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Abstract. In this paper, we introduce and characterize a core regular double MS-algebra. A construction
of a core regular double MS-algebra M?! via a de Morgan algebra M is given. A one to one correspondence
between the class of de Morgan algebras and the class of core regular double MS-algebras is obtained.
According to such construction we investigate many properties of a core regular double MS-algebra deal
with subalgebras, homomorphisms, atoms and dual atoms. A description of an atomic core regular double
MS-algebra is established. Also, we discuss some properties of a complete core regular double MS-algebra.

1. Introduction

De Morgan Stone algebra (briefly MS-algebra) is introduced by T.S. Blyth and J.C. Varlet [8] as a common
properties of a de Morgan algebra and a Stone algebra. T.S. Blyth and ].C. Varlet [9] described the lattice
of all subclasses of the class MS of all MS-algebras which contains twenty subclasses, for examples, the
class S of all Stone algebras and the class M of all de Morgan algebras. Also, T.S. Blyth and J.C. Varlet
[10] presented the class DMS of all double MS-algebras which containing the class DS of all double Stone
algebras. ].C. Varlet [18] studied a regular variety of type (2,2,1,1,0,0). T. Katrifiak [16] presented a con-
struction of a regular double Stone algebra from a suitable Boolean algebra B and a filter F of B. S.D. Comer
[14] proved the existence and uniqueness of perfect extensions of a regular double stone algebra using
Katrinak's construction [16]. Recently, A. Badawy [2] introduced and characterized the class of double
MS-algebras satisfying the generalized complement property ( briefly DMS/-algebras) which includes the
class of double MS-algebras satisfying the complement property presented by L. Congwen [13]. Also, A.
Badawy [2] gave a construction of DMS%-algebras generalizing the construction due to T. Katriniak [11] for
regular double Stone algebras. Many important properties of MS-algebras and double MS-algebras deal
with homomorphisms, subalgebras, filters and congruences are studied in [3-7].

In this paper, we introduce and characterize a subclass of the class of double MS%“-algebras which is
called core regular double MS-algebras. In fact the class CRDMS of all core regular double MS-algebras
includes the class CRDS of all core regular double Stone algebras due to R. Kumar et al. [17]. A construction
of a core regular double MS-algebra from a suitable de Morgan algebra is obtained. Also, we construct
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a core regular double Stone algebra from a suitable Boolean algebra. We observe that there is a one to
one correspondence between the class M of all de Morgan algebras and the class CRDMS. We give many
applications of such construction. Characterizations of homomorphisms and subalgebras of core regular
double MS-algebras are obtained. We describe atoms and dual atoms of a core regular double MS-algebra by
using this construction. A description of atomic core regular double MS-algebras is given. We observe that
the completeness of a core regular double MS-algebra L depends on only the completeness of its skeleton
L°°, in particular the last two applications of our construction are to discuss complete homomorphisms and
complete subalgebras of core regular double MS-algebras.

2. Preliminaries

In this section, we recall certain definitions and important results. We refer the reader to the references
[5], [71, [8], [9], [10],[11],[12] and [15] as a guide references.

Definition 2.1. [15] An algebra (L; A, V) of type (2,2) is said to be a lattice if for every a,b,c € L, it satisfies the
following properties:

(1) ana=a,aVa=a (Idempotency),

(2) anb=bAa,aVvb=>bVa(Commutativity),

(B) (anbyrnc=an(bAc),@vb)Vc=aV(bV c)(Associativity),

(4) anb)yva=a,(aVb)Aa=a (Absorption).

If a lattice L has a greatest element (denoted by 1) and a smallest element (denoted by 0), then L is said to
be a bounded lattice.

Definition 2.2. [15] A lattice L is called distributive if it satisfies either of the following equivalent distributive laws:
(1) an(bvecy=(@Ab)Vv@anc),

(2) av(bAac)y=@Vb)A@Ve), foralla,b,celL.

Definition 2.3. [11] A de Morgan algebra is an algebra (L; Vv, A,~,0,1) of type (2,2,1,0,0) where (L; V, A,0,1) is a
bounded distributive lattice and ~ the unary operation of involution satisfies:

E:x,(xVy):i/\y,(x/\y):Evy.

Definition 2.4. [12] A Stone algebra is a universal algebra (L; v, A,*,0,1) of type (2,2,1,0,0), where (L; V, A,0,1)
is a bounded distributive lattice and the unary operation * of pseudocomplementation has the properties that
xAa=0ex<aandx”Vx =1

Definition 2.5. [16] A dual Stone algebra is a universal algebra (L;V,A,*,0,1) of type (2,2,1,0,0), where
(L; v, A,0,1) is a bounded distributive lattice and the unary operation * of dual pseudocomplementation has the
properties that x Va =1 & x > a* and x** Ax* = 0.

Definition 2.6. [16] A double Stone algebra is an algebra (L;* ,* ) such that (L;*) is a Stone algebra, (L;*) is a dual
Stone algebra and for every x € L, x** = x™, x™ = x**.

Definition 2.7. [8] An MS-algebra is an algebra (L; v, A,°,0,1) of type (2,2,1,0,0) where (L; V, A, 0, 1) is a bounded
distributive lattice and the unary operation ° satisfies:

x<x°,(xAY)°’=x°Vy,1°=0.

Definition 2.8. [10] A dual MS-algebra is an algebra (L; Vv, A,*,0,1) of type (2,2,1,0,0) where (L;V,A,0,1) is a
bounded distributive lattice and the unary operation * satisfies:
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xzx, (At =xtvyt, 0t =1

Definition 2.9. [10] A double MS-algebra is an algebra (L;°,* ) such that (L;°) is an MS-algebra, (L;*) is a dual
MS-algebra, and the unary operations °,* are linked by the identities x*° = x** and x°* = x°°, for all x € L.

The class DS of all double Stone algebras is a subclass of the class DMS of all double MS-algebras and
is characterized by the identities x Ax° = 0and x vV x* = 1.

Throughout this paper, we adopt the following rules of computation in a double MS-algebra (L; vV, A,° ,*,0,1)
(see [8] and [10]).

Theorem 2.10. For any two elements a, b of a double MS-algebra L, we have

(1) 0°°=0and 1°° =1 (1g) 0** =0and 1%+ =1,
(2) a<b=0b<a° (24) a<b=b*<at,

(3) a°*° =a° (3y) at*t =a",

(4) a°°°° = g°° (4d) gttt = a++/

(5) (@avb)y =a°Ab° (54) (@aVvb)t=at Ab*,

(6) (aVDb)y° =a"°Vvb>° (64) (@aVDb)yr* =a*ttvb*t,
(7) (@aADb)° =a Ab*° (74) (@AD)*T =att ADTH.

Theorem 2.11. [9] Let (L; V, A,°,*,0,1) be a double MS-algebra. Then

(DL” ={xeLl:x=x*}={xel:x=x"*}={xeL:x°=x"}isade Morgan subalgebra of L,

(2)LY ={xVvx°:xelL}={xeL:x>x°}isan increasing subset (dual order ideal) of L,

(3) LV ={ava®:ael®}=L"°NL".

Definition 2.12. [15] Let L = (L; V, A,0,1) and Ly = (L1; V, A, 0,1) be bounded lattices. A mapping f : L — Ly is
called a {0, 1}-lattice homomorphism if f(0) =0, f(1) =1, f(x Vy) = f(x) V f(y) and f(x A y) = f(x) A f(y) for all

x,y € L. A {0, 1}-lattice homomorphism is called an isomorphism if f is a bijective mapping, in this case, we call L
and Ly are isomorphic lattices and write L = L.

3. Core regular double MS-algebras

In this section, we introduce the concept of core regular double MS-algebras that includes the class of
core regular double Stone algebras.

Definition 3.1. [2] A double MS-algebra (L;°,* ) is said to be a regular double MS-algebra (or simply RDMS-algebra)
ifforanyx,y € L, x° = y° and x* = y* imply x = y.

A relation @} defined by (x, y) € ®f © x° = y° and x* = y* is a congruence relation on a double MS-algebra
L.

A characterization of regular double MS-algebra in terms of the congruence @7 is given in the following.
Theorem 3.2. Let L be a double MS-algebra. Then L is regular if and only if ®} = w, where w = {(x,x) : x € L}.

Proof. Let L be a regular double MS-algebra. Let (x,y) € ®f. Then x° = y° and x* = y* and hence by
regularity of L, we get x = y. Therefore @7 = w. Conversely, let &} = w. Let x° = y° and x* = y*. Then
(x,y) € w. So, x = y and L is regular. [

Definition 3.3. [1] Let L be an MS-algebra. An element d € L is called a dense element of L if d° = 0, the set of all
dense elements of L is denoted by D(L).
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Definition 3.4. Let L be a dual MS-algebra. An element d € L is called a dual dense element of L if d* =1, the set
of all dual dense elements of L is denoted by D(L).

Lemma 3.5. Let L be a double MS-algebra. Then D(L) is a filter of L and D(L) is an ideal of L.

Proof. 1t is observed that D(L) is a filter of L (see [1]). Let x,y € D(L). Then x* = y* = 1. So by Theorem
210(5,), xVy)" =x* Ay* =1. Hence x V y € D(L). Now, letz < x € D(L) and z € L. Then by Theorem
2.10(23), z* = x* = 1. This means that z € D(L). Therefore D(L) is an ideal of L. O

Definition 3.6. Let L be a double MS-algebra. The set K(L) = D(L) N D(L) is called the core of L.

Definition 3.7. A core regular double MS-algebra (briefly CRDMS-algebras) is a reqular double MS-algebra with
non empty core, that is, K(L) # ¢.

Lemma 3.8. Let L be a CRDMS-algebra. Then |[K(L)| = 1.

Proof. Let ki, ky € K(L). Then k! = k3 = 0 and ki = k; = 1. Hence by regularity of L, k; = k. Therefore K(L)
has a unique element and hence [K(L)| =1.

We will denote the core element by k. The core element k will play an important role throughout the rest of
this paper.

Figure 1: L is a bounded distributive lattice.

Example 3.9.

(1) Every core regular double Stone algebra is a core reqular double MS-algebra.

(2) Consider the bounded distributive lattice L in Figure 1. Define unary operations °,* on L by
k=x=y"=1°=0,d°=b"=b,c°=0a°=4,1°=0

and

kr=ct=d*=0"=1y"=b"=bx* =a"=4a,1"=0.

It is observed that (L;°,*) is a reqular double MS-algebra. We have D(L) = {k,x,y,1}, D(L) = {0,c,d, k} and
K(L) = {k}. Then L represents a CRDMS-algebra. Since ¢® Ac # 0 and c* V ¢ # 1 then L is not a double Stone
algebra. This example deduce that CRDS & CRDMS.

(3) Consider the bounded distributive lattice L in Figure 1. Define unary operations °,* on L by
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¥=1°=0,k=y"=cd°=0°=0a,a°=b,c°=y,1°=0
and
dr=0"=1Lkt=ct=yx"=a"=bb"=a,y"=c, 1" =0.

Clearly (L;° ,*) is a reqular double MS-algebra. We have D(L) = {x, 1}, D(L) = {0,d} and K(L) = ¢. Then L is not a
core regular double MS-algebra.

Definition 3.10. [2] A double MS-algebra L is called a double MS-algebra satisfying the generalized complement
property (or briefly DMS9°-algebra) if

(1) Lis a regular double MS-algebra,

(2) Given a,b € L°° and a filter F of L°° containing L°° such that a < band a vV b° € F, then there exists an element
x € L such that x** = aand x°° = b.

Lemma 3.11. Every CRDMS-algebra with core element k is a DMS9-algebra.

Proof. We can choose F = L°°. Leta,b € L°° besuch thata < b. ClearlyaVvb°® € FasF = L°°. Setx = (aVk)Ab.
Then x** = a and x°° = b. Then condition (ii) of Definition 3.9 holds. Then L is a DMS%“-algebra. [

Now we illustrate an example to show that the converse of the above Lemma is not true, that is, the
class CRDMS of all core regular double MS-algebras is a proper subclass of the class of DMS8¢ of all
DMS9¢-algebras.

Example 3.12. Consider L = {0 < ¢ < a < d < 1} be a five element chain and a = a° = c° =a* =d*,d° =1° =
0,0" = c¢* = 1. It is clear that (L;°,*) is a reqular double MS-algebra, L°° = {0,a,1} and L°°¥ = {a,1}. A filter
F = {a, 1} of L*° contains L°°V. It is observed that (L,° ,*) is a DMS%“-algebra. Since D(L) = {1,d} and D(L) = {0, c}

then K(L) = D(L) N D(L) = ¢. Then L is not a CRDMS-algebra.

4. The construction

The construction of a core regular double MS-algebra from a suitable de Morgan algebra is given in the
following.

Theorem 4.1. (Construction Theorem)

Let (M;V, A, ,0,1) be a de Morgan algebra. Then
MPl = {(a,b) e MXM :a < b}
is a core regular double CRDMS-algebra with core element (0, 1), whenever
(a,b)Vv(c,d = (avcbvid),
(a,b)A(c,d) = (aAcbAd),
(@b’ = @a),
@b° = (b
O = (0,0)
Iy = (1,1).

Moreover, M is isomorphic to D(M!?!) as well as D(M!21) as lattices.
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Proof. T.S. Blyth and J.c. Varlet [10] observed th_at_Mm = (Z_\/I[Z] ;V,A°,7,(0,0),(1,1)) is a double MS-algebra.
Let (a,b)° = (c,d)° and (a,b)* = (c,d)*. Then (b,b) = (d,d) and (a,4) = (¢,¢) imply a = c and b = 4. Thus
(a,b) = (c,d). Therefore M!?! is a regular double MS-algebra. By Theorem 3.5, D(M?)) is a filter of M and
D(M!2)) is an ideal of M!?!. We observe that

DM?) = {(x,y) e M : (x,)° = (0,0)}
= {(x,y) e M : (7,7 = (0,0}
= {(xy) eMP:g=0}
= {(xy)eM?:y=1}
= {(x,1) e M?:xeM}
and
DMP)) = {(x,y) € MP: (x,9)" = (1,1))

{

(@ y) e M?: (x,3) = (1,1)
= {(x,y)eM? : =1}

{(x,y) e M? : x = 0}

{0,y) e M? . y e M.
Now, we prove that the element (0, 1) is the core element of M[?. Since (0,1)° = (0,0), then (0,1) € D(L). We
claim that D(L) is a principal filter of M[?! generated by (0, 1). Let (x, 1) be any element of D(L). Then x > 0
implies (x,1) > (0,1). Therefore (0, 1) is the smallest element of D(L) and D(L) = [(0, 1)). Similarly, we can
prove that m is a principal ideal of M[?! generated by (0, 1). Thus D(L) = ((0, 1)]. Consequently, the core
of MP! is K(M?!) = D(MP1) n D(M!21) = [(0,1)) N ((0,1)] = {(0,1)}. To prove that the lattices M and D(M!?!)
are isomorphic, define a map f : M — D(M?!) by f(a) = (a,1). Clearly f(0) = (0,1) and f(1) = (1,1). For
every a,b € M, we have

f@Ab) =@nb1)=@1)A b1 = f@ A F).
Also, f(a Vv b) = f(a) Vv f(b). Therefore f is a {0, 1}-lattice homomorphism. Obviously f is a bijective map.
Therefore f is an isomorphism and M = D(M]). Similarly, we can deduce that M = D(M!?l) under the
lattice isomorphism a > (0,a). Therefore D(M!?l) and D(M!?) are also isomorphic lattices. [

We illustrate the above construction on the following example.

Example 4.2. Let M be the four-element de Morgan algebra (see Fig. 2).

1=0

Qy
Il
Q
S
Il
S

0=1
M
Figure 2: M is a de Morgan algebra.

Using the construction Theorem (theorem 4.1), we obtain a core regular double MS-algebra M in figure
3.
Where ° and * are given as follows:



A. Badawy / Filomat 34:1 (2020), 35-50 41
(1L,1)
Q

o
(0,0
M

Figure 3: M{?l is a CRDMS-algebra with core (0, 1).

0,b)° = (b,b)° = (b,b),(0,1)° = (b,1)° = (a,1)° = (1,1)° = (0,0),(0,a)° = (a,4)° = (a,4),(0,0)° = (1,1) and
0,k =(0,a)" =(0,b)" =(0,0)" =(1,1),(@,a)" = (a,1)" =(a,a),(b,0)" = (b,1)" = (a,a),(1,1)" = (0,0).
Clearly, (M21)*° = {(0,0), (a,a), (b,b),(1,1)} is isomorphic to M under a map (a,4) +— a and D(M?) =
{(0,1),(a,1),(b,1),(1,1)} is isomorphic to M under a map (x,1) — x.

Definition 4.3. A mapping f : M — M, of a de Morgan algebra M into a de Morgan algebra M, is said to be
a homomorphism if f is a {0, 1}-lattice homomorphism satisfying f(x) = (f(x)). A bijective homomorphism of de
Morgan algebras is called isomorphism.

Corollary 4.4. M is isomorphic to (M?)°° as de Morgan algebras.
Proof. Tt is known that (M?)°°, v, A,°,(0,0),(1,1)) is a de Morgan subalgebra of M!?! (by Theorem 2.11(1)).
Let (a,b) € (M2)°°. Then (a,b)°° = (a,b) implies (b, b) = (a,b). Hence a = b. Therefore
(MP2hye° = {(a,a) : a € M}.
Then clearly a map a + (a,4) is an isomorphism of M onto (M!?1)°°. Consequently, M = (M?l)*°. O
For a core regular double Stone algebra, we have.

Corollary 4.5. IfB = (B;V, A, ,0,1) isa Boolean algebra, then B! is a core reqular double Stone algebra and (B!!)*°
is a Boolean subalgebra of B!, where " is a unary operation of complementation on B.

Proof. For any element x of a Boolean algebra B, we have the facts x Vx = 1 and x A x' = 0. Since each

Boolean algebra is a de Morgan algebra, then according to the above Theorem 4.1, B! = {(a,b) : a < b}

is a core regular double MS-algebra with core element (0,1). We prove that (a,b) A (a,b)° = (0,0) and

(a,b) V (a,b)* = (1,1) for all (a,b) € B2,

(a,b) A (a,b)° (a,b) v (b, b)

@aAnb,bAb)
(@anb,0)eBPasbAab =0
(0,0)asaAb <0=>aAb =0

(@b) V(@b = (ab)V,a)
(
(
(

ava,bva)
1,bvad)eBPasava =1
1,1)as1<bVvad =2bva =1.
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Therefor B[?! is a core double Stone algebra. By Theorem 2.11(1), (B!?!)°° is a de Morgan subalgebra of BI?l.
From corollary 4.2, (B?)°*° = {(a,a) : a € B}. Since (a,a) V (a,4)° = (1,1) and (a,a) A (a,4)° = (0,0) for all
(a,a) € (B)®°, then (B?))*° is a Boolean subalgebra of B?l. [

Definition 4.6. A mapping f : L — L of a CRDMS-algebra L with core element k into a CRDMS-algebra Ly with
core element ki is called a homomorphism if

(1) f is a {0, 1}-lattice homomorphism,

(2) fk) = ky, f(x°) = (f(x))° and f(x™) = (f(x))".
A bijective homomorphism of CRDMS-algebras is called isomorphism.

Theorem 4.7. A CRDMS-algebra L with core element k is isomorphic to L°°121.

Proof. Since L°° is a de Morgan algebra, then by Theorem 4.1, L°°?l = {(a,b) € L°°> X L*° : a < b} is a CRDMS-
algebra with core element (0, 1). Define ¢ : L — L°°!? by ¢(x) = (x**,x°°). Since x** < x°°, then ¢(x) € L°°[2].
To prove that ¢ is an injective map, let @(x) = ¢(y). Then (x™*,x°°) = (y**, y°°). Hence x** = x** and
x°° = x°°. Then by Theorem 2.10(3,),(3), we have x* = x™* = y*** = y* and x° = x°*° = y°*°° = y°. By
regularity of L, x = y. Now, we prove that ¢ is surjective. For all (a,b) € L°°!?, we have a < band a,b € L*°.
Setd = (a vV k) A b. Using (6),(64),(7)and (7,) of Theorem 2.10, and k*=1, k° = 0, we have

at* = (@VRAD)T =@ VKA  =@VvO0)Ab=aAb=a,
and

a*° = (@VEAbL)> =@ VE°)AV*=@VI1)Ab=1Ab=0.

Thus ¢(d) = (d**,d°°) = (a,b). Therefore ¢ is a bijective mapping. Clearly, ¢(0) = (0,0), ¢(1) = (1,1) and
@(k) =(0,1). Forall x,y € L, we get
pxAy) = (xAY)™, (xAY™)
= (" Ay, 2% Ay°°) by Theorem 2.10(7),(7,)
- (X++, xOO) /\ (y++, yocx)
= M)A oy,)
pxvy) = (xvy)™, (xvy™)
= (" v, x° Vv y®) by Theorem 2.10(6),(6,)
- (X++, xOO) V (y++, yOO)
= e VoY)
Therefore ¢ is a {0, 1}-lattice homomorphism. Now, for all x € L we have

(x+++, x+00)

— (x+++/ x+++) as x™ = x*+

++’ x00)+

P(x")

= (x
= (p()",

qo(xO) — (x0++,x000)
— (xooO,xOOO) as x0+ =x
- (x++,xoo o
= (p(x))°.

Then ¢ preserves * and °. Consequently, ¢ is an isomorphism of a CRDMS-algebra L onto a CRDMS-algebra
LB SoL =L O

00

From the above discussion, we immediately get the following important result.
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Theorem 4.8. There is a one to one correspondence between the class of core regular double MS-algebras and the
class of de Morgan algebras.

Now, we give another useful characterization of a core regular double MS-algebra.

Theorem 4.9. Let L be a RDMS-algebra. Then the following statements are equivalent.

(i) L has core element,

(ii) For a,b € L°° and a < b, there exists an element x € L such that x** = a and x°° = b.

Proof. (i) = (ii): Let L has core element k. Leta < b,a,b € L°°. Setx = (a V k) A b. Itis clear that x** = g and
x°° = b. Then condition (ii) holds.

(i) = (i): Let L be a regular double MS-algebra satisfying the condition (ii). Then by Theorem 4.1,
L°°l = {(a,b) € L°°> X L*° : a < b} is a core regular double MS-algebra with core element (0, 1). Define a map
@ : L — L by p(x) = (x**,x°°). In the proof of Theorem 4.7, we show that ¢ is an injective mapping
of L into L°*°?l. Now we show that ¢ is a surjective mapping using (ii). Let (a,b) € L°°?/. Then a < b and
a,b € L*°. By (ii) there exists x € L such that x** = g and x°° = b. Then @p(x) = (x**, x°°) = (4, b). Therefore ¢
is a bijective mapping of L onto L2l We claim that the inverse image of the core element (0, 1) of L*°?! is
the core element of L. Suppose that d = ¢~1(0,1). Then ¢(d) = (0,1) implies (d*+,d°°) = (0,1). Thus d** =0
and d°° = 1. It follows that d* = 1 and d° = 0. This deduce that d is the core element of L. [

Now, for any de Morgan algebra M = (M;V,A,”,0,1) and any filter F of M containing M", the author
proved in [2] that (L; V, A,°,*,(0,0), (1,1)) forms a DMS%“-algebra, where

L=M,F)={@b):a<baVvbeF}

and the operations V, A,° and * are given as in Theorem 4.1.

The following result gives the necessary and sufficient condition for a DMS%“-algebra L = (M, F) to
become a core regular double MS-algebra.

Theorem 4.10. A DMS%-algebra L = (M, F) is a CRDMS-algebra iff F = M.

Proof. Let F = M. Then L = (M,M) = MPl. Thus by Theorem 4.1, L = M!?! is a core regular double
MS-algebra with core element (0,1). Conversely, Let L = (M, F) is a core regular double MS-algebra with

core element (4, b). Then (a,b) € D(L)YND(L)and a Vv b € F. Hence (4, b)° = (0,0) and (a,b)* = (1,1). It follows
that (b, b) = (0,0) and (@,4) = (1,1), respectively. Then b = 0 and z = 1 implies b = 1 and a = 0, respectively.
Then (a,b) = (0,1) and hence 0 =0V 1 =aV b € F. Therefore F = M. [

5. Applications of the construction Theorem

We start this section with subalgebras of a CRDMS-algebra.

Definition 5.1. A bounded sublattice H of a CRDMS-algebra L with core element k is said to be a subalgebra of L if
(1) x°,x* € H forall x € H,
(2)keH.

It is observed that {0, k, 1} is the smallest subalgebra of any CRDMS-algebra L.
The subalgebras of a CRDMS-algebra L in example 3.9(2) are {0,k, 1}, {0,¢c,a,k,x,1},{0,d,b,k, y,1} and L.

Theorem 5.2. There is one to one correspondence between the set of all subalgebras of a de Morgan algebra M and
the set of all subalgebras of a CRDMS-algebra M2\,
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Proof. Let M; be a subalgebra of M. We prove that a set MEZ] = {(a,b) € My x M; : a < b} is a subalgebra

of M1, Since 0,1 € My, then (0,0), (1,1) and (0, 1) are belong to M[12]. For every (a,b), (c,d) € M[12]. Then
a,b,c,d € My and henceaVc,bVvd,anc,bAde M. Thus

a,b)Vv(c,d) = (@vebvd EM[Z]asaVcsbvd,
( 1

@b)Aed) = @AcbrdyeMPTasanc<bad.

Therefore M?] is a bounded sublattice of M. Let (a,b) € MEZ]. Then a,b € M, and hence ,b € M, (as M, is
a subalgebra of M). Thus

@b = (@a)eM?,
(a,b)° (b,b) € M.

The core element (0, 1) of M?! belongs to M[lzl. Therefore MEZ] is a subalgebra of M!2l.
Conversely, let L; be a subalgebra of M2, Consider a subset M; of M as follows:

My ={aeM:(a,a)el}.

We claim that M; is a subalgebra of M. Since (0,0), (1,1) € Ly, then 0,1 € M;. Let x,y € M;. Hence
(x,x),(y,y) € L1. Now

xx)ANy) = xAyxAYy)eELi=>xAyeM,
xx)Vyy) = kVyxvyeli=>xVyeM,
(X,X)O = (J?,J?) el =>xeM.

Therefore M, is a subalgebra of a de Morgan algebra M. [

A clarification of the correspondence between subalgebras of a de Morgan algebra M and a CRDMS-algebra
Ml is provided in the following example.

Example 5.3. Consider a de Morgan algebra M and a CRDMD-algebra M) in example 4.2. We observe that the
subalgebras My = {0,1}, M, = {0,a,1}, M3 = {0,b,1}, My = M of a de Morgan algebra M are corresponding to the
subalgebras M = {(0,0), (0,1), (1, 1)},

[2] _ (21 _
M5 =1(0,0),(0,a),(0,1), (a,a), (a,1), (1, 1)}, Mz~ = {(0,0), (0,b), (b, 1)(0, 1), (b, 1), (1, 1)},
M = MP) of s CRDMS-algebra M), respectively.

Definition 5.4. A subalgebra L, of a CRDMS-algebra L is said to be a Stone subalgebra if x° vV x°° = 1 and
xtAxtt =0forall x € L.

Corollary 5.5. There is one to one correspondence between the set of all Boolean subalgebras of a de Morgan algebra
M and the set of all Stone subalgebras of the CRDMS-algebra M?!,

Proof. Let M, is a Boolean subalgebra of a de Morgan algebra M. Thenx AX =0and x VX = 1 for all x € M;.
Theorem 5.2 shows that MEZ] is a subalgebra of M[?l. We need to prove that the Stone identities hold in MEZ].
For all (x, y) € M[lz], we get

oAy (%, %) A (x,x) = (®Ax,%Ax)=(0,0)

(6 y)° V(% y)™ @DV Yy =GVy vy =11
Conversely, let L; is a Stone subalgebra of M2l Then by Theorem 5.2, M; = {a € M : (a,a) € L1} is a
subalgebra of a de Morgan algebra M. To prove M; is a Boolean subalgebra of M, we have to show that
ava=1landaAa=0foraec M. Leta e M. Then (a,a) € L;. Since L; is a Stone subalgebra of M then
(1,1)=(,a)°V(a,a)° =(@Va,aVa). ThereforeaVva=1. Also, (0,0) = (a,a)° A (a,2)°° = (a Aa,a Aa) implies
thatana=0. O

)++
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It is known that the center Z(M) = {x € M : x V¥ = 1} of a de Morgan algebra M forms a Boolean subalgebra
of M.

Corollary 5.6. (Z(M))?! is the greatest Stone subalgebra of M1?!.

Example 5.7. Consider a de Morgan algebra M and a CRDMD-algebra M) in example 4.2. The center Z(M) = {0, 1}
of M correspond to the greatest Stone subalgebra M[lz] ={(0,0),(0,1),(1,1)} of a CRDMS-algebr M2,

Leth : L — L be a homomorphism of a CRDMS-algebra L into a CRDMS-algebra L;. We will denote
by hre, hpgy and hm to the restrictions of & on L°°, D(L) and D(L), respectively. It is easy to show the
following.

Lemma 5.8. Let h: L — Ly be a homomorphism of a CRDMS-algebra L into a CRDMS-algebra Ly. Then
(1) hye- is a homomorphism of a de Morgan algebras L°° into a de Morgan algebra L3°,
(2) hpqy is a {0, 1}-lattice homomorphism of a lattice D(L) into a lattice D(L1),

(3) hm is a {0, 1}-lattice homomorphism of a lattice D(L) into a lattice D(L1).

Theorem 5.9. Let M and M; be de Morgan algebras. If f : M — M, is a homomorphism, then a map h :
M — MY defined by h(a, b) = (f(a), (b)) is a homomorphism of a CRDMS-algebra M1 into a CRDMS-algebra
M[12]. Conversely, if h : M2 — M52] is a homomorphism of CRDMS-algebras, then f : M — M; defined by
f(a) = b & hpye(a,a) = (b,b) for all a € M is homomorphism of de Morgan algebras.

Proof. Let f : M — M; be a homomorphism between de Morgan algebras M and M;. It is ready seen that
amap h : M? — MEZ] defined by h(a,b) = (f(a), f(b)) is a homomorphism of a DMS-algebra M?! into a
DMS-algebra M[lz]. Since (0,1) = (f(0), f(1)) = (0,1), then h is a homomorphism of CRDMS-algebra M?!
into a CRDMS-algebra M[ZZ].
Conversely, let : : M2l — M be a homomorphism of M) into M!?. Define a map f : M — M; as follows:
f@a) = b © hyyaye-(a,a) = h(a,a) = (b,b) for alla € M.

Using Lemma 5.8(1), h(a,a) = (b,b) € Mgzl. Then f(a) = b € M, for all a € M. Since h(0,0) = (0,0) and
h(1,1) = (1,1), then f(0) = 0 and f(1) = 1, respectively. For all x,y € M, by Lemma 5.8(1), we have
h(x,x) = (x1,x1) and h(y, y) = (y1, y1)- Then f(x) = x; and f(y) = y1. Now,

hx Ay, xAy) = h((x,x)A(y,y))
h(x, x) A h(y, y)
(xllxl) A (yll yl)
(x1 A y1,x1 A yr).
Then f(xAy) = x1Ay1 = f(x)Af(y). Using similar way, we get f(xVy) = f(x)V f(y). Since h((x, x)°) = (h(x, x))°,

then (%, ) = (x1,x1)° = (&1, %1). Hence f(X¥) = ¥1 = f(x). Therefore f is a homomorphism of de Morgan
algebra M into a de Morgan algebra M;. O

Definition 5.10. [10] An element a of a lattice L with 0 is said to be an atom of L ifa # O and forany x € L, x < a,
then either x = 0 or x = a. Dually, an element d of a lattice L with 1 is said to be a coatom (dual atom) of L if d # 1
and for any x € L, d < x, then either x = 1 or x = d. Let At(L) be the set of all atoms of L. A lattice L with zero
element is said to be atomic if for every nonzero element x of L, there exists an atom a of L such that a < x.

Now, we obtain many properties of atoms and coatoms of CRDMS-algebras that should be useful for further
discussion.

Lemma 5.11. For a CRDMS-algebra M2, we have
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(1) x = (a,b) € M2 is an atom of M1?! if and only if b € At (M) and a = 0,

(2) x = (a,b) € M2 is a coatom of M2 if and only if a is a coatom of M and b = 1.

Proof. (1). Suppose that x = (a,b) € M?! is an atom of M. If b is not an atom of M, there exists 0 < b; < b
andy = (b1 Aa,by) € M. Thus y < x, which contradicts with the fact that x is an atom of M, Hencebis an
atom of M. Now, since a < b and b is an atom of M, we havea = 0ora = b. Ifa = b then (0,0) < (0, b) < (a,b),
which contradicts with that (g, b) is an atom of M[?l. Then a = 0. Conversely, let b is an atom of M and b = 0.
Then we have to show that x = (0, b) is an atom of M. Let y = (c,d) is an element of M!?! such that y < x.

Then c = 0 and d < b. Since b is an atom of M, then d = 0 and y = (0, 0). Therefore x = (0, b) is an atom of
M as claimed.

(2) By duality of (1). O

Corollary 5.12.

(1) b is an atom of M if and only if (0, b) is an atom of M2,

(2) bis a coatom of M if and only if (b, 1) is a coatom of M!?1,

(3) there is a one to one correspondence between the set of all atoms (coatoms) of M and the st of all atoms (coatoms)
of M2,

Theorem 5.13. Let M be a de Morgan algebra and a € M. Then

(1) (0,a) is an atom of M?! implies (a, 1) is a coatom of M1?!,

(2) (a,1) is a coatom of M| implies (0,a) is an atom of M2,

(3) there is a one to one correspondence between the set of all atoms of M2 and the set of all coatoms of M2,

Proof. (1). Let (0,a) is an atom of M?l. Then by Corollary 5.12(1), a is an atom of M. Clearly (a,1) € M.
Let (x,y) > (a,1) for some (x,y) € M. Then x > aand y = 1 implies ¥ < a and y = 1. Since a is an atom
of M, thenx =0 orx = a. It follows thatx =1,y =1orx =4,y = 1. Hence (x,y) = (1,1) or (x,y) = (a,1).
Therefore (@, 1) is a coatom of M2l

The proof of (2) is similar to that of (1)and the proof of (3) follows (1) and (2). O

Theorem 5.14. A de Morgan algebra M is atomic if and only if MI?! is atomic.

Proof. Let M be an atomic de Morgan algebra. Let (a,b) is a nonzero element of M?!. Then a < b. Hence
a=0ora#0butb+0. Ifa =0, then there exist atom of M say c such that c < b. Then by Corollary 5.10(1),
(0,¢) is an atom of M2 and (0,c) < (0,b) = (a,b). If a # 0 then there exists an atom of M say x such that
x < a. Hence (0,x) is an atom of M?! with (0,x) < (a,4) < (a,b). Therefore M!?! is an atomic core regular
double MS-algebra. Conversely, let M[?! is atomic. Let 0 # a € M. Then (a,a) is a nonzero element of M2,
Thus there exists an atom of M!?! say (0, ) with (0, y) < (4,a). Consequently y is an atom of M with y < a.
Therefore M is atomic. [

In the following example, we clarify the properties of atoms and coatoms of M and MI21.

Example 5.15. Consider a de Morgan algebra M and a CRDMD-algebra M?! in example 4.2. We observe the
following.

(1) At(M) = {a, b} and At(M™!) = {(0,a), (0, b)}, where a, b are corresponding to (0,a), (0, b), respectively.

(2) {a, b} and {(a, 1), (b, 1)} are the sets of coatoms of M and At(MP), respectively. Also, a, b are corresponding to
(a,1), (b, 1), respectively.

(3) The atoms (0,a), (0, b) of MI! are corresponding to the coatoms (a, 1), (b, 1) of M2, respectively.
(4) It is ready seen that M is an atomic de Morgan algebra and M is an atomic CRDMS-algebra.

Definition 5.16. [7] A lattice L is called complete if inf; H and sup, H exist for each ¢ # H C L.
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A CRDMS-algebra L is called complete if considered as a lattice it is complete.
Let H = {x; = (a;, b;) : i € I} € M?I. We can write sup, H = Vg x;and infy H = /¢ x;.
Theorem 5.17. If M is a complete de Morgan algebra, then M is complete CRDMS-algebra.

Proof. Let ¢ # H € M. Consider H = {(a;,b;) € M2, i € I}. Since M is complete, then \/;;;a; and /. a;
exist. Hence a; < ;g a; and b; < Vg bi. So, (a;,b;) < (V;ai, V;b;) and hence (Vg ai, Vi bi) is an upper
bound of H. Let (x,y) be an upper bound of H. Then (a;, b;) < (x, y) implies a; < x and b; < y. Therefore
V aier < x and V bie; < y and (V aier, V bier) < (x,y). Then (V ajer, V bier) = sup H. Similarly, we can show
that (A aie1, A bier) = inf H. Then M?! is complete. [

Theorem 5.18. Let M?! be a complete CRDMS-algebra. Then
(1) (MP1Y*° is complete,

(2) M is complete.

Proof. (1). Let ¢ # H € (M?)°°. Since M is complete and H € M?, then sup H and infH exist in
MP, Assume that (a,b) = sup, H and (c,d) = infyua H. We prove that (b,b) = sup oo H- Since
(a,b) = sup, H, then (h,h) < (a,b) for all h € H. Thus (h,h) = (h,h)*™" < (a,b)*" = (a a) and hence
(a,a) is an upper bound of H. Since (a,b) = sup, H, then (a,b) < (a,a) implies b < a. Buta < b as
(a,b) € M. Therefore a = band (a,b) = (b,b) € (M?)*° and (b, b) = sup Hpprye-. Similarly, we can show that
inf H € (MP)*° = (d,d). Therefor (M?)*° is complete de Morgan algebra.

(2) Let ¢ # C C M. Since M isomorphic to (M?)°° (see Corollary 4.4) then C = {(c,c) : ¢ € C} € (MZl)>°
corresponds to C. Since by (1), (M?!)°° is complete and C € (M2)*° then SUP (pfi21ye C and SUP a1)ee C exist.
Assume (x, x) = SUP izryee C and (v, y) = infp oy C. Then (c,¢) < (x,x) for all (c,c) € C implies ¢ < x for all
c € C. Thus x is an upper bound of C. Let y be an upper bound of C. Thenc < yforallc € C 1mp11es
(c,c) < (y,y) forall (c,c) € C. Hence (y, y) is an upper bound of C. Then (x,x) < (y,y) as (x,x) = SUP (gt21yeo C.
Therefore x < y and x = sup,, C. Using a similar way, we get v = infy; C. Then M is complete. []

Combining Theorem 5.17 and Theorem 5.18(2), we have

Theorem 5.19. A de Morgan algebra M is complete if and only if MI?! is a complete CRDMS-algebra.

Now, we give two examples of complete atomic CRDMS-algebras, the first one is finite and the second one
is infinite.

Example 5.20.

(1) Consider a CRDMS-algebra L in example 3.9(2). We have At(L) = {c,d}. It is clear that L is a finite complete
atomic CRDMS-algebra.

(2) Let M = {0} @[0,1] @1 be an infinite chain, where [0, 1] is a real closed interval and & stands for the ordinal sum.
Then (M;V, A0, T) forms a bounded distributive lattice, where x V y = max{x, y}, x A y = min{x, y}, x,y € [0,1]
and 0,1 are the smallest and the greatest elements of M, respectively. Define a negation ~ on M by ~ x = 1 - x for all
x€[0,1],~0=1and ~ 1 = 0. Since A{(M) = {0}, then M is atomic. As sup,, H and infy H exist, for ¢ # H C M,
then M is complete. Therefore M is a complete atomic de Morgan algebra. Using the construction Theorem, we obtain
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the core regular double MS-algebra M2, where

MP = {(0,0),(0,0),..,(0,1/2),..,0,1),
(0,0),...,(0,1/2),...(0,1),(0, 1),

(1/2,1/2), ...,(1/2,3/4), .., (1/2,1),(1/2,1),

(1,1),(11),

(LD}
and (x,y)° = (~ y,~ ¥, (9" = (~ x,~ x) for all (x,y) € M?. Also, KMP)) = D(L) N D(L) = {(x,T) : x €
MN{0,y) : y € M} = {(0,1)}. We have At(M) = {(0,0)}. By Theorem 5.14, M is atomic. Also, M2 is complete
(see Theorem 5.17). Therefore M?! is an infinite complete atomic CRDMS-algebra.

Lemma 5.21. Let M?! be a complete CRDMS-algebra and x; = (a;,b;) € M for all i € I. Then

(D VierXi = (Vierai, Vier bi),

(2) Nier Xi = (Nier i Nier bi),

(3) Vier xi)° = Nie X7,

4) (Nier )" = Vier x;r-

Proof. (1). Since M[?! is complete, then by Theorem 5.6, M is also complete. Hence \/,;a; and \/;; b; exist in
M. Thena; < Vg a;and b; < Vg by imply (a5, b;) < (Vg1 ai, Vier ). Hence (Vg i, Viep bi) is an upper bound
of x; for all i € I. Let (a,b) be an upper bound of x;. Therefore a; < aand b; < b for all i € I. Hence a is an

upper bound of 4; and b is an upper bound of b; for all i € I. So, (V¢ ai, Vg1 bi) < (a,b) and (Ve ai, Vier bi)
is the least upper bound of x; for all i € I.

(2) The proof is similar to that of (1).

(3) Since Vg xi > x;, then (Vg Xi)° < x7. Hence (V¢ X;)° is a lower bound of x?. Let y be a lower bound of
x;. Then y < x? implies y° > x?° > x;. Then y° is an upper bound of x; and this gives \/;; x; < y°. Therefore
(Vierx)° = y°° > y. Then we deduce that (/¢ x;)° is the greatest lower bound of x7 and (Ve x:)° = Ajes X7 -

(4) The proof is similar to that of (3). O

Definition 5.22. A subalgebra Ly of a complete CRDMS-algebra L is called a complete subalgebra of L if infy H € L4
and sup; H € L, for every subset H of L.

Theorem 5.23. Let M[12] be a subalgebra of a complete CRDMS-algebra M2\, Then Mgzl is complete subalgebra of
M if and only if My is a complete subalgebra of M.

Proof. Let MI12] is a complete subalgebra of M?!. Let ¢) # H C M;. Consider the subset H = {x; = (a;,a;) : a; €
H,iel}of M[f] corresponding to H. Since M2 is complete, then by Lemma 5.21(1), (2), we have

S;lApH = \/X,‘ = (\/ a,-,\/ai) [S M[lz],

iel iel iel

/\X,‘ = (/\a,-,\/ai) EM[lz].

iel iel iel

infH
M
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Hence Vg a; € Mj and A a; € M;. Then M; is complete complete subalgebra of M. Conversely, let M is
a complete subalgebra of a complete de Morgan algebra M. Let ¢ # H C Mgzl. Then

H = {x; = (a;,b;) e M i e 1y c M.
Since M; is complete subalgebra of M, then we have
Vierai € My and V¢ b; € M.
Also, Ajerai € My and A bi € Mj. Then by Lemma 5.21,(1),(2), respectively, we get

\/H = \/x,- = (\/a,-,\/bi) GM[Z],

M2l i€l i€l iel
/\H = /\xi:(/\ﬂi,/\bi)EM[lz].
M2l i€l iel iel
Then M[12] is a complete subalgebra of a CRDMS-algebra M?!.
|

Definition 5.24. [6] A lattice homomorphism h : L — Ly of a complete lattice L into a complete lattice Ly is called
complete if

h(infy H) = infy, h(H) and h(sup, H) = sup; h(H) for each ¢ # H C L.

A homomorphism / : L — L; of a complete CRDMS-algebra L into a complete CRDMS-algebra L, is called
complete if it is complete as a lattice homomorphism.

Theorem 5.25. Let M and M, are complete de Morgan algebras. If f : M — My is a complete homomorphism,
then b : M1 — MW defined by h(a, b) = (f(a), f(b)) is a complete homomorphism of M) into M. Conversely, if
g: M2 — MEZ] is a complete homomorphism, then f : M — M; defined by f(a) = b & g(a,a) = (b, b) is a complete
homomorphism of de Morgan algebras.

Proof. Let f : M — M, is a complete homomorphism. Then by Theorem 5.9, h : M2l — Mgzl defined by

h(a,b) = (f(a), f(b)) is a homomorphism of CRDMS-algebras M[?! and M[12]. We prove that sup, 2 h(H) =
h(sup,m H) for ¢ # H € M. Consider H = {x; = (a;,b;) € M : i € I} for ¢ # H € M. Using Lemma
5.21(1), we get supy H = Vier Xi = Vier(@i, bi) = (Vier @i, Ve bi). Thus

h(supH) = h(\/ a;, \/ by)

M2 iel el

= (f(\/a), £\/ b))

i€l iel
= (\/ f@),\/ f&)
iel i€l

= \/(f@), b))

iel

Using Lemma 5.21(2), we can get infj[\i]1 = h(infye H). Therefore h is complete. Conversely, let g : M2 — Mgzl

is a complete homomorphism of a CRDMS-algebra M[?! into MI12]_ Then by Theorem 5.9, a mapping
f M — M defined by f(a) = b © g(a,a) = (b,b) is a homomorphism of M into M;. We have to show
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that f is complete. Let ¢ # H = {a; : i € I} C M, we prove that f(infys H) = infy;, f(H). Consider a subset
H = {x; = (a;,a;) : a; € H,i € I} of M1 corresponding to H. Since M and M are complete, then by Lemma
5.21(2), we get

infye) H= Nier %i = (Am air Nier @i)

Let g(a;,a;) = (b, bi). Then by definition of f, we have f(a;) = b;. Since g is complete, then g(infy H) =
infM[ZJ g(H) Now

g(g}zf] H) !7(/\(111‘/ a;)) = 9(/\ aj, /\ a;),

iel i€l iel

A g, a) = N\ b) = (N bi, \ b,

i€l iel iel iel

inf g(H)
M

Then g(Nier @i, Nier ) = (Aier Ui Nier bi) implies f(infp H) = f(Ajejai) = Nier bi = infar, f(H). Similarly, we
can show that f(sup,, H) = sup,, (f(H)). Then f is complete. [J
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