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Constraction of a Core Regular Double MS-Algebra
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aDepartment of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Abstract. In this paper, we introduce and characterize a core regular double MS-algebra. A construction
of a core regular double MS-algebra M[2] via a de Morgan algebra M is given. A one to one correspondence
between the class of de Morgan algebras and the class of core regular double MS-algebras is obtained.
According to such construction we investigate many properties of a core regular double MS-algebra deal
with subalgebras, homomorphisms, atoms and dual atoms. A description of an atomic core regular double
MS-algebra is established. Also, we discuss some properties of a complete core regular double MS-algebra.

1. Introduction

De Morgan Stone algebra (briefly MS-algebra) is introduced by T.S. Blyth and J.C. Varlet [8] as a common
properties of a de Morgan algebra and a Stone algebra. T.S. Blyth and J.C. Varlet [9] described the lattice
of all subclasses of the class MS of all MS-algebras which contains twenty subclasses, for examples, the
class S of all Stone algebras and the class M of all de Morgan algebras. Also, T.S. Blyth and J.C. Varlet
[10] presented the class DMS of all double MS-algebras which containing the class DS of all double Stone
algebras. J.C. Varlet [18] studied a regular variety of type (2,2,1,1,0,0). T. Katriňāk [16] presented a con-
struction of a regular double Stone algebra from a suitable Boolean algebra B and a filter F of B. S.D. Comer
[14] proved the existence and uniqueness of perfect extensions of a regular double stone algebra using
Katriňāk,s construction [16]. Recently, A. Badawy [2] introduced and characterized the class of double
MS-algebras satisfying the generalized complement property ( briefly DMS1c-algebras) which includes the
class of double MS-algebras satisfying the complement property presented by L. Congwen [13]. Also, A.
Badawy [2] gave a construction of DMS1c-algebras generalizing the construction due to T. Katriňāk [11] for
regular double Stone algebras. Many important properties of MS-algebras and double MS-algebras deal
with homomorphisms, subalgebras, filters and congruences are studied in [3-7].

In this paper, we introduce and characterize a subclass of the class of double MS1c-algebras which is
called core regular double MS-algebras. In fact the class CRDMS of all core regular double MS-algebras
includes the class CRDS of all core regular double Stone algebras due to R. Kumar et al. [17]. A construction
of a core regular double MS-algebra from a suitable de Morgan algebra is obtained. Also, we construct

2010 Mathematics Subject Classification. 06D30, 06B10, 06D15
Keywords. De Morgan algebra; MS-algebra; Double MS-algebra; Regular double MS-algebras, Core regular double MS-algebras;

Atomic lattices; Complete lattices.
Received: 30 December 2018; Revised: 09 May 2019; Accepted: 29 May 2019
Communicated by Biljana Popović
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a core regular double Stone algebra from a suitable Boolean algebra. We observe that there is a one to
one correspondence between the class M of all de Morgan algebras and the class CRDMS. We give many
applications of such construction. Characterizations of homomorphisms and subalgebras of core regular
double MS-algebras are obtained. We describe atoms and dual atoms of a core regular double MS-algebra by
using this construction. A description of atomic core regular double MS-algebras is given. We observe that
the completeness of a core regular double MS-algebra L depends on only the completeness of its skeleton
L◦◦, in particular the last two applications of our construction are to discuss complete homomorphisms and
complete subalgebras of core regular double MS-algebras.

2. Preliminaries

In this section, we recall certain definitions and important results. We refer the reader to the references
[5], [7], [8], [9], [10],[11],[12] and [15] as a guide references.

Definition 2.1. [15] An algebra (L;∧,∨) of type (2,2) is said to be a lattice if for every a, b, c ∈ L, it satisfies the
following properties:

(1) a ∧ a = a, a ∨ a = a (Idempotency),

(2) a ∧ b = b ∧ a, a ∨ b = b ∨ a (Commutativity),

(3) (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c) (Associativity),

(4) (a ∧ b) ∨ a = a, (a ∨ b) ∧ a = a (Absorption).

If a lattice L has a greatest element (denoted by 1) and a smallest element (denoted by 0), then L is said to
be a bounded lattice.

Definition 2.2. [15] A lattice L is called distributive if it satisfies either of the following equivalent distributive laws:

(1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

(2) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), for all a, b, c ∈ L.

Definition 2.3. [11] A de Morgan algebra is an algebra (L;∨,∧,− , 0, 1) of type (2,2,1,0,0) where (L;∨,∧, 0, 1) is a
bounded distributive lattice and − the unary operation of involution satisfies:

x = x, (x ∨ y) = x ∧ y, (x ∧ y) = x ∨ y.

Definition 2.4. [12] A Stone algebra is a universal algebra (L;∨,∧,∗ , 0, 1) of type (2, 2, 1, 0, 0), where (L;∨,∧, 0, 1)
is a bounded distributive lattice and the unary operation ∗ of pseudocomplementation has the properties that
x ∧ a = 0⇔ x ≤ a∗ and x∗∗ ∨ x∗ = 1.

Definition 2.5. [16] A dual Stone algebra is a universal algebra (L;∨,∧,+ , 0, 1) of type (2, 2, 1, 0, 0), where
(L;∨,∧, 0, 1) is a bounded distributive lattice and the unary operation + of dual pseudocomplementation has the
properties that x ∨ a = 1⇔ x ≥ a+ and x++

∧ x+ = 0.

Definition 2.6. [16] A double Stone algebra is an algebra (L;∗ ,+ ) such that (L;∗ ) is a Stone algebra, (L;+ ) is a dual
Stone algebra and for every x ∈ L, x∗+ = x∗∗, x+∗ = x++.

Definition 2.7. [8] An MS-algebra is an algebra (L;∨,∧,◦ , 0, 1) of type (2,2,1,0,0) where (L;∨,∧, 0, 1) is a bounded
distributive lattice and the unary operation ◦ satisfies:

x ≤ x◦◦, (x ∧ y)◦ = x◦ ∨ y◦, 1◦ = 0.

Definition 2.8. [10] A dual MS-algebra is an algebra (L;∨,∧,+ , 0, 1) of type (2,2,1,0,0) where (L;∨,∧, 0, 1) is a
bounded distributive lattice and the unary operation + satisfies:
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x ≥ x++, (x ∧ y)+ = x+
∨ y+, 0+ = 1.

Definition 2.9. [10] A double MS-algebra is an algebra (L;◦ ,+ ) such that (L;◦ ) is an MS-algebra, (L;+ ) is a dual
MS-algebra, and the unary operations ◦,+ are linked by the identities x+◦ = x++ and x◦+ = x◦◦, for all x ∈ L.

The class DS of all double Stone algebras is a subclass of the class DMS of all double MS-algebras and
is characterized by the identities x ∧ x◦ = 0 and x ∨ x+ = 1.

Throughout this paper, we adopt the following rules of computation in a double MS-algebra (L;∨,∧,◦ ,+ , 0, 1)
(see [8] and [10]).

Theorem 2.10. For any two elements a, b of a double MS-algebra L, we have

(1) 0◦◦ = 0 and 1◦◦ = 1 (1d) 0++ = 0 and 1++ = 1,

(2) a ≤ b⇒ b◦ ≤ a◦ (2d) a ≤ b⇒ b+
≤ a+,

(3) a◦◦◦ = a◦ (3d) a+++ = a+,

(4) a◦◦◦◦ = a◦◦ (4d) a++++ = a++,

(5) (a ∨ b)◦ = a◦ ∧ b◦ (5d) (a ∨ b)+ = a+
∧ b+,

(6) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦ (6d) (a ∨ b)++ = a++
∨ b++,

(7) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦ (7d) (a ∧ b)++ = a++
∧ b++.

Theorem 2.11. [9] Let (L;∨,∧,◦ ,+ , 0, 1) be a double MS-algebra. Then

(1) L◦◦ = {x ∈ L : x = x◦◦} = {x ∈ L : x = x++
} = {x ∈ L : x◦ = x+

} is a de Morgan subalgebra of L,

(2) L∨ = {x ∨ x◦ : x ∈ L} = {x ∈ L : x ≥ x◦} is an increasing subset (dual order ideal) of L,

(3) L◦◦∨ = {a ∨ a◦ : a ∈ L◦◦} = L◦◦ ∩ L∨.

Definition 2.12. [15] Let L = (L;∨,∧, 0, 1) and L1 = (L1;∨,∧, 0, 1) be bounded lattices. A mapping f : L→ L1 is
called a {0, 1}-lattice homomorphism if f (0) = 0, f (1) = 1, f (x ∨ y) = f (x) ∨ f (y) and f (x ∧ y) = f (x) ∧ f (y) for all
x, y ∈ L. A {0, 1}-lattice homomorphism is called an isomorphism if f is a bijective mapping, in this case, we call L
and L1 are isomorphic lattices and write L � L1.

3. Core regular double MS-algebras

In this section, we introduce the concept of core regular double MS-algebras that includes the class of
core regular double Stone algebras.

Definition 3.1. [2] A double MS-algebra (L;◦ ,+ ) is said to be a regular double MS-algebra (or simply RDMS-algebra)
if for any x, y ∈ L, x◦ = y◦ and x+ = y+ imply x = y.

A relation Φ+
◦ defined by (x, y) ∈ Φ+

◦ ⇔ x◦ = y◦ and x+ = y+ is a congruence relation on a double MS-algebra
L.

A characterization of regular double MS-algebra in terms of the congruence Φ+
◦ is given in the following.

Theorem 3.2. Let L be a double MS-algebra. Then L is regular if and only if Φ+
◦ = ω, where ω = {(x, x) : x ∈ L}.

Proof. Let L be a regular double MS-algebra. Let (x, y) ∈ Φ+
◦ . Then x◦ = y◦ and x+ = y+ and hence by

regularity of L, we get x = y. Therefore Φ+
◦ = ω. Conversely, let Φ+

◦ = ω. Let x◦ = y◦ and x+ = y+. Then
(x, y) ∈ ω. So, x = y and L is regular.

Definition 3.3. [1] Let L be an MS-algebra. An element d ∈ L is called a dense element of L if d◦ = 0, the set of all
dense elements of L is denoted by D(L).
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Definition 3.4. Let L be a dual MS-algebra. An element d ∈ L is called a dual dense element of L if d+ = 1, the set
of all dual dense elements of L is denoted by D(L).

Lemma 3.5. Let L be a double MS-algebra. Then D(L) is a filter of L and D(L) is an ideal of L.

Proof. It is observed that D(L) is a filter of L (see [1]). Let x, y ∈ D(L). Then x+ = y+ = 1. So by Theorem
2.10(5d), (x ∨ y)+ = x+

∧ y+ = 1. Hence x ∨ y ∈ D(L). Now, let z ≤ x ∈ D(L) and z ∈ L. Then by Theorem
2.10(2d), z+

≥ x+ = 1. This means that z ∈ D(L). Therefore D(L) is an ideal of L.

Definition 3.6. Let L be a double MS-algebra. The set K(L) = D(L) ∩D(L) is called the core of L.

Definition 3.7. A core regular double MS-algebra (briefly CRDMS-algebras) is a regular double MS-algebra with
non empty core, that is, K(L) , φ.

Lemma 3.8. Let L be a CRDMS-algebra. Then |K(L)| = 1.

Proof. Let k1, k2 ∈ K(L). Then k◦1 = k◦2 = 0 and k+
1 = k+

2 = 1. Hence by regularity of L, k1 = k2. Therefore K(L)
has a unique element and hence |K(L)| = 1.

We will denote the core element by k. The core element k will play an important role throughout the rest of
this paper.

L

ck

c ycx
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c
0

c d

c b

cc
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Figure 1: L is a bounded distributive lattice.

Example 3.9.

(1) Every core regular double Stone algebra is a core regular double MS-algebra.

(2) Consider the bounded distributive lattice L in Figure 1. Define unary operations ◦,+ on L by

k◦ = x◦ = y◦ = 1◦ = 0, d◦ = b◦ = b, c◦ = a◦ = a, 1◦ = 0

and

k+ = c+ = d+ = 0+ = 1, y+ = b+ = b, x+ = a+ = a, 1+ = 0.

It is observed that (L;◦ ,+ ) is a regular double MS-algebra. We have D(L) = {k, x, y, 1}, D(L) = {0, c, d, k} and
K(L) = {k}. Then L represents a CRDMS-algebra. Since c◦ ∧ c , 0 and c+

∨ c , 1 then L is not a double Stone
algebra. This example deduce that CRDS $ CRDMS.

(3) Consider the bounded distributive lattice L in Figure 1. Define unary operations ◦,+ on L by
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x◦ = 1◦ = 0, k◦ = y◦ = c, d◦ = b◦ = a, a◦ = b, c◦ = y, 1◦ = 0

and

d+ = 0+ = 1, k+ = c+ = y, x+ = a+ = b, b+ = a, y+ = c, 1+ = 0.

Clearly (L;◦ ,+ ) is a regular double MS-algebra. We have D(L) = {x, 1}, D(L) = {0, d} and K(L) = φ. Then L is not a
core regular double MS-algebra.

Definition 3.10. [2] A double MS-algebra L is called a double MS-algebra satisfying the generalized complement
property (or briefly DMS1c-algebra) if

(1) L is a regular double MS-algebra,

(2) Given a, b ∈ L◦◦ and a filter F of L◦◦ containing L◦◦∨ such that a ≤ b and a ∨ b◦ ∈ F, then there exists an element
x ∈ L such that x++ = a and x◦◦ = b.

Lemma 3.11. Every CRDMS-algebra with core element k is a DMS1c-algebra.

Proof. We can choose F = L◦◦. Let a, b ∈ L◦◦ be such that a ≤ b. Clearly a∨b◦ ∈ F as F = L◦◦. Set x = (a∨k)∧b.
Then x++ = a and x◦◦ = b. Then condition (ii) of Definition 3.9 holds. Then L is a DMS1c-algebra.

Now we illustrate an example to show that the converse of the above Lemma is not true, that is, the
class CRDMS of all core regular double MS-algebras is a proper subclass of the class of DMSgc of all
DMS1c-algebras.

Example 3.12. Consider L = {0 < c < a < d < 1} be a five element chain and a = a◦ = c◦ = a+ = d+, d◦ = 1◦ =
0, 0+ = c+ = 1. It is clear that (L;◦ ,+ ) is a regular double MS-algebra, L◦◦ = {0, a, 1} and L◦◦∨ = {a, 1}. A filter
F = {a, 1} of L◦◦ contains L◦◦∨. It is observed that (L,◦ ,+ ) is a DMS1c-algebra. Since D(L) = {1, d} and D(L) = {0, c}
then K(L) = D(L) ∩D(L) = φ. Then L is not a CRDMS-algebra.

4. The construction

The construction of a core regular double MS-algebra from a suitable de Morgan algebra is given in the
following.

Theorem 4.1. (Construction Theorem)

Let (M;∨,∧,− , 0, 1) be a de Morgan algebra. Then

M[2] = {(a, b) ∈M ×M : a ≤ b}

is a core regular double CRDMS-algebra with core element (0, 1), whenever

(a, b) ∨ (c, d) = (a ∨ c, b ∨ d),
(a, b) ∧ (c, d) = (a ∧ c, b ∧ d),

(a, b)+ = (ā, ā),
(a, b)◦ = (b̄, b̄)

0M[2] = (0, 0)
1M[2] = (1, 1).

Moreover, M is isomorphic to D(M[2]) as well as D(M[2]) as lattices.
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Proof. T.S. Blyth and J.c. Varlet [10] observed that M[2] = (M[2];∨,∧,◦ ,+ , (0, 0), (1, 1)) is a double MS-algebra.
Let (a, b)◦ = (c, d)◦ and (a, b)+ = (c, d)+. Then (b̄, b̄) = (d̄, d̄) and (ā, ā) = (c̄, c̄) imply a = c and b = d. Thus
(a, b) = (c, d). Therefore M[2] is a regular double MS-algebra. By Theorem 3.5, D(M[2]) is a filter of M[2] and
D(M[2]) is an ideal of M[2]. We observe that

D(M[2]) = {(x, y) ∈M[2] : (x, y)◦ = (0, 0)}
= {(x, y) ∈M[2] : (ȳ, ȳ) = (0, 0)}
= {(x, y) ∈M[2] : ȳ = 0}
= {(x, y) ∈M[2] : y = 1}
= {(x, 1) ∈M[2] : x ∈M},

and

D(M[2]) = {(x, y) ∈M[2] : (x, y)+ = (1, 1)}
= {(x, y) ∈M[2] : (x̄, x̄) = (1, 1)}
= {(x, y) ∈M[2] : x̄ = 1}
= {(x, y) ∈M[2] : x = 0}
= {(0, y) ∈M[2] : y ∈M}.

Now, we prove that the element (0, 1) is the core element of M[2]. Since (0, 1)◦ = (0, 0), then (0, 1) ∈ D(L). We
claim that D(L) is a principal filter of M[2] generated by (0, 1). Let (x, 1) be any element of D(L). Then x ≥ 0
implies (x, 1) ≥ (0, 1). Therefore (0, 1) is the smallest element of D(L) and D(L) = [(0, 1)). Similarly, we can
prove that D(L) is a principal ideal of M[2] generated by (0, 1). Thus D(L) = ((0, 1)]. Consequently, the core
of M[2] is K(M[2]) = D(M[2]) ∩ D(M[2]) = [(0, 1)) ∩ ((0, 1)] = {(0, 1)}. To prove that the lattices M and D(M[2])
are isomorphic, define a map f : M → D(M[2]) by f (a) = (a, 1). Clearly f (0) = (0, 1) and f (1) = (1, 1). For
every a, b ∈M, we have

f (a ∧ b) = (a ∧ b, 1) = (a, 1) ∧ (b, 1) = f (a) ∧ f (b).

Also, f (a ∨ b) = f (a) ∨ f (b). Therefore f is a {0, 1}-lattice homomorphism. Obviously f is a bijective map.
Therefore f is an isomorphism and M � D(M[2]). Similarly, we can deduce that M � D(M[2]) under the
lattice isomorphism a 7→ (0, a). Therefore D(M[2]) and D(M[2]) are also isomorphic lattices.

We illustrate the above construction on the following example.

Example 4.2. Let M be the four-element de Morgan algebra (see Fig. 2).

M

c1 = 0̄

c
0 = 1̄

c b = b̄cā = a

Figure 2: M is a de Morgan algebra.

Using the construction Theorem (theorem 4.1), we obtain a core regular double MS-algebra M[2] in figure
3.
Where ◦ and + are given as follows:
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M[2]

c(0, 1)

c(b, 1)c(a, 1)

c(1, 1)

c
(0, 0)

c (0, b)

c(b, b)

c(0, a)

c(a, a)

Figure 3: M[2] is a CRDMS-algebra with core (0, 1).

(0, b)◦ = (b, b)◦ = (b, b), (0, 1)◦ = (b, 1)◦ = (a, 1)◦ = (1, 1)◦ = (0, 0), (0, a)◦ = (a, a)◦ = (a, a), (0, 0)◦ = (1, 1) and
(0, k)+ = (0, a)+ = (0, b)+ = (0, 0)+ = (1, 1), (a, a)+ = (a, 1)+ = (a, a), (b, b)+ = (b, 1)+ = (a, a), (1, 1)+ = (0, 0).
Clearly, (M[2])◦◦ = {(0, 0), (a, a), (b, b), (1, 1)} is isomorphic to M under a map (a, a) 7→ a and D(M[2]) =
{(0, 1), (a, 1), (b, 1), (1, 1)} is isomorphic to M under a map (x, 1) 7→ x.

Definition 4.3. A mapping f : M → M1 of a de Morgan algebra M into a de Morgan algebra M1 is said to be
a homomorphism if f is a {0, 1}-lattice homomorphism satisfying f (x) = ( f (x)). A bijective homomorphism of de
Morgan algebras is called isomorphism.

Corollary 4.4. M is isomorphic to (M[2])◦◦ as de Morgan algebras.

Proof. It is known that ((M[2])◦◦,∨,∧,◦ , (0, 0), (1, 1)) is a de Morgan subalgebra of M[2] (by Theorem 2.11(1)).
Let (a, b) ∈ (M[2])◦◦. Then (a, b)◦◦ = (a, b) implies (b, b) = (a, b). Hence a = b. Therefore

(M[2])◦◦ = {(a, a) : a ∈M}.

Then clearly a map a 7→ (a, a) is an isomorphism of M onto (M[2])◦◦. Consequently, M � (M[2])◦◦.

For a core regular double Stone algebra, we have.

Corollary 4.5. If B = (B;∨,∧,
′

, 0, 1) is a Boolean algebra, then B[2] is a core regular double Stone algebra and (B[2])◦◦

is a Boolean subalgebra of B[2], where ′ is a unary operation of complementation on B.

Proof. For any element x of a Boolean algebra B, we have the facts x ∨ x′ = 1 and x ∧ x′ = 0. Since each
Boolean algebra is a de Morgan algebra, then according to the above Theorem 4.1, B[2] = {(a, b) : a ≤ b}
is a core regular double MS-algebra with core element (0, 1). We prove that (a, b) ∧ (a, b)◦ = (0, 0) and
(a, b) ∨ (a, b)+ = (1, 1) for all (a, b) ∈ B[2].

(a, b) ∧ (a, b)◦ = (a, b) ∨ (b
′

, b
′

)
= (a ∧ b

′

, b ∧ b
′

)
= (a ∧ b

′

, 0) ∈ B[2] as b ∧ b
′

= 0
= (0, 0) as a ∧ b

′

≤ 0⇒ a ∧ b
′

= 0
(a, b) ∨ (a, b)+ = (a, b) ∨ (a

′

, a
′

)
= (a ∨ a

′

, b ∨ a
′

)
= (1, b ∨ a

′

) ∈ B[2] as a ∨ a
′

= 1
= (1, 1) as 1 ≤ b ∨ a

′

⇒ b ∨ a
′

= 1.
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Therefor B[2] is a core double Stone algebra. By Theorem 2.11(1), (B[2])◦◦ is a de Morgan subalgebra of B[2].
From corollary 4.2, (B[2])◦◦ = {(a, a) : a ∈ B}. Since (a, a) ∨ (a, a)◦ = (1, 1) and (a, a) ∧ (a, a)◦ = (0, 0) for all
(a, a) ∈ (B[2])◦◦, then (B[2])◦◦ is a Boolean subalgebra of B[2].

Definition 4.6. A mapping f : L→ L1 of a CRDMS-algebra L with core element k into a CRDMS-algebra L1 with
core element k1 is called a homomorphism if

(1) f is a {0, 1}-lattice homomorphism,

(2) f (k) = k1, f (x◦) = ( f (x))◦ and f (x+) = ( f (x))+.
A bijective homomorphism of CRDMS-algebras is called isomorphism.

Theorem 4.7. A CRDMS-algebra L with core element k is isomorphic to L◦◦[2].

Proof. Since L◦◦ is a de Morgan algebra, then by Theorem 4.1, L◦◦[2] = {(a, b) ∈ L◦◦ × L◦◦ : a ≤ b} is a CRDMS-
algebra with core element (0, 1). Define ϕ : L→ L◦◦[2] by ϕ(x) = (x++, x◦◦). Since x++

≤ x◦◦, then ϕ(x) ∈ L◦◦[2].
To prove that ϕ is an injective map, let ϕ(x) = ϕ(y). Then (x++, x◦◦) = (y++, y◦◦). Hence x++ = x++ and
x◦◦ = x◦◦. Then by Theorem 2.10(3d),(3), we have x+ = x+++ = y+++ = y+ and x◦ = x◦◦◦ = y◦◦◦ = y◦. By
regularity of L, x = y. Now, we prove that ϕ is surjective. For all (a, b) ∈ L◦◦[2], we have a ≤ b and a, b ∈ L◦◦.
Set d = (a ∨ k) ∧ b. Using (6),(6d),(7)and (7d) of Theorem 2.10, and k+=1, k◦ = 0, we have

d++ = ((a ∨ k) ∧ b)++ = (a++
∨ k++) ∧ b++ = (a ∨ 0) ∧ b = a ∧ b = a,

and

d◦◦ = ((a ∨ k) ∧ b)◦◦ = (a◦◦ ∨ k◦◦) ∧ b◦◦ = (a ∨ 1) ∧ b = 1 ∧ b = b.

Thus ϕ(d) = (d++, d◦◦) = (a, b). Therefore ϕ is a bijective mapping. Clearly, ϕ(0) = (0, 0), ϕ(1) = (1, 1) and
ϕ(k) = (0, 1). For all x, y ∈ L, we get

ϕ(x ∧ y) = ((x ∧ y)++, (x ∧ y)◦◦)
= (x++

∧ y++, x◦◦ ∧ y◦◦) by Theorem 2.10(7),(7d)
= (x++, x◦◦) ∧ (y++, y◦◦)
= ϕ(x) ∧ ϕ(y, )

ϕ(x ∨ y) = ((x ∨ y)++, (x ∨ y)◦◦)
= (x++

∨ x++, x◦◦ ∨ y◦◦) by Theorem 2.10(6),(6d)
= (x++, x◦◦) ∨ (y++, y◦◦)
= ϕ(x) ∨ ϕ(y).

Therefore ϕ is a {0, 1}-lattice homomorphism. Now, for all x ∈ L we have

ϕ(x+) = (x+++, x+◦◦)
= (x+++, x+++) as x+◦ = x++

= (x++, x◦◦)+

= (ϕ(x))+,

ϕ(x◦) = (x◦++, x◦◦◦)
= (x◦◦◦, x◦◦◦) as x◦+ = x◦◦

= (x++, x◦◦)◦

= (ϕ(x))◦.

Thenϕ preserves + and ◦. Consequently,ϕ is an isomorphism of a CRDMS-algebra L onto a CRDMS-algebra
L◦◦[2]. So L � L◦◦[2].

From the above discussion, we immediately get the following important result.
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Theorem 4.8. There is a one to one correspondence between the class of core regular double MS-algebras and the
class of de Morgan algebras.

Now, we give another useful characterization of a core regular double MS-algebra.

Theorem 4.9. Let L be a RDMS-algebra. Then the following statements are equivalent.

(i) L has core element,

(ii) For a, b ∈ L◦◦ and a ≤ b, there exists an element x ∈ L such that x++ = a and x◦◦ = b.

Proof. (i)⇒ (ii): Let L has core element k. Let a ≤ b, a, b ∈ L◦◦. Set x = (a ∨ k) ∧ b. It is clear that x++ = a and
x◦◦ = b. Then condition (ii) holds.
(ii) ⇒ (i): Let L be a regular double MS-algebra satisfying the condition (ii). Then by Theorem 4.1,
L◦◦[2] = {(a, b) ∈ L◦◦ × L◦◦ : a ≤ b} is a core regular double MS-algebra with core element (0, 1). Define a map
ϕ : L → L◦◦[2] by ϕ(x) = (x++, x◦◦). In the proof of Theorem 4.7, we show that ϕ is an injective mapping
of L into L◦◦[2]. Now we show that ϕ is a surjective mapping using (ii). Let (a, b) ∈ L◦◦[2]. Then a ≤ b and
a, b ∈ L◦◦. By (ii) there exists x ∈ L such that x++ = a and x◦◦ = b. Then ϕ(x) = (x++, x◦◦) = (a, b). Therefore ϕ
is a bijective mapping of L onto L◦◦[2]. We claim that the inverse image of the core element (0, 1) of L◦◦[2] is
the core element of L. Suppose that d = ϕ−1(0, 1). Then ϕ(d) = (0, 1) implies (d++, d◦◦) = (0, 1). Thus d++ = 0
and d◦◦ = 1. It follows that d+ = 1 and d◦ = 0. This deduce that d is the core element of L.

Now, for any de Morgan algebra M = (M;∨,∧,− , 0, 1) and any filter F of M containing M∨, the author
proved in [2] that (L;∨,∧,◦ ,+ , (0, 0), (1, 1)) forms a DMS1c-algebra, where

L = (M,F) = {(a, b) : a ≤ b, a ∨ b̄ ∈ F}

and the operations ∨,∧,◦ and + are given as in Theorem 4.1.

The following result gives the necessary and sufficient condition for a DMS1c-algebra L = (M,F) to
become a core regular double MS-algebra.

Theorem 4.10. A DMS1c-algebra L = (M,F) is a CRDMS-algebra iff F = M.

Proof. Let F = M. Then L = (M,M) = M[2]. Thus by Theorem 4.1, L = M[2] is a core regular double
MS-algebra with core element (0,1). Conversely, Let L = (M,F) is a core regular double MS-algebra with
core element (a, b). Then (a, b) ∈ D(L)∩D(L) and a∨ b ∈ F. Hence (a, b)◦ = (0, 0) and (a, b)+ = (1, 1). It follows
that (b̄, b̄) = (0, 0) and (ā, ā) = (1, 1), respectively. Then b = 0 and a = 1 implies b = 1 and a = 0, respectively.
Then (a, b) = (0, 1) and hence 0 = 0 ∨ 1 = a ∨ b ∈ F. Therefore F = M.

5. Applications of the construction Theorem

We start this section with subalgebras of a CRDMS-algebra.

Definition 5.1. A bounded sublattice H of a CRDMS-algebra L with core element k is said to be a subalgebra of L if

(1) x◦, x+
∈ H for all x ∈ H,

(2) k ∈ H.

It is observed that {0, k, 1} is the smallest subalgebra of any CRDMS-algebra L.

The subalgebras of a CRDMS-algebra L in example 3.9(2) are {0, k, 1}, {0, c, a, k, x, 1}, {0, d, b, k, y, 1} and L.

Theorem 5.2. There is one to one correspondence between the set of all subalgebras of a de Morgan algebra M and
the set of all subalgebras of a CRDMS-algebra M[2].
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Proof. Let M1 be a subalgebra of M. We prove that a set M[2]
1 = {(a, b) ∈ M1 ×M1 : a ≤ b} is a subalgebra

of M[2]. Since 0, 1 ∈ M1, then (0, 0), (1, 1) and (0, 1) are belong to M[2]
1 . For every (a, b), (c, d) ∈ M[2]

1 . Then
a, b, c, d ∈M1 and hence a ∨ c, b ∨ d, a ∧ c, b ∧ d ∈M1. Thus

(a, b) ∨ (c, d) = (a ∨ c, b ∨ d) ∈M[2]
1 as a ∨ c ≤ b ∨ d,

(a, b) ∧ (c, d) = (a ∧ c, b ∧ d) ∈M[2]
1 as a ∧ c ≤ b ∧ d.

Therefore M[2]
1 is a bounded sublattice of M[2]. Let (a, b) ∈M[2]

1 . Then a, b ∈M1 and hence ā, b̄ ∈M1 (as M1 is
a subalgebra of M). Thus

(a, b)+ = (ā, ā) ∈M[2]
1 ,

(a, b)◦ = (b̄, b̄) ∈M[2]
1 .

The core element (0, 1) of M[2] belongs to M[2]
1 . Therefore M[2]

1 is a subalgebra of M[2].
Conversely, let L1 be a subalgebra of M[2]. Consider a subset M1 of M as follows:

M1 = {a ∈M : (a, a) ∈ L1}.

We claim that M1 is a subalgebra of M. Since (0, 0), (1, 1) ∈ L1, then 0, 1 ∈ M1. Let x, y ∈ M1. Hence
(x, x), (y, y) ∈ L1. Now

(x, x) ∧ (y, y) = (x ∧ y, x ∧ y) ∈ L1 ⇒ x ∧ y ∈M1,

(x, x) ∨ (y, y) = (x ∨ y, x ∨ y) ∈ L1 ⇒ x ∨ y ∈M1,

(x, x)◦ = (x̄, x̄) ∈ L1 ⇒ x̄ ∈M1.

Therefore M1 is a subalgebra of a de Morgan algebra M.

A clarification of the correspondence between subalgebras of a de Morgan algebra M and a CRDMS-algebra
M[2] is provided in the following example.

Example 5.3. Consider a de Morgan algebra M and a CRDMD-algebra M[2] in example 4.2. We observe that the
subalgebras M1 = {0, 1},M2 = {0, a, 1},M3 = {0, b, 1},M4 = M of a de Morgan algebra M are corresponding to the
subalgebras M[2]

1 = {(0, 0), (0, 1), (1, 1)},
M[2]

2 = {(0, 0), (0, a), (0, 1), (a, a), (a, 1), (1, 1)}, M[2]
3 = {(0, 0), (0, b), (b, b)(0, 1), (b, 1), (1, 1)},

M[2]
4 = M[2] of a CRDMS-algebra M[2], respectively.

Definition 5.4. A subalgebra L1 of a CRDMS-algebra L is said to be a Stone subalgebra if x◦ ∨ x◦◦ = 1 and
x+
∧ x++ = 0 for all x ∈ L1.

Corollary 5.5. There is one to one correspondence between the set of all Boolean subalgebras of a de Morgan algebra
M and the set of all Stone subalgebras of the CRDMS-algebra M[2].

Proof. Let M1 is a Boolean subalgebra of a de Morgan algebra M. Then x∧ x = 0 and x∨ x = 1 for all x ∈M1.
Theorem 5.2 shows that M[2]

1 is a subalgebra of M[2]. We need to prove that the Stone identities hold in M[2]
1 .

For all (x, y) ∈M[2]
1 , we get

(x, y)+
∧ (x, y)++ = (x̄, x̄) ∧ (x, x) = (x̄ ∧ x, x̄ ∧ x) = (0, 0)

(x, y)◦ ∨ (x, y)◦◦ = (ȳ, ȳ) ∨ (y, y) = (ȳ ∨ y, ȳ ∨ y) = (1, 1).

Conversely, let L1 is a Stone subalgebra of M[2]. Then by Theorem 5.2, M1 = {a ∈ M : (a, a) ∈ L1} is a
subalgebra of a de Morgan algebra M. To prove M1 is a Boolean subalgebra of M, we have to show that
a ∨ a = 1 and a ∧ a = 0 for a ∈ M1. Let a ∈ M1. Then (a, a) ∈ L1. Since L1 is a Stone subalgebra of M[2] then
(1, 1) = (a, a)◦ ∨ (a, a)◦◦ = (a∨ a, a∨ a). Therefore a∨ a = 1. Also, (0, 0) = (a, a)◦ ∧ (a, a)◦◦ = (a∧ a, a∧ a) implies
that a ∧ a = 0.
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It is known that the center Z(M) = {x ∈M : x∨ x̄ = 1} of a de Morgan algebra M forms a Boolean subalgebra
of M.

Corollary 5.6. (Z(M))[2] is the greatest Stone subalgebra of M[2].

Example 5.7. Consider a de Morgan algebra M and a CRDMD-algebra M[2] in example 4.2. The center Z(M) = {0, 1}
of M correspond to the greatest Stone subalgebra M[2]

1 = {(0, 0), (0, 1), (1, 1)} of a CRDMS-algebr M[2].

Let h : L → L1 be a homomorphism of a CRDMS-algebra L into a CRDMS-algebra L1. We will denote
by hL◦◦ , hD(L) and hD(L) to the restrictions of h on L◦◦, D(L) and D(L), respectively. It is easy to show the
following.

Lemma 5.8. Let h : L→ L1 be a homomorphism of a CRDMS-algebra L into a CRDMS-algebra L1. Then

(1) hL◦◦ is a homomorphism of a de Morgan algebras L◦◦ into a de Morgan algebra L◦◦1 ,

(2) hD(L) is a {0, 1}-lattice homomorphism of a lattice D(L) into a lattice D(L1),

(3) hD(L) is a {0, 1}-lattice homomorphism of a lattice D(L) into a lattice D(L1).

Theorem 5.9. Let M and M1 be de Morgan algebras. If f : M → M1 is a homomorphism, then a map h :
M[2]

→ M[2]
1 defined by h(a, b) = ( f (a), f (b)) is a homomorphism of a CRDMS-algebra M[2] into a CRDMS-algebra

M[2]
1 . Conversely, if h : M[2]

→ M[2]
1 is a homomorphism of CRDMS-algebras, then f : M → M1 defined by

f (a) = b⇔ h(M[2])◦◦ (a, a) = (b, b) for all a ∈M is homomorphism of de Morgan algebras.

Proof. Let f : M → M1 be a homomorphism between de Morgan algebras M and M1. It is ready seen that
a map h : M[2]

→ M[2]
1 defined by h(a, b) = ( f (a), f (b)) is a homomorphism of a DMS-algebra M[2] into a

DMS-algebra M[2]
1 . Since h(0, 1) = ( f (0), f (1)) = (0, 1), then h is a homomorphism of CRDMS-algebra M[2]

into a CRDMS-algebra M[2]
2 .

Conversely, let h : M[2]
→M[2]

1 be a homomorphism of M[2] into M[2]
1 . Define a map f : M→M1 as follows:

f (a) = b⇔ h(M[2])◦◦ (a, a) = h(a, a) = (b, b) for all a ∈M.

Using Lemma 5.8(1), h(a, a) = (b, b) ∈ M[2]
1 . Then f (a) = b ∈ M1 for all a ∈ M. Since h(0, 0) = (0, 0) and

h(1, 1) = (1, 1), then f (0) = 0 and f (1) = 1, respectively. For all x, y ∈ M, by Lemma 5.8(1), we have
h(x, x) = (x1, x1) and h(y, y) = (y1, y1). Then f (x) = x1 and f (y) = y1. Now,

h(x ∧ y, x ∧ y) = h((x, x) ∧ (y, y))
= h(x, x) ∧ h(y, y)
= (x1, x1) ∧ (y1, y1)
= (x1 ∧ y1, x1 ∧ y1).

Then f (x∧y) = x1∧y1 = f (x)∧ f (y). Using similar way, we get f (x∨y) = f (x)∨ f (y). Since h((x, x)◦) = (h(x, x))◦,
then h(x̄, x̄) = (x1, x1)◦ = (x̄1, x̄1). Hence f (x̄) = x̄1 = f (x). Therefore f is a homomorphism of de Morgan
algebra M into a de Morgan algebra M1.

Definition 5.10. [10] An element a of a lattice L with 0 is said to be an atom of L if a , 0 and for any x ∈ L, x ≤ a,
then either x = 0 or x = a. Dually, an element d of a lattice L with 1 is said to be a coatom (dual atom) of L if d , 1
and for any x ∈ L, d ≤ x, then either x = 1 or x = d. Let At(L) be the set of all atoms of L. A lattice L with zero
element is said to be atomic if for every nonzero element x of L, there exists an atom a of L such that a ≤ x.

Now, we obtain many properties of atoms and coatoms of CRDMS-algebras that should be useful for further
discussion.

Lemma 5.11. For a CRDMS-algebra M[2], we have
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(1) x = (a, b) ∈M[2] is an atom of M[2] if and only if b ∈ At(M) and a = 0,

(2) x = (a, b) ∈M[2] is a coatom of M[2] if and only if a is a coatom of M and b = 1.

Proof. (1). Suppose that x = (a, b) ∈ M[2] is an atom of M[2]. If b is not an atom of M, there exists 0 < b1 < b
and y = (b1∧ a, b1) ∈M[2]. Thus y < x, which contradicts with the fact that x is an atom of M[2]. Hence b is an
atom of M. Now, since a ≤ b and b is an atom of M, we have a = 0 or a = b. If a = b then (0, 0) < (0, b) < (a, b),
which contradicts with that (a, b) is an atom of M[2]. Then a = 0. Conversely, let b is an atom of M and b = 0.
Then we have to show that x = (0, b) is an atom of M[2]. Let y = (c, d) is an element of M[2] such that y ≤ x.
Then c = 0 and d ≤ b. Since b is an atom of M, then d = 0 and y = (0, 0). Therefore x = (0, b) is an atom of
M[2] as claimed.

(2) By duality of (1).

Corollary 5.12.

(1) b is an atom of M if and only if (0, b) is an atom of M[2],

(2) b is a coatom of M if and only if (b, 1) is a coatom of M[2],

(3) there is a one to one correspondence between the set of all atoms (coatoms) of M and the st of all atoms (coatoms)
of M[2].

Theorem 5.13. Let M be a de Morgan algebra and a ∈M. Then

(1) (0, a) is an atom of M[2] implies (ā, 1) is a coatom of M[2],

(2) (a, 1) is a coatom of M[2] implies (0, ā) is an atom of M[2],

(3) there is a one to one correspondence between the set of all atoms of M[2] and the set of all coatoms of M[2].

Proof. (1). Let (0, a) is an atom of M[2]. Then by Corollary 5.12(1), a is an atom of M. Clearly (ā, 1) ∈ M[2].
Let (x, y) ≥ (ā, 1) for some (x, y) ∈ M[2]. Then x ≥ ā and y = 1 implies x̄ ≤ a and y = 1. Since a is an atom
of M, then x = 0 or x = a. It follows that x = 1, y = 1 or x = ā, y = 1. Hence (x, y) = (1, 1) or (x, y) = (ā, 1).
Therefore (ā, 1) is a coatom of M[2].
The proof of (2) is similar to that of (1)and the proof of (3) follows (1) and (2).

Theorem 5.14. A de Morgan algebra M is atomic if and only if M[2] is atomic.

Proof. Let M be an atomic de Morgan algebra. Let (a, b) is a nonzero element of M[2]. Then a ≤ b. Hence
a = 0 or a , 0 but b , 0. If a = 0, then there exist atom of M say c such that c ≤ b. Then by Corollary 5.10(1),
(0, c) is an atom of M[2] and (0, c) ≤ (0, b) = (a, b). If a , 0 then there exists an atom of M say x such that
x ≤ a. Hence (0, x) is an atom of M[2] with (0, x) ≤ (a, a) ≤ (a, b). Therefore M[2] is an atomic core regular
double MS-algebra. Conversely, let M[2] is atomic. Let 0 , a ∈ M. Then (a, a) is a nonzero element of M[2].
Thus there exists an atom of M[2] say (0, y) with (0, y) ≤ (a, a). Consequently y is an atom of M with y ≤ a.
Therefore M is atomic.

In the following example, we clarify the properties of atoms and coatoms of M and M[2].

Example 5.15. Consider a de Morgan algebra M and a CRDMD-algebra M[2] in example 4.2. We observe the
following.

(1) At(M) = {a, b} and At(M[2]) = {(0, a), (0, b)}, where a, b are corresponding to (0, a), (0, b), respectively.

(2) {a, b} and {(a, 1), (b, 1)} are the sets of coatoms of M and At(M[2]), respectively. Also, a, b are corresponding to
(a, 1), (b, 1), respectively.

(3) The atoms (0, a), (0, b) of M[2] are corresponding to the coatoms (a, 1), (b, 1) of M[2], respectively.

(4) It is ready seen that M is an atomic de Morgan algebra and M[2] is an atomic CRDMS-algebra.

Definition 5.16. [7] A lattice L is called complete if infL H and supL H exist for each φ , H ⊆ L.
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A CRDMS-algebra L is called complete if considered as a lattice it is complete.

Let H = {xi = (ai, bi) : i ∈ I} ⊆M[2]. We can write supL H =
∨

i∈I xi and infL H =
∧

i∈I xi.

Theorem 5.17. If M is a complete de Morgan algebra, then M[2] is complete CRDMS-algebra.

Proof. Let φ , H ⊆ M[2]. Consider H = {(ai, bi) ∈ M[2], i ∈ I}. Since M is complete, then
∨

i∈I ai and
∨

i∈I ai
exist. Hence ai ≤

∨
i∈I ai and bi ≤

∨
i∈I bi. So, (ai, bi) ≤ (

∨
i ai,
∨

i bi) and hence (
∨

i∈I ai,
∨

i∈I bi) is an upper
bound of H. Let (x, y) be an upper bound of H. Then (ai, bi) ≤ (x, y) implies ai ≤ x and bi ≤ y. Therefore∨

ai∈I ≤ x and
∨

bi∈I ≤ y and (
∨

ai∈I,
∨

bi∈I) ≤ (x, y). Then (
∨

ai∈I,
∨

bi∈I) = sup H. Similarly, we can show
that (

∧
ai∈I,
∧

bi∈I) = inf H. Then M[2] is complete.

Theorem 5.18. Let M[2] be a complete CRDMS-algebra. Then

(1) (M[2])◦◦ is complete,

(2) M is complete.

Proof. (1). Let φ , H ⊆ (M[2])◦◦. Since M[2] is complete and H ⊆ M[2], then sup H and inf H exist in
M[2]. Assume that (a, b) = supM[2] H and (c, d) = infM[2] H. We prove that (b, b) = sup(M[2])◦◦ H. Since
(a, b) = supM[2] H, then (h, h) ≤ (a, b) for all h ∈ H. Thus (h, h) = (h, h)++

≤ (a, b)++ = (a, a) and hence
(a, a) is an upper bound of H. Since (a, b) = supM[2] H, then (a, b) ≤ (a, a) implies b ≤ a. But a ≤ b as
(a, b) ∈M[2]. Therefore a = b and (a, b) = (b, b) ∈ (M[2])◦◦ and (b, b) = sup H(M[2])◦◦ . Similarly, we can show that
inf H ∈ (M[2])◦◦ = (d, d). Therefor (M[2])◦◦ is complete de Morgan algebra.

(2) Let φ , C ⊆ M. Since M isomorphic to (M[2])◦◦ (see Corollary 4.4) then Ć = {(c, c) : c ∈ C} ⊆ (M[2])◦◦

corresponds to C. Since by (1), (M[2])◦◦ is complete and Ć ⊆ (M[2])◦◦ then sup(M[2])◦◦ Ć and sup(M[2])◦◦ Ć exist.
Assume (x, x) = sup(M[2])◦◦ Ć and (y, y) = inf(M[2])◦◦ Ć. Then (c, c) ≤ (x, x) for all (c, c) ∈ Ć implies c ≤ x for all
c ∈ C. Thus x is an upper bound of C. Let y be an upper bound of C. Then c ≤ y for all c ∈ C implies
(c, c) ≤ (y, y) for all (c, c) ∈ Ć. Hence (y, y) is an upper bound of Ć. Then (x, x) ≤ (y, y) as (x, x) = sup(M[2])◦◦ Ć.
Therefore x ≤ y and x = supM C. Using a similar way, we get y = infM C. Then M is complete.

Combining Theorem 5.17 and Theorem 5.18(2), we have

Theorem 5.19. A de Morgan algebra M is complete if and only if M[2] is a complete CRDMS-algebra.

Now, we give two examples of complete atomic CRDMS-algebras, the first one is finite and the second one
is infinite.

Example 5.20.

(1) Consider a CRDMS-algebra L in example 3.9(2). We have At(L) = {c, d}. It is clear that L is a finite complete
atomic CRDMS-algebra.

(2) Let M = {0} ⊕ [0, 1]⊕ 1 be an infinite chain, where [0, 1] is a real closed interval and ⊕ stands for the ordinal sum.
Then (M;∨,∧, 0, 1) forms a bounded distributive lattice, where x ∨ y = max{x, y}, x ∧ y = min{x, y}, x, y ∈ [0, 1]
and 0, 1 are the smallest and the greatest elements of M, respectively. Define a negation ∼ on M by ∼ x = 1− x for all
x ∈ [0, 1], ∼ 0 = 1 and ∼ 1 = 0. Since At(M) = {0}, then M is atomic. As supM H and infM H exist, for φ , H ⊆M,
then M is complete. Therefore M is a complete atomic de Morgan algebra. Using the construction Theorem, we obtain
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the core regular double MS-algebra M[2], where

M[2] = {(0, 0), (0, 0), ..., (0, 1/2), ..., (0, 1),

(0, 0), ..., (0, 1/2), ...(0, 1), (0, 1),
.

.

.

(1/2, 1/2), ..., (1/2, 3/4), ..., (1/2, 1), (1/2, 1),
.

.

.

(1, 1), (1, 1),

(1, 1)}.

and (x, y)◦ = (∼ y,∼ y), (x, y)+ = (∼ x,∼ x) for all (x, y) ∈ M[2]. Also, K(M[2]) = D(L) ∩ D(L) = {(x, 1) : x ∈
M}∩ {(0, y) : y ∈M} = {(0, 1)}. We have At(M[2]) = {(0, 0)}. By Theorem 5.14, M[2] is atomic. Also, M[2] is complete
(see Theorem 5.17). Therefore M[2] is an infinite complete atomic CRDMS-algebra.

Lemma 5.21. Let M[2] be a complete CRDMS-algebra and xi = (ai, bi) ∈M[2] for all i ∈ I. Then

(1)
∨

i∈I xi = (
∨

i∈I ai,
∨

i∈I bi),

(2)
∧

i∈I xi = (
∧

i∈I ai,
∧

i∈I bi),

(3) (
∨

i∈I xi)◦ =
∧

i∈I x◦i ,

(4) (
∧

i∈I xi)+ =
∨

i∈I x+
i .

Proof. (1). Since M[2] is complete, then by Theorem 5.6, M is also complete. Hence
∨

i∈I ai and
∨

i∈I bi exist in
M. Then ai ≤

∨
i∈I ai and bi ≤

∨
i∈I bi imply (ai, bi) ≤ (

∨
i∈I ai,

∨
i∈I bi). Hence (

∨
i∈I ai,

∨
i∈I bi) is an upper bound

of xi for all i ∈ I. Let (a, b) be an upper bound of xi. Therefore ai ≤ a and bi ≤ b for all i ∈ I. Hence a is an
upper bound of ai and b is an upper bound of bi for all i ∈ I. So, (

∨
i∈I ai,

∨
i∈I bi) ≤ (a, b) and (

∨
i∈I ai,

∨
i∈I bi)

is the least upper bound of xi for all i ∈ I.

(2) The proof is similar to that of (1).

(3) Since
∨

i∈I xi ≥ xi, then (
∨

i∈I Xi)◦ ≤ x◦i . Hence (
∨

i∈I Xi)◦ is a lower bound of x◦i . Let y be a lower bound of
x◦i . Then y ≤ x◦i implies y◦ ≥ x◦◦i ≥ xi. Then y◦ is an upper bound of xi and this gives

∨
i∈I xi ≤ y◦. Therefore

(
∨

i∈I xi)◦ ≥ y◦◦ ≥ y. Then we deduce that (
∨

i∈I xi)◦ is the greatest lower bound of x◦i and (
∨

i∈I xi)◦ =
∧

i∈I x◦i .

(4) The proof is similar to that of (3).

Definition 5.22. A subalgebra L1 of a complete CRDMS-algebra L is called a complete subalgebra of L if infL H ∈ L1
and supL H ∈ L1 for every subset H of L1.

Theorem 5.23. Let M[2]
1 be a subalgebra of a complete CRDMS-algebra M[2]. Then M[2]

1 is complete subalgebra of
M[2] if and only if M1 is a complete subalgebra of M.

Proof. Let M[2]
1 is a complete subalgebra of M[2]. Let φ , H ⊆M1. Consider the subset H́ = {xi = (ai, ai) : ai ∈

H, i ∈ I} of M[2]
1 corresponding to H. Since M[2] is complete, then by Lemma 5.21(1), (2), we have

sup
M

H́ =
∨
i∈I

xi = (
∨
i∈I

ai,
∨
i∈I

ai) ∈M[2]
1 ,

inf
M

H́ =
∧
i∈I

xi = (
∧
i∈I

ai,
∨
i∈I

ai) ∈M[2]
1 .
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Hence
∨

i∈I ai ∈ M1 and
∧

i∈I ai ∈ M1. Then M1 is complete complete subalgebra of M. Conversely, let M1 is
a complete subalgebra of a complete de Morgan algebra M. Let φ , H ⊆M[2]

1 . Then

H = {xi = (ai, bi) ∈M[2]
1 , i ∈ I} ⊆M[2]

1 .

Since M1 is complete subalgebra of M, then we have∨
i∈I ai ∈M1 and

∨
i∈I bi ∈M1.

Also,
∧

i∈I ai ∈M1 and
∧

i∈I bi ∈M1. Then by Lemma 5.21,(1),(2), respectively, we get∨
M[2]

H =
∨
i∈I

xi = (
∨
i∈I

ai,
∨
i∈I

bi) ∈M[2]
1 ,∧

M[2]

H =
∧
i∈I

xi = (
∧
i∈I

ai,
∧
i∈I

bi) ∈M[2]
1 .

Then M[2]
1 is a complete subalgebra of a CRDMS-algebra M[2].

Definition 5.24. [6] A lattice homomorphism h : L → L1 of a complete lattice L into a complete lattice L1 is called
complete if

h(infL H) = infL1 h(H) and h(supL H) = supL1
h(H) for each φ , H ⊆ L.

A homomorphism h : L→ L1 of a complete CRDMS-algebra L into a complete CRDMS-algebra L1 is called
complete if it is complete as a lattice homomorphism.

Theorem 5.25. Let M and M1 are complete de Morgan algebras. If f : M → M1 is a complete homomorphism,
then h : M[2]

→ M[2]
1 defined by h(a, b) = ( f (a), f (b)) is a complete homomorphism of M[2] into M[2]

1 . Conversely, if
1 : M[2]

→M[2]
1 is a complete homomorphism, then f : M→M1 defined by f (a) = b⇔ 1(a, a) = (b, b) is a complete

homomorphism of de Morgan algebras.

Proof. Let f : M → M1 is a complete homomorphism. Then by Theorem 5.9, h : M[2]
→ M[2]

1 defined by
h(a, b) = ( f (a), f (b)) is a homomorphism of CRDMS-algebras M[2] and M[2]

1 . We prove that supM[2]
1

h(H) =

h(supM[2] H) for φ , H ⊆ M[2]. Consider H = {xi = (ai, bi) ∈ M[2] : i ∈ I} for φ , H ⊆ M[2]. Using Lemma
5.21(1), we get supM[2] H =

∨
i∈I xi =

∨
i∈I(ai, bi) = (

∨
i∈I ai,

∨
i∈I bi). Thus

h(sup
M[2]

H) = h(
∨
i∈I

ai,
∨
i∈I

bi)

= ( f (
∨
i∈I

ai), f (
∨
i∈I

bi))

= (
∨
i∈I

f (ai),
∨
i∈I

f (bi))

=
∨
i∈I

( f (ai), f (bi))

=
∨
i∈I

h(ai, bi)

= sup
M[2]

1

h(H),

Using Lemma 5.21(2), we can get inf[2]
M1

= h(infM[2] H). Therefore h is complete. Conversely, let 1 : M[2]
→M[2]

1

is a complete homomorphism of a CRDMS-algebra M[2] into M[2]
1 . Then by Theorem 5.9, a mapping

f : M → M1 defined by f (a) = b ⇔ 1(a, a) = (b, b) is a homomorphism of M into M1. We have to show
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that f is complete. Let φ , H = {ai : i ∈ I} ⊆ M, we prove that f (infM H) = infM1 f (H). Consider a subset
H́ = {xi = (ai, ai) : ai ∈ H, i ∈ I} of M[2] corresponding to H. Since M and M[2] are complete, then by Lemma
5.21(2), we get

infM[2] H́ =
∧

i∈I xi = (
∧

M ai,
∧

i∈I ai)

Let 1(ai, ai) = (bi, bi). Then by definition of f , we have f (ai) = bi. Since 1 is complete, then 1(infM[2] H́) =
infM[2]

1
1(H́). Now

1(inf
M[2]

H́) = 1(
∧
i∈I

(ai, ai)) = 1(
∧
i∈I

ai,
∧
i∈I

ai),

inf
M[2]

1

1(H́) =
∧
i∈I

1(ai, ai)) =
∧
i∈I

(bi, bi)) = (
∧
i∈I

bi,
∧
i∈I

bi).

Then 1(
∧

i∈I ai,
∧

i∈I ai) = (
∧

i∈I bi,
∧

i∈I bi) implies f (infM H) = f (
∧

i∈I ai) =
∧

i∈I bi = infM1 f (H). Similarly, we
can show that f (supM H) = supM1

( f (H)). Then f is complete.
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[17] R. Kumar, M.P.K. Kishore and A.R.J. Srikanth, Core Regular double Stone algebra, Journal of calcutta Mathematical Society, 11

(2015), 1–10.
[18] J.C. Varlet, A regular variety of type (2,2,1,1,0,0), Algebra Universalis 2 (1972), 218–223.


	Introduction
	Preliminaries 
	Core regular double MS-algebras 
	The construction
	Applications of the construction Theorem 

