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Abstract. In this article, we introduce the notion of a spatial quaternionic Bertrand curves in G® and give
some characterizations of such curves. Furthermore, we introduce spatial quaternionic (1,3)—Bertrand
curves in G*.

1. Introduction

The geometry of curves in both Euclidean and Minkowski spaces was represented for many years a
popular topic in the field of classical differential geometry [446) [11]. Global and local properties were
studied in several books and new invariants were defined for curves. Two curves which have a common
principal normal vector at corresponding points are called Bertrand curves [9} [11]].

In four dimensional Euclidean space E*, Bertrand curves are generalized and characterized in [11].
Moreover, in 3—dimensional Galilean space G°, Bertrand curves are defined and characterized in many
papers such as [1},12].

K. Bharathi and M. Nagaraj in [3] were studied quaternionic curves in both Euclidean space E* and Eu-
clidean 4— space E* and gave the Frenet formulae for quaternionic curves. For other results of quaternionic
curves, we refer to the papers [7,8,[10, [14]. Moreover, O. Kecilioglu and K. Ilarslan [9] were proved that if
the bitorsion of a quaternionic curve « is no vanish, then there is no quaternionic curve in the Euclidean 4—
space E* is a Bertrand curve. Therefore, they defined (1,3)— type Bertrand curves for quaternionic curves
in the Euclidean 4— space E* and gave some characterizations for this type in E* by means of the curvature
functions of the curve.

In these regards, we introduce the quaternionic Bertrand curves in the Galilean space G® and give some
characterizations of such curves. Also, we investigate generalized quaternionic Bertrand curves in the
Galilean 4— space G* and deduce general characterizations of these curves.

2. Preliminaries

In this section, we give the basic elements of the theory of quaternions and quaternionic curves. Also,
we introduce a brief note about Bertrand curves in the Galilean space.
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A real quaternion g is an expression of the form
g=aye +axe +azez+ayey

where a;, (1 < i < 4) are real numbers, and ¢; , (1 < i < 4) are quaternionic units which satisfy the
non-commutative multiplication rules

eiXe = —ey, 1<i<3)
e Xej = e =—€Xe¢, (1Si,j,k§3)

where (ijk) is an even permutation of (123) in the Euclidean space [8].
The algebra of the quaternions is denoted by Q and its natural basis is given by (e, e, €3,€4). A real
quaternion can be given by the form
q=354+Vy

where S; = a4 is scalar part and V; = aje; + azez + azes is vector part of q.
On the other hand, the conjugate of g = S; + V is defined by [2]

ag=5,-V,
Let p and g be any two elements of Q. Then the product of p and g is denoted by
pXq =88, = (Vy, Vo) + SV, + SV, + V, AV,

where we have used the inner and cross products in the Galilean space G°.
This defines the symmetric real-valued, non-degenerate, bilinear form as follows:

h : QxQ—-R
1
(p.g) = hp,g)=5lpxaq+qxap]
which is called the quaternion inner product. Then the norm of g is given by
2 1
lal" =g, 9 = Slagxq + gxaqgl=a] + o} + a3 + a
If || g llI= 1, then g is called unit quaternion.

qis called a spatial quaternion whenever g+aq = 0 and called a temporal quaternion whenever g—ag = 0.
Then a general quaternion g can be given as [3]

1 1
q=5lq+aq]+5[q - aq] (1)
Now, we consider a quaternionic curve in E>. The Euclidean space E° is identified with the space of

spatial quaternion { € Q/f + af = 0} in an obvious manner. Let I = [0, 1] be an interval in the real line R
and s € I be the arc-length parameter along the smooth curve

B : ICR-Q
3

s o BE)=) Pl (1<i<3)
i=1

The tangent vector f'(s) = t(s) has unit length [|t(s)|| = 1 for all s. It follows

' xat+txat’' =0
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which implies t’ is orthogonal to t and t’ X at is a spatial quaternion. Let {t,n, b} be the Frenet frame of
B(s), then Frenet formulae are given by

t = kn
n = —kt+7b
b = —-1n

where t, n, b are the unit tangent, the unit principal normal and the unit binormal vector of a quaternionic
curve f3, respectively. The functions k, T are called the principal curvature and the torsion of 8, respectively

[l

Theorem 2.1. [8, 9] The four-dimensional Euclidean space E* are identified with the space of unique quaternions.
Let I = [0, 1] be a unit interval of the real line R and

p : ICR->Q
4

s o BE) =) il (1<i<4)
i=1

be a smooth curve in E* with non zero curvatures {K, k,r — K} and {T(s), N(s), B1(s), Ba(s)} denotes the Frenet frame
of the curve. Then the Frenet formulae are given by

T 0 K 0 0 T
N | |-k o k 0 N 2
By || 0 -k 0 r—K || B
B 0 0 —-(r-K 0 B,

where K is the principal curvature, k is the torsion and (v — K) is the bitorsion of .

The notion of Bertrand curves was discovered by J. Bertrand in 1850 and it plays an important role in
classical differential geometry, and a lot of mathematicians have studied on the Bertrand curves in different
areas [12]. For more about generalized Bertrand curves in the Galilean space and Minkowski space, we
refer to [1}, 14} 6] [10H13]].

3. Quaternionic Bertrand curves in the Galilean 3—Space

Definition 3.1. Let a(s) and B(s*) be two quaternionic curves in G*. {T4(s),N(s), Ba(s)} and {Tp(s"), Ng(s), Bg(s")}
are Frenet frames of these curves, respectively. «(s) and B(s*) are called Bertrand curves if there exist a bijection
¢:ICR—>I, ands — ¢(s) = s, % # 0and the principal normal lines of a(s) and (s*) are linearly dependent.
In other words, if the principal normal lines of a(s) and p(s*) at s € I are parallel.

Theorem 3.2. Let a(s) and B(s*) be a spatial quaternionic Bertrand curves in G3. Then d(a(s), B(s*)) = constant for
allsel.

Proof. From definition (3.1), we can write

B(s7) = a(s) + A(s)Na(s) (3)
differentiating with respect to s and using Frenet equations, we get
Ty(6)' 2 = Ta9) + MONaE) + A Tal9Bals)

Let us put & = ¢’(s) # 0, then we have

oo 1 ,
Tp(s") = 76 [Ta(s) + A (s)Nyu(s) + A(s)Ta(s)Ba(s)] 4)
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Since {N,(s), Ng(s")} is a linearly dependent set, we get h(Na(s), Ng(s)) # 0 hence A’(s) = 0 and A is a constant
functiononl. [

Theorem 3.3. Let a(s) and B(s*) be a spatial quaternionic Bertrand curves in G°. Then the measure of the angle
between the tangent vector field of a(s) and B(s*) is constant.

Proof. Let a(s) and (s*) be a spatial quaternionic Bertrand curves in G® with arc length s and s*, respectively.
Define Ty(s") as follows

T(s") = os 0(5)Ta(s) + sin O(s)Ba(s) )

where 0 is the angle between T,(s) and Tg(s").
Differentiating with respect to s, we obtain

d cos 6(s)

T;(s*)(p'(s) = TTQ(S) + cos 6(s)T5(s) + ME

ds
Since {T,(s), Ba(s), Nu(s)} is the Frenet frame on G® along a(s) and f(s*) is a Bertrand mate of a(s), so
h(Na(s), Ta(s)) h(Na(s), Ba(s)) = h(Ty(s), Ba(s)) = 0
h(Ta(s), Ta(s)) h(Ba(s), Ba(s)) = h(Na(s), Na(s)) = 1

and hence, we obtain

2(5) + sin 6(s)B.,(s)

dsin 6

%(s) =0 = sin6(s) = constant
d

%G(S) =0 = cosH(s) = constant

Therefore, we can deduce that the angle 0 is constant. [

Theorem 3.4. Let a(s) be a spatial quaternionic curve in G with arc length s. a(s) is a spatial quaternionic Bertrand
curve if and only if a(s) has a constant torsion.

Proof. Let a(s) and B(s*) be a spatial quaternionic Bertrand curves in G*. From theorem (3.2), we obtain

@' () Tp(s") = Tals) + ATa(s)Ba(s) (6)
Also, from theorem (3.3), we get
Q'(s) = m and ¢’(s) sin 8(s) = At,(s). Therefore, tan 6(s) = A1,(s) which implies that 7,(s) =

Since 0 is constant we obtain that 7, is constant. Conversely, assume that 7,(s) is constant and define
B(s*) = a(s) + A(s)Nu(s). So, we have

tan 6(s)
-

@' (8)Tp(s") = Ta(s) + ATa(5)Ba(s)
which implies that
(¢'E) =1+ 7)

Differentiating with respect to s, we get

(@'(6)) Kp(sNp(s") = (Ka(s) = AT2(5)) Na(s)
and therefore,
Ka(s) — AT2
1+ A272

which means that Ng(s*) and N,(s) are linearly dependent, and according to definition , it determines
that a(s) and f(s*) are spatial quaternionic Bertrand pair. [

Kig(s)Np(s") = Na(s) (8)
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Corollary 3.5. Let a(s) be a spatial quaternionic curve in G* with arc- length parameter s. «af(s) is a spatial
quaternionic Bertrand curve if Kg(s*) = LK,(s) + M where L and M are constants.

Ta(s) _
6(5)

Theorem 3.6. Let (a(s), B(s*)) be a spatial quaternionic Bertrand pair in G®. Then
Tﬁ(S*) #0.

constant provided that

Proof. If we take a(s) instead of p(s*), then we can write equation (3) in the form:

a(s) = B(s") — ANg(s") ©)

differentiating with respect to s and using Frenet equations, we obtain

Ta(s) = @"(5)Tp(s") = A’ (s) Tp(s")Bp(s") (10)
which implies that
1= (@) = V() T3(s")

= (¢'6)*[1- 1275
Now, from equation (7), we can get
2(s) = T3(s") (1 + A272(5))
which gives
Ta(s) _
Tp(s*)

1+ A272(s)

Ta(S)

T5(s%)

Therefore, is constant. [

4. Quaternionic Bertrand curves in the Galilean 4—Space

Special Bertrand curves in 4D Galilean space was introduced by Oztekin [13]. In this section we
introduce the spatial quaternionic Bertrand curves in G*. Let a(s) be a quaternionic curve in the Galilean
space G*, if K34(s) # 0, then there is no quaternionic curve in G* is a Bertrand curve. Therefore, we can
introduce the following definition.

Definition 4.1. Let «(s) and B(s*) be two spatial quaternionic curves in G*, { Ta(8), Na(s), B14(5), Baa(s) } and
{Tﬁ(s*), Ng(s*), Big(s™), Bzﬁ(s*)} are Frenet frames of these curves, respectively. a(s) and B(s*) are called spatial
quaternionic (1, 3)—Bertrand curves if there exist a bijection

¢ : I->T

*

. ds
s - qi)(s)—s,%;to

and the plane spanned by N (s) , Boa(s) at each point a(s) of the curve a coincides with the plane spanned by Ny(s*) ,
Bog(s*) at corresponding point B(s*) = B(¢(s)) of the curve .

Theorem 4.2. Let a(s) be a spatial quaternionic curve in G* with curvature functions Ki(s), Kaa(s), Kaa(s) and
K34(s) # 0. Then a(s) is a (1, 3)—Bertrand curve if there exist constant real numbers p, o, C and 6 satisfying

1. p Koa(s) — 0 Kau(s) # 0,

2. C(p Kaa(s) =0 Kza(s)) = 1,
3.6 K3a(5) =C Kla(s) - KZa(S)



M. Elzawy, S. Mosa / Filomat 34:1 (2020), 59-66 64

Proof. We assume that a(s) is a (1, 3)— Bertrand curve parametrized by arc length s. The (1,3)— Bertrand
mate fS(s) is given by

B(s™) = B(P(s)) = a(s) + p(s)Na(s) + 0(5)Baa(s) (11)

for all s € I, where p(s) and o(s) are C* - functions on I and s" is the arc length parameter of §.
Differentiating equation with respect to s and using the Frenet equations, we obtain

P'(5)Tp(s") = Tals) + p'()Na(s) + [p(5)K2a(s) — 9(5)Kza(s)]B1a(s) + 0" (5)B2a(s)

foralls € I.
Since the plane spanned by N,(s) and Ba,(s) coincides with the plane spanned by Ng(s*) and Bys(s*), we
can put

Nj(s*) = cos O(s)N,(s) + sin O(s)Baa(s) (12)
and
Bag(s™) = (= sin 0(s))Ny(s) + cos O(s)Baa(s) (13)

and we notice that sin 6(s) # 0 for all s € I, also we obtain
p’(s) cos O(s) + o’(s)sin O(s) = 0
—p’(s)sin B(s) + o’ (s) cos O(s) =

from these equations, we get 0’(s) = 0 and p’(s) = 0, hence p(s) and o(s) are constant functions on I with
values p and o, respectively.
Thus, for all s € I, eqation can be rewritten in the form

B(s") = B(@(s)) = a(s) + pNa(s) + 0B2a(s) (14)

differentiating with respect to s and using the Frenet equations, we obtain

@' (5)Tp(s") = Ta(s) + [pKaa(s) — 0Kza(s)]B1a(s)

and
2
(@) =1+ (pKaa(s) — 0Kaa(s))* # 0 (15)
foralls el
Therefore, we can put
Tp(s") = (cos Y(s)) Ty(s) + (sin1P(s)) B1a(s) (16)
and we obtain cos i(s) = 76 (5) and siny(s) = [’I(z’(;# where 1(s) is a C*— functions on 1.
Differentiating equation (16) and using Frenet equations, we get
/ . . . d cos (s)
@' (5)Kip(sINg(s") = [cosP(s)Kia(s) — sin §(s)Kaa(s)] Na(s) + 5 a0

dsin y(s)
D g 9+ sin K)o (9)
Since Ng(s*) = Ng(¢p(s)) is expressed by a linear combination of N,(s) and B,(s), it holds that
d cos Y(s) 3 dcosi(s)
ds L = 0= ds
d sini(s) 3 dsiny(s)
T el = 0= =0
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i.e., Y(s) is a constant function on I with value ¢, and hence

Tp(s") = Ta(s) cosy + Bya(s) sinyp (17)
. _ pKZa(s) - OKSa(S)
ST
1
OCVITO
which implies that
sin = (pKaa(s) — 0Kz4(s)) cos i (18)
foralls el

If siny = 0, then it holds cos i = 1 and hence equation becomes

Tp(s") = FTals) (19)
Differentiating with respect to s and using the Frenet equations, we obtain

¢’ ()K1p(s")Np(s") = FKia(s)Na(s)
ie.,

Ng(s*) = F Na(s) (20)
for all s € I, and this is a contradiction. Hence, we must consider only the case of siny # 0, then equation
implies that

p Kaals) = 0 Kaal5) # 0 (21)

and therefore, we obtain the first relation.
The fact sin # 0 and equation imply that

C(P Kou(s) — o KBa(S)) =1 (22)

where C = Z?;Z’;

Differentiating equation with respect to s and using the Frenet equations, we obtain

is a constant number and hence we obtain the second relation.

(¢/$Kip(s")) = [cos YKua(s) — sin YKaa(S)] + (sin PKaa(s))? (23)
and from equations (22) and (23), we deduce
(FOKE) = [(Kials) = Kaals))? + (Kaalo))].
(PKaas) = 0Kaa(®)* (9/(5))

foralls el
From equation and the second relation, we get

(6/®)" = (+1) (AKaa(6) — pKsa(5))?
Thus, we obtain

2 1

= 7 (K1) = Ko@) + (Ksal)’] (24)

(¢ (6)Kap(s")
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From equations (22),(23) and the second relation, we can put

Nj(s") = Ng($(5)) = 0 1)(5)Na(s) + sin 1(5)Baa(s) 25)
where
cos T](S) — (pKZa(S) - 0K3a(s)) (CK]a(SZ) - K2a(s)) (26)
Kip(9(©) (¢'6))
and
sinn(s) = K3a () (pKaa(s) — 0Ksa(s)) o

Kig(9() (¢'))

for all s € I. Here, 17is a C*— function on I.
Differentiating equation with respect to s and using Frenet equations, we obtain

dcosn(s) 0 dsinn(s) 0
ds ' ds

that is, 7 is a constant function on I with value 19. From equations and (27), we obtain

Ksal®) o 1’77;’ = (CKia(5) — Kaa(S))

Let 6 = =~ be a constant number, we then get

sin g

6K3a(s) =C Kla(s) - KZa(S)

which is the third relation. O

Acknowledgement: The authors wish to express their sincere thanks to referee for making several useful
comments.

References

(1]
(2]
(3]
(4]
(5]

6]
(7]

(8]
(9]
[10]

[11]
[12]

[13]

[14]

H. S. Abdel-Aziz and M. Khalifa Saad, Darboux Frames of Bertrand curves in the Galilean and Pseudo-Galilean spaces, JP Journal of
Geometry and Topology,16(2014), No.1,17 — 43.

M. Bektas, M. Ergut, and A. O. Ogrenmus, Special curves of 4D Galilean space, International Journal of Mathematics Engineering
and Science. Vo0l.2(3), (2013).

K. Bharathi and M. Nagaraj, Quaternion-valued function of a real variable Serret-Frenet formula, Indian J. Pure Appl. Math.
18(6)(1987),507 — 511.

H. K. Elsayied, M. Elzawy and A. Elsharkawy Equiform spacelike normal curves according to equiform-Bishop frame in E3, Math.
Meth. Appl. Sci. (2017),1 7.

H. K. Elsayied, M. Elzawy and A. Elsharkawy Equiform timelike normal curves in Minkowski space E3, FJMS
(2017),v0l(101) (8), 1611 — 1619.

S. Ersoy and A. Inalcik, Generalized spacelike Bertrand curves in Minkowski 5—space R?, Quaestiones Mathematicae 2014, 1 — 11.

I. Gok, Z. Okuyucu, F. Kahraman and H. H. Hacisalihoglu, On the quaternionic By—slant helices in the Euclidean space E*, Adv.
Appl. Clifford Algebras, 21(2011), 707 — 719.

M. A. Gungor and M. Tosum, Some characterizations of quaternionic rectifying curves, Differential Geom. — Dynamical systems,
13(2011), 89 — 100.

O. Kecilioglu and K. Ilarslan, Quaternionic Bertrand curves in Euclidean 4—space, Bulletin of Mathematical Analysis and
Applications,5(2013), No.3,27 — 38.

S.Kiziltug and Y. Yayli, On the Quaternionic Mannheim curves of AW(k)—type in Euclidean space E3. Kuwait]. Sci. 42(2015), No.2, 128—
140.

H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J. 50(1 — 2)(2003), 41 — 58.

A. O. Ogrenmis, H. Oztekin and M. Ergut, Bertrand curves in Galilean space and their characterizations, Kragujevac J. Math.
32(2009), 139 — 147.

H. Oztekin, and S. Tatlipinar, Determination of the position vectors of curves from Intrinsic Equations in Gz, Walailak J.Sci. and Tech.
11(2014), No.12,1011 - 1018.

D. W. Yoon, On the quaternionic general helices in Euclidean 4— space, Honam Mathematical J. 34(2012), No.3,381 — 390.



	Introduction
	Preliminaries
	Quaternionic Bertrand curves in the Galilean 3-Space
	Quaternionic Bertrand curves in the Galilean 4-Space

