point of X.

Definition 3.2. A multifunction F : X→ Y is said to be:

(i) upper precontinuous [35] (resp. upper quasi continuous [36] , upper α-continuous [37] , upper β-continuous
[[38], [37]) if for each x ∈ X and each open set V of Y containing F(x), there exists U ∈ PO(X, x) (resp. U ∈ SO(X, x),
U ∈ α(X, x), U ∈ β(X, x)) such that F(U) ⊆ V.

(ii) lower precontinuous (resp. lower quasi continuous, lower α-continuous , lower β-continuous) if for each x ∈ X
and each open set V of Y such that F(x) ∩ V , φ, there exists U ∈ PO(X, x) (resp. U ∈ SO(X, x), U ∈ α(X, x),
U ∈ β(X, x)) such that F(u) ∩ V , φ for every u ∈ U.
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(iii) upper (lower) precontinuous (resp. upper (lower) quasi continuous , upper (lower) α-continuous , upper (lower)
β-continuous) if it has this property at each point of X.

Remark 3.3. For a multifunction F : X→ Y the following implication hold:

upper quasi-cont.
↗ ↘

upper α-irresolute −→ upper α-cont. upper β-cont.
↘ ↗

upper precont.

The following examples show that none of these implications are reversible.

Example 3.4. Let X = {a, b, c, d} and Y = {1, 2, 3}. Define a topology τ = {φ,X, {a}, {b, c}, {a, b, c} on X and a topology
σ = {φ,Y, {1}} on Y. A multifunction F : (X, τ)→ (Y, σ) is defined as follows:

F(x) =


{1}, if x = a;
Y, if x = b or c;
{1, 2}, if x = d.

It can be easily observed that F is upper α-continuous. But F is not upper α-irresolute, since {1, 2} ∈ σα while
F+({1, 2}) = {a, b} is not α-open in (X, τ).

Example 3.5. Let X = {a, b, c} and Y = {y : y ∈ {0,±1,±2}}. Define a topology τ = {φ,X, {b}, {c}, {b, c} on X and a
topology σ = {φ,Y, {0, 1,−1,−2}} on Y. Consider the following multifunction F : (X, τ)→ (Y, σ)

F(x) =


{0}, if x = a;
{1,−1}, if x = b;
{2,−2}, if x = c.

Then F is upper β-continuous, but not upper precontinuous, since {0, 1,−1,−2} ∈ σ but F+({0, 1,−1,−2}) = {a, b} is
not preopen in (X, τ).

Example 3.6. Let X and Y be as in Example 3.5 with two topologiesτ = {φ,X, {b, c} on X andσ = {φ,Y, {1}, {−1}, {1,−1}}
on Y. Define a multifunction F : (X, τ)→ (Y, σ) as shown in Example 3.5. one can deduce that F is upper precontin-
uous but not upper α-continuous.

Example 3.7. Let X, Y and τ be as in Example 3.4. Define a topology σ = {φ,Y, {1, 3}} on Y. A multifunction
F : (X, τ) → (Y, σ) is defined as follows: F(a) = {1}, F(b) = {3}, F(c) = {2, 3} and F(d) = {1, 2}. Then F is upper
β-continuous but not upper quasi-continuous because {1, 3} ∈ σ but F+({1, 3}) = {a, b} is not open in (X, τ).

4. Finite topological structures of fractals

We consider each point of the topology α(J) of Julia sets as in figure 2 as a kneading sequence σ̂
which is the set of all 0 − 1 sequences and represents in the following definition. we focus on a self-similar
set A with A = A0 ∪ A1 and A0 ∩ A1 is a singleton, specially, for a tree-like [19, 27] set in the sense that it
does not topological circles.

Definition 4.1. Let X = {0, 1}N be a space of kneading sequences with product topology. Each piece of Julia sets Jc
can approximate by an α-subspace Xn = {0, 1}n ∪ (

⋃
k<n
{0, 1}k × {a}), where a denote to a connecting α-closed point,

such that

(i) Each u ∈ {0, 1}n is an α-open point.
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Figure 2: Some types of Julia sets[8]

(ii) Each v = v1v2 · · · vka ∈
⋃
k<n
{0, 1}k × {a} is an α- closed point with a minimal α-nbd. With a bonding α-continuous

function hn : Xn → Xn−1 such that

h(u1u2....un) = u1u2....un−1

h(v1v2....vma) = v1v2....vm, m = n − 1

h(v1v2....vma) = v1v2....vma, m < n − 1

The one dimensional finite topological spaces α(Xi), for each i, can be illustrated as a structure similar
to trees consisting of α-open and α-closed points.

Definition 4.2. An α-continuous function f : X→ Y is an α-monotone if f−1({y}) is connected for each y ∈ Y.

Theorem 4.3. Let Jc be a tree-like connected Julia set, for each complex number c ∈ C. Then for each n ∈ N, there
exists a space Xn with an α-continuous function hn : Xn+1 → Xn defined by
(i) hn(xn+1) = xn;
(ii) Each of hn is an α-monotone relative Xn+1.
for each point xn ∈ Xn, and the inverse limit lim

←
(Xn, hn) is a completely regular modification to J.

Proof. By Definition 4.1, set Xn = {0, 1}n ∪ (
⋃
j<n
{0, 1} j × {a}). Now for each n ∈ N, the base of a topology

α(Xn) is given by the smallest α-nbd of each point xn ∈ Xn. The inverse limit lim
←

Xn is the set of all strings

ũ = u1u2 · · · which correspond to either va = hk(va) = hkhk+1(va) or u1 = h2(u1u2) = h3(u1u2u3) = · · · . Then
the topology of lim

←
Xn is generated by the base of α-open sets Ũ which is given by all α-open sets U ⊂ Xk,

for k = 1, 2, 3, · · · with minimal α-nbd. So Ũ consists of the all strings with initial part in U and there is
some strings ũ and va which can not be separated by two disjoint α-open sets in the sense of αT2 spaces. By
Definition 1.7, these points can be identified. Therefore the points in lim

←
Xn having the same α-nbd mapped

onto the same piece in Jc. Hence Jc is a completely regular modification of lim
←

Xn.

Now, we study the dynamics α-Kolmogorov spaces and give some examples.
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Definition 4.4. [22] A function f : X→ Y is called:

(i) α-irresolute if f−1(U) ∈ α(X), for each α-open set U in Y.

(ii) Pre-α-open if f (V) ∈ α(Y), for each α-open set V in X.

(iii) Pre-α-closed if f (V) ∈ αC(Y), for each α-closed set V in X.

Definition 4.5. Two spaces X and Y are α-homeomorphic if there exists a bijective, α-irresolute and pre-α-open
function f : X→ Y.

Each homeomorphic space is α-homeomorphic, but the converse may not be true, in general.

Example 4.6. Let X = {1, 2, 3, 4, 5, 6, 7, 8} and Y = {a, b, c, d, x, y, e, f } be spaces of vertices in trees G1 and G2,
respectively, such that de1{3} = de1{4} = de1{x} = de1{4} = 3. The function h : X → Y is an α-homeomorphism
when either h(3) = x, h(4) = y or h(3) = y, h(4) = x. While there is no α-homeomorphism f : R2

−→ R2 such that
f (V) = V where V is the set of vertices. Because of the embedding of trees G1 and G2 in R2 by connecting vertices 1,
7 in G1 and a, f in G2, respectively. So the topological structure for the two planar graphs will be denote by X and
X′ . Therefore there is no α-homeomorphism f : R2

−→ R2 with f (X) = X′ .

Lemma 4.7. [27] Every tree-like Julia sets can be embedded into R2.

Corollary 4.8. Any two graphs are α-homeomorphic if they obtained from the same graph by adding vertices of degree
2 into edges.

Theorem 4.9. Each tree can be α-homeomorphic to some subset in the plane.

Proof. Let G be an arbitrary tree with n vertices. It is clear that any vertex is a point in the plane and any
edge can be view as an arc in the plane. Now by induction assume that every tree with k vertices can be
embed into a subset of the plane and T is a tree with k + 1 vertices. There exists at least a vertex vk with
de1(vk) = 1 and its edge is vkvk+1. By the connectedness of T and each path must be finish with such vertex
after at most k proceeds, then we remove the edge vkvk+1 from T. By assumption, the remainder of T is a
subset in the plane. We add an edge, by Corollary 4.8, it does not affect on graph’s topology which is a
subset in R2.

In the following, we approximate the quadratic tree-like Julia sets using the concepts of upper (lower)
α-continuous multifunctions.

Theorem 4.10. For a topology α(Xn) of Julia sets Xn. If a multifunction F : Xn → Xn defined by:
(i) F(u1u2 · · · un) = {u2 · · · un0, u2 · · · una, u2 · · · un1},
(ii) F(v1v2 · · · vka) = v2v3 · · · vka for k < n.
Then F is lower α-continuous multifunction.

Proof. Let each α-open point u = u1u2 · · · un has a minimal α-nbd Uu = {u}. Then F(u) = {u′0,u′a,u′1}
where u′ = u2 · · · un. Then for each x ∈ F(u), F(u) ∩ {x} , φ. Therefore F(u) ∩ Ux , φ. Now for every
va ∈ Xn where v = v1 · · · vk, Uva = {v0σ( j), va, v1σ( j)

} and F(Uva) = F(v0σ( j)) ∪ F(va) ∪ F(v1σ( j)). Therefore
F(Uv∗) = {v′0σ( j)0, v′0σ( j)a, v′0σ( j)1, va, v′1σ( j)0, v′1σ( j)a, v′1a( j)1} where v′ = v2 · · · vk. Since y ∈ F(Uva), then
F(Uva)∩{y} , φ. So F(Uva)∩Uy , φ for each y ∈ F(Uva). This can also be proved for only a ∈ Xn. Therefore
F is lower α-continuous multifunction.

A multifunction in Theorem 4.10 is not upperα-continuous. This can be shown in the following example.

Example 4.11. Consider an α-closed point a ∈ X3. Let F : X3 → X3 define as in Theorem 4.10. Since F(a) = {001},
U001 = {001} and Ua = {000, a, 100}, then F(Ua) = F(000) ∪ F(a) ∪ F(100) = {000, 00a, 001}. Therefore F(Ua) 1⋃
y∈F(a)

Uy. Then F is not upper α-continuous.
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5. An approach of fractals by nano topological graphs

A tree is a simple graph that contain no cycles [42]. In any tree a vertex v is said to be an end
vertex if degv = 1. The edge which has an end vertex is called a branch. Self similar sets consist of pieces
which are similar to each other and similar to the whole structure. Each of which is a compact metric
space, say A, consists of pieces Ai which are similar to each other. In other words, A = A1 ∪ A2 ∪ · · · ∪ Am
assigned with a homeomorphism functions fi : A → Ai = fi(A). This setting leads to smaller and smaller
parts, so the same maps can be applied on these smaller pieces by other homeomorphism functions
f j : Ai → f j(Ai) = f j fi(Ai) = A ji, where Ai ⊆ A and A ji ⊆ A j, where i, j ∈ N. In Figures 2, there are
some fractal structures with one connected point. In the following, we write the following algorithm
which explain how to create nano topological graphs (Gn, τR(V(Gn−1))) on self similar fractals through the
definition of Lellis Thivagar.

Example 5.1. If we take V(S0) = {v1} in G1, then R(v1) = {v1, v2} and R(v2) = {v1, v2}. So LR(V(S0)) = φ,
HR(V(S0)) = V(G1) and BR(V(S1)) = V(G1). Therefore a nano topology induced by a subgraph S0 is τR(V(S0)) =
{φ,V(G1)}. It is clear that a subgraph S0 is homomorphic to any graph with only one vertex.

Example 5.2. If we take V(S1) = {v11, v21} in G2, then R(v12) = {v12, v11}, R(v11) = {v12, v11, v21}, R(v21) =
{v11, v21, v22} and R(v22) = {v21, v22}. So LR(V(S1)) = φ, HR(V(S1)) = V(G2) and BR(V(S1)) = V(G2). Therefore a
nano topology induced by a subgraph S1 is τR(V(S1)) = {φ,V(G2)}. It is clear that a subgraph S1 is homomorphic to
G1

Observation 5.3. From Example 5.1 and Example 5.2, we observe that the induced topologies coincide with a Pawlak
rough topology.

Example 5.4. If we take V(S2) = {v121, v111, v211, v212} in G2, then R(v111) = {v111, v121, v112, v212}, R(v211) =
{v111, v211, v221, v212}, R(v121) = {v122, v121, v111}, R(v221) = {v211, v221, v222}, R(v122) = {v121, v122}, R(v112) =
{v112, v111}, R(v212) = {v212, v211} and R(v222) = {v211, v222}. So LR(V(S2)) = {v212, v211}, HR(V(S2)) = V(G3)
and BR(V(S2)) = {v111, v112, v121, v122, v221, v222}. Therefore the a nano topology induced by a subgraph S2 is
τR(V(S2)) = {φ,V(G3), {v212, v211},
{v111, v112, v121, v122, v221, v222}}. It is clear that a subgraph S2 is homomorphic to G3.

6. Dynamics of Julia sets via its topological structures

The branching structure of Julia sets studied by Penrose in [32]. El-Atik [8] defined a prefix tree T
of some kneading sequences as σ̂1 = 00100011, σ̂2 = 010011 and σ̂3 = 01000011 and gave their topological
space structures. There is an orientation preserving at a definite point in the topology of σ1 and σ3. While
there is no an orientation preserving at a definite point of σ2.

The rotation system is used for embedding of each approximation space Gn in the plane. This depend
on the branching point in each approximation of degree more than 3. The following proposition give the
necessary condition for existence of rotation system at arbitrary approximation.

Definition 6.1. A surjective function f : X → Y between two compact spaces X and Y is said to be local α-
homeomorphism if for each x ∈ X, there exists an α-open α-nbd U of x such that f (U) is α-open α-nbd.

Definition 6.2. Given a kneading sequence σ̂ = σ1σ2 · · · , a prefix tree T of σ̂ with a vertex set N = {1, 2, 3, · · · }
construct as: Each point n is the initial point of an edge. If σn+1 = 1, the endpoint of the edge is n + 1. If σn+1 = 0,
set the maximal k such that σ̂|k = σn+1 · · · σn+k and n + k + 1 will be the endpoint of the edge.

Proposition 6.3. If Gn−1 has a rotation system, then there exists a unique rotation system on Gn.
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Proof. Let n be the number of elements in Gn−1. Define a relation R∗ on Gn−1 by sR∗t if and only if isR∗it for
every s, t ∈ Gn−1 and i ∈ {0, 1}. Consider Gn = Gn0 ∪ Gn1, Gn0 ∩ Gn1 = {a} such that Gn0 = {0s : s ∈ Gn−1} and
Gn1 = {1s : s ∈ Gn−1}. This means Gn consists of two similar copies of Gn−1 such that Gn1 is the rotation of Gn0 at {a}
with degree π. Therefore Gn has 2n elements. Describe the rotation system of Gn as follows: begin at α̂ in Gn−1 and
walk through the edges in counter-clockwise sense. If the point α̂ is of degree 2, then the walk will be in the direction
of the endpoint. Secondly, begin with 0α̂ in Gn in the same counter-clockwise sense of Gn−1. Define σ : Gn −→ Gn−1
by σ(is) = s for s ∈ Gn and i ∈ {0, 1}. Since σ(0α̂) = σ(1α̂) = σ(a) = α̂, then σ−1({0α̂, a, 1α̂}) = α̂. When we reach to
0α̂ in the first part of Gn, we begin at 1α̂ in the second part. Continue in the same manner is completely define the
rotation system of Gn.

Theorem 6.4. The number of disjoint branches at σi in a prefix tree T, for some i, is the degree of σ̂ in some topological
space α(Xi) structure.

Proof. Let σ̂ = σ1σ2 · · · σn be a kneading sequence. Consider at σi, there exists k disjoint branches. By
the branching structure, σ̂i = σ1σ2 · · · σi ∈ {0, 1}i ⊆ Xi which is an α-open point in Xi. The α-closed
points which are the α-nbds of σ̂i can be defined from the definition of α-nbds in each α(Xi), the point
σ1σ2 · · · σi−1a corresponds to the edge which starts with i. The other α-nbds has the form σ1σ2 · · · σ j−1a if
σ j+1σ j+2 · · · σi = σ1σ2 · · · σi− j each of these α-nbds correspond to the edge which starts in j and goes to some
k ≥ i + 1.

Theorem 6.5. Let F : α1(Xi)→ α2(Xi), for some approximation structure Xi, of Julia sets Jc. Then all embeddings of
F can not be extended to an α-continuous function. More generally, F can not be extended to local α-homeomorphism
in R2.

Proof. By Lemma 6.8, each Julia set has embedding in the plane, we embed it by the kneading sequence σ̂
which consist of branching points. By Definition 6.2, we generate the set of α-nbds of a branching point 0σ̂.
By similarity of embeddings, the degree of the branches of 1σ̂ has the same of branches 0σ̂. We assume that
the rotation of α-nbds of all branching points is in anticlockwise sense. In a prefix tree T, we begin with a
branching point 0σ̂|k in some α(Xk). By recursion, we continue to generate more branching points and their
α-nbds until having one embedding with 0σ̂|l of degree ≤ 2 such that l < k. Now it is enough to investigate
a local α-homeomorphism function F : α1(Xi)→ α2(Xi) for these embeddings. Let F0 and F1 are the inverse
branches of the doubling map or quadratic map for Julia sets and Eσ̂| j be a subspace of α(X j) which consists
of a branching point and its α-nbd. Define a function h = Fσ1σ2···σk = Fσ1 Fσ2 · · · Fσk from a branch Eσ̂|k onto a
branch Eσ̂|l define by h(x) = σ1σ2 · · · σkx for each x ∈ Eσ̂|k . h is an α-homeomorphism, since the branching
points of the same degree. Then h is a graph α-homeomorphism. We extend h : R2

−→ R2 such that
h(Eσ̂|k ) = Eσ̂|l . There are two cases: Case 1, if the rotation system of images of Eσ̂|k have the same sense, then
h is still α-homeomorphism. Case 2, if images have reverse direction, then h is not aα-homeomorphism. In
case 2, F is not local α-homeomorphism. Therefore in Case 2, the kneading sequence can not be realized a
tree-like Julia set in the plane.

We use our given approximations to some physical properties of fractal structures via topological
properties of its topological space induced by its graph. In the following, we give some characterizations
simple graphs, specially, in trees.

Proposition 6.6. (i) The homomorphism between two trees maps endpoints into endpoints and each branching point
of degree ≥ 3 into branching point of the same degree.

(ii) The degree of a vertex x for graphs is preserved under a homomorphism.

Proof. (i) Let f : G1 −→ G2 be a homomorphism function between graphs G1 and G2. Then for every a point
x ∈ G1 and a relation R( f (x)) of f (x). By continuity condition, there exists a relation R(x) of x in G1 such that
f (R(x)) ⊂ R( f (x)). Then R(x) and f (R(x)) are homomorphic subgraphs. Also, R(x) − {x} and f (R(x)) − { f (x)}
are also homomorphic subgraphs and each of them have the same number of components. That means x
and f (x) have the same number of degree.
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(ii) Let f : G1 −→ G2 be a homeomorphism and for x ∈ G1. Since f is homomorphism, then there exists R(x)
with f (R(x)) = R( f (x)). Then R(x) and f (R(x)) are homeomorphic subgraphs. That means R(x) − {x} and
f (R(x))−{ f (x)} are also homomorphic subgraphs and so they must have the same number of components.

From Proposition 6.6, one can deduce that any two graphs are homomorphic if they can made
isomorphic by inserting (contracting) vertices of degree 2 into edges. Also, if any graph has no vertices of
degree 2, then the homomorphic is a graph isomorphic.

Proposition 6.7. Every tree is homomorphic to a subspace of the topology on R2.

Proof. We use the mathematical induction to prove this theorem. Let T be a tree with n vertices. The
theorem is true for n = 1, for any vertex is a point in the plane. Also, at n = 2 give an edge which can be
marked as an arc in the plane. Assume that every tree with k vertices embed in a subspace of R2. Now
consider a tree T with k + 1 vertices. Since there exists at least a vertex vk of degree 1 with an edge vkvk+1.
This vertex must be exist since every tree is connected and each path must finish with such vertex after at
most k steps. We remove the edge vkvk+1 from T. By assumption, the remaining is a subspace ofR2. Finally,
we add an edge to this embedding does not change the graph’s topology and give also a subspace of R2.
Therefore the theorem is true for all k ∈N.

Lemma 6.8. Every self similar structure J can be embedded intoR2 through a nano topological spaces which defined
on it.

Proof. It is straightforward through Propositions 6.6 and 6.7.

Theorem 6.9. Let (V(Gn−1), τR(V(Gn−1))) be a nano topological graph induced by a subgraph of V(Gn). Let F :
V(Gn) → V(Gn). Then all embeddings of F can be extended to a continuous function. More generally, F can not be
extended to a local homomorphism.

Proof. By Lemma 6.8, each self similar structure J can be embedded into R2 through a nano topological
spaces trees which consist of branching points. We evaluate the set of relations of each branch point and
assume the rotation of all branching points is in anticlockwise sense. Begin with a branching point ,say,
vi1i2i3···in in some Gn generated by algorithm in Section 7. By recursion, we continue to generate more
branching points and their relations until having one embedding with vi1i2i3···im in Gn−1 of degree ≤ 2 such
that m < n. This means there are two similar subspaces in Gn, each of them is homeomorphic to Gn−1. Each
topology on Gn is topologically homeomorphic with a nano topological graph of V(Gn). Now, we find a
local homeomorphism function F : V(Gn) → V(Gn), for these approximation structures Gn. Let F1(vi1i2i3···ik )
and F2(vi1i2i3···i j ), where i1i2i3 · · · i j ∈

∏
{1, 2} j are the inverse branches of the doubling map and R(vi1i2i3···i j ) is a

subspace of V(G j). Define a function h = Fi1i2···ik = Fi1 ◦ Fi2 ◦ · · · ◦ Fik from a branch R(vi1i2i3···ik ) onto a branch
R(vi1i2i3···il ) defined by h(x) = Fi1i2···ik = Fi1 ◦ Fi2 ◦ · · · ◦ Fik (x) for each x ∈ R(vi1i2i3···ik ). If the rotation of images of
R(vi1i2i3···ik ) have the same sense, then h is still homeomorphism. Otherwise, if images have reverse direction,
then h is not a homeomorphism.

Corollary 6.10. Gi and G j are isomorphic graphs if and only if their nano topological graphs of V(Gi) and V(G j) are
homeomorphism for i, j ∈N.

Proof. Clearly by Theorem 6.9

Observation 6.11. We observe that if a self similar fractal has a rotation, then fourth approximation of G4 will be G5
as shown in Figure 3. It is clear that G4 is homomorphic to G5.
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Figure 3: Graph G5

7. Algorithm

Figure 4: Graph G1, G2 and G3

For finite topological spaces and nano topological spaces, we introduce the following algorithm.
Step (1): Represent a fractal part A1 with a vertex v1 and part A2 with v2. The connected point between A1
and A2 will be represented by an edge v1v2. This can be shown in a Figure 4, where V(G1) = {v1, v2} =

⋃
{vi :

i ∈ {1, 2}} and |E(G1)| = |V(G1)| − 1 = 1.
Step (2): Part A1 is divided into similar parts A11 and A12. We represent A11 with v11 and A12 with v12.
Connect between v11 and v12 by a vertex v11v12. By a similar way, represent A21 and A22 with vertices v21
and v22 and connect them by v21v22 as shown in Figure 4, where V(G2) = {v11, v12, v21, v22} =

⋃
{vi1i2 : i1i2 ∈∏

{1, 2}2} and |E(G2)| = |V(G2)| − 1 = 3.
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Figure 5: Graph G4

Step (3): Part A11 is divided into similar parts A111 and A112. We represent A111 with v111 and A112 with
v112. Connect between v111 and v112 by a vertex v111v112. Also, represent A121 and A122 with vertices
v121 and v122 and connect them by v121v122. By a similar way, part A21 is divided into similar parts A211
and A212. We represent A211 with v211 and A212 with v212. Connect between v211 and v212 by a vertex
v211v212. Also, represent A221 and A222 with vertices v221 and v222 and connect them by v221v222. This can be
shown in Figure 4, where V(G3) = {v111, v112, v121, v122, v211, v212, v221, v222} =

⋃
{vi1i2i3 : i1i2i3 ∈

∏
{1, 2}3} and

|E(G3)| = |V(G3)| − 1 = 23
− 1 = 7.

Step (4): In the same manner, we represent Figure 5, where V(G4) = {v1111, v1112, v1121,
v1122, v1211, v1212, v1221, v1222, v2111, v2112, v2121, v2122, v2211, v2212, v2221, v2222} =

⋃
{vi1i2i3i4 : i1i2i3i4 ∈

∏
{1, 2}4} and

|E(G4)| = |V(G3)| − 1 = 24
− 1 = 17, and so on.

Step (5): By n procedures, we have V(Gn) =
⋃
{vi1i2i3···in : i1i2i3 · · · in ∈

∏
{1, 2}n} with |E(Gn)| = |V(Gn)| − 1 =

2n
− 1.

8. Conclusion

The field of mathematical science which goes under the name of topology is concerned with all
questions directly or indirectly related to continuity. Therefore, the theory of graphs and topological spaces
became the most important mathematical subjects. On the other hand, a topology plays a significant rule
in quantum physics, high energy physics and superstring theory [9] . Thus, we study the approximations
of self-similar sets by a relation which may have possible applications in quantum physics and superstring
theory. Moreover, the concepts proposed in this paper can be extended in fuzzy topological structures
[1] and thus one can get a more affirmative solution in decision making problems [15, 43–47] in real life
solutions.
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