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Relations between L-Fuzzy Topogenous Orders
and L-Fuzzy Pre-Uniformities
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Abstract. In this paper, we introduce the notions of L-fuzzy topogenous orders and pre-uniformities as a
continuation of previous work. The continuity notion and the Galois correspondence are also discussed.

1. Introduction.

Ward et al. [13] introduced a complete residuated lattice which is an algebraic structure for many valued
logic. It is an important mathematical tool for algebraic structure for many valued logic. Considering the
concepts of topological structures, information systems and decision rules are investigated in complete
residuated lattices [1,3, 4-6,11,12]. Hohle [5,6] introduced L-fuzzy topologies with algebraic structure
L(cqm, quantales, MV-algebra).

Katsaras [8,9] introduced the concepts of fuzzy topogenous order and fuzzy topogenous structures in
completely distributive lattice which are a unified approach to the three spaces: Chang’s fuzzy topologies
[2], Katsaras’s fuzzy proximities [8] and Hutton’s fuzzy uniformities [7]. As an extension of Katsaras’s
definition, El-Dardery [10] introduced L-fuzzy topogenous order in view points of Sostak’s fuzzy topology
[3] and Kim's L-fuzzy proximities [10] on strictly two-sided, commutative quantales and studied their
topological properties.

In this paper, we introduce a slightly different definition for L-fuzzy topogenous order and its rela-
tions with pre-uniformities as a continuation of previous work. The continuity notion and the Galois
correspondence are also discussed.

2. Preliminaries.

Definition 2.1 [2,4-6]. An algebra (L, A, V,®, =, L, T) is called a complete residuated lattice if
(L1) (L, <, V, A, L, T) is a complete lattice with the greatest element T and the least element L,
(L2) (L,®, T) is a commutative monoid,
(L3)xoy<ziffx<y—zforx,yzeL.
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In this paper, we assume that (L, <, 0, —,") is

(1) a complete residuated lattice with an order reversing involution * which is defined by
x®y=x0y), x=x— L unless otherwise specified,

(2) an idempotence if x © x = x for each x € L.

Fora € L, f € LX, we denote (@ — f), (a O f), ax € LX as

(@—= f)x) =a— f(x), (@0 f)x) = a0 fx), ax(x) = a,

)T, ify:x, . )4, ify:x/
Tx(y) = { 1, otherwise, Ty) = { T, otherwise.

Lemma 2.2 [2,4-6]. For each x, y,z, x;, yi,w € L, the following hold.
MHT->x=x,LOox=1,
@QIfy<zthenxOy<x0z,x>y<x—zandz—>x<y—x,

@) x<yiffx->y=T,

(4) x = (N\;yi) = Nilx = vi),

G) (Vixi) =y = Nilxi = y),

©6)xo(Vivi) = VilxoOy),

N xoy) mz=x>(y—2)=y—(x =2),

Bx—->y<xoz) > (¥0z), x> yoO(y—-2)<x—>2z
O)x—->y=y -x, x0y=x—=>y),

(10) (Aiy) = Viy;, Viv) = Nivi,

Mzox<(x-2y) -2y, y—-2zsx—-y - (x—2),

(12) Vierxi = Vier¥i 2 Nieti = yi), Nier Xi = Niet i = Nier(xi = Yi)-

Definition 2.3 [1]. Let X be a set. A mapping R : X X X — L is called a L-fuzzy relation on X, then for
all x,y,z € X the relation R is said to be

(1) reflexive if R(x,x) =T,

(2) symmetric if R(x, y) = R(y, x),

(3) transitive if R(x, y) © R(y,z) < R(x, z).

A L-fuzzy relation on X is called a L-fuzzy pre-order if it is reflexive and transitive and called a L-fuzzy
equivalence relation if it is reflexive, symmetric and transitive.

Lemma 2.4 [5]. For a given set X, defineamap S : LX x LX — L by

S(f,9) = Niex(f(x) = g(x)).

Then, for each f, g € LX and for all « € L the following hold.
(1) S is a L-partial order on L%,
2) f<ygiftS(f,9) 2T,
3)If f < g, then S(h, f) < S(h,g) and S(f,h) > S(g,h) ¥ heLX,
4) S(f,9) ©S(k,h) < S(fOk,goh) and S(f,9) ©S(k,h) <S(f@k,g&h),
5) \iS(fi 9:) < S(N; fir \i 94),
6) S(f,9) = Vyerx S(f, 1) © S(h, 9),
7)1f ¢ : X > Yis a map, then for f,g € LX and h,k € LY,

5(f,9) < S(7(f), 97 (9), S(h, k) < S (1), = (k)

and the equalities hold if ¢ is bijective.

~ N~~~ o~

Lemma 2.5 [5]. For each f, g € L*, define two maps u,, u]jlg : XXX — Lby

uf, o(r,y) = f(x) > g(y) and u}! (x,y) = ug, 4(y, ).
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Then, the following hold

(1) Txxx = Uiy1x = Uty Ty

Q) If o < firand g1 < g, then ug, 4 <up, 4,

(3) For any uy, ; € L% and h € L*, it holds that uy,; o uy, ; < uy, ; where

ug, /(% y) o up, o(y,2) = Vyex(f(¥) = h(y)) © (h(y) — 9(2)),

-1 -
11) Uy = Uy f.

Definition 2.6 [12]. A map U : L¥*X — L is called a L-fuzzy pre-uniformity on X if
(UD) Uity ) 2 Voex () = Avex 9(0),

(U2) If v < u, then U(v) < U(u),

(U3) For every u,v € LXX, Uuov) > U)o U®),

(U4) U(uy, ;) < S(f, g) for each f, g € LX.

A L-fuzzy pre-uniformity is called

(QU) a L-fuzzy quasi-uniformity on X if U(u) < \/{U (@) © U(w) | v o w < u} where

vow(x,z) = \/ u(x, y) O w(y, z),

yeX

(St) stratified if U(a — u) > a — U(u) foreacha € L,

(SE) separated if U(ur,+,) =T foreachx € X,

(P) perfect if U(Njerui) = Nieg U(us).

Let (X, U) and (Y, V) be two L-fuzzy pre-uniform spaces and ¢ : X — Y ba a mapping. Then, ¢ is said
to be LF-uniformly continuous if

V) < U(HXP)~(v) Yoel™.

The category of L-fuzzy pre-uniform spaces and LF-uniformly continuous mappings for morphisms is
denoted by L-FPUNS.

Remark 2.7 [12].
(1) Let U be a L-fuzzy pre-uniformity on X, then by (U1) we have

Ulury,7y) 2 \/ Tx(x) — /\ Tx(x)=T—>T=T,

xeX xeX

(2) Define a map U° : LX*X — L as U*(u) = U(u™"). Then, U° is a L-fuzzy pre-uniformity on X.

Definition 2.8 [1]. Suppose that F: D — C, G: C — D are concrete functors, then

(1) C and D are said to be isomorphic if F o G = idc and Go F = idyp,

(2) The pair (F, G) is called a Galois correspondence between C and D if foreach Y € C,idy : Fo G(Y) = Y
is a C-morphism, and for each X € D, idx : X — G o F(X) is a D-morphism.

If (F, G) is a Galois correspondence, then it is easy to check that F is a left adjoint of G, or equivalently
that G is a right adjoint of F.
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3. L-fuzzy Topogenous Orders and L-fuzzy Pre-Uniformities.

Definition 3.1. A mapping & : LX x LX — L is called a L-fuzzy semi-topogenous order on X if it satisfies
the following axioms for every f, fi, fi, 9,91, 9i € LX

(STD) &(F,9) 2 Veex () = Nex 0),

(ST2) &(f,9) < S(f, 9),

(ST3)if f1 < f, g < g1, then &(f,9) < &(f1, 1)

A L-fuzzy semi-topogenous order & on X is called

(ST4) L-fuzzy topogenous order if for every fi, f», g1, 92 € LX, we have

E(f1O fo,91 0 92) 2 E(f1,91) © E(f2, 92),
EHL Do, 01D g2) = E(f1, 1) @ E(fa, 92),

(St) stratified if for every a € L,
Saof,g)za—&(f,g) and &(f,a = g) 2 a = &(f,9),
(P) perfectif &(V; fi,9) 2 N\i&(fiq), E(f, Nigi) = Ni (£, 91),
(SE) separated if &(Ty, Ty) =&(Ty, Ty =T,
(TS) L-fuzzy topogenous space if &(f, g) < Vyerx E(f, h) © E(h, g).

Let {x and &y be two L-fuzzy topogenous orders on X and Y, respectively. A mapping ¢ : (X, &x) —
(Y, &y) is said to be a L-topogenous map if

&v(f,9) < Ex(@(F. ¢ (9) Y fgelY.

The category of L-fuzzy topogenous orders with L-topogenous maps as morphisms is denoted by
L-FTGS.
Remark 3.2. Let £ be a L-fuzzy topogenous order, then by (5T1) we have

E(TX/ TX) < \/ Tx(x) — /\ TX(x) =T —>T=T.

xeX xeX

So, &(Tx, Tx) =<&(Lx, Lx) = T.
Theorem 3.3. Let U be a L-fuzzy pre-uniformity on X. Define a map &q¢; : L¥ X LX — L as

Eulf,9) = Niex(f(x) = Uur,, y)) Vfge Lx.

Then, the following hold
(1) &4 is a L-fuzzy topogenous order on X,
(2) If U is stratified, then &qy is stratified,
(3) If U is perfect, then &qy is perfect,
(4) If U is perfect and stratified, then

Eulf,9) = Neex (FO) = (@) = UGz, 7)), Eulf, 9) = Uluy, ),

(5) If U is separated, then Eqy is separated,
(6) If U is a L-fuzzy quasi-uniformity on X, then £q; is a L-fuzzy topogenous space on X.

Proof. (1) (ST1) By lemma 2.2 (1),(2),(5), (U1), we have

Eulf,g) = Neex (f) = Ulur,, )
> Asex (f) = (Viex Te®) = Aex 900) = Viex f) = Avex 9().
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(ST2) By (U4), we have

Su(f,9) = Neex(f(x) = Uur,, ) < Niex(f(x) = S(Tw, 7))
= Nxex(f(x) = 9(x)) = S(f, 9)-

(ST3)If f < f1, g < g1, then by lemma 2.6 (2) and (U2), we have

cu(fi, g1) = Neex(i(®) = Ulur,, 31)) 2 Nxex(filx) = Ulur,, 4))
2 Neex(f(¥) = Ulur,, 4)) = Eulf, 9)-

(ST4) For every fi, f2, 91,92 € LX, by Lemma 2.6 (5), (U2),(U3), we have

Eu(f 00 © Eulfa 92) = Neex(fi®) = Uir,, 6,)) © Asex(falx) = Ulur,, 4,))
< Neex (i) © fo(0)) = (U, 4,) © U, 4,)))
< Nwex (1 © f)x) = U, g, Oz, o))
< Avex (1 © 2)@) = Ui, gio0)) = Eulfs © fo,01© 92).

Similarly, by Lemma 2.5 (6) we can prove that

Eu(fi ® f2, 91 © 92) = Eu(fi, 91) © Sl fo, 92)-

Hence, &4y is a L-fuzzy topogenous order on X.
(2) (St) By lemma 2.2 (5),(7), lemma 2.5 (7) and (U5), we have

Eu@o f,9) = Niex (@0 f(x) > Ulur, ,))
= Nex (@ = (f6) = Ulu-,, )
=0 > Aex(f@0) > Ulur,, ) = @ = Zu(f, 9)-

Eulfa = g) = Nex(FO) = Ultir,amsy))
= Nrex(f(x) = U(a — ”Tx,y))
> Avex (f() = (@ > Ulur, )
=a = Nex(f(0) > U, g)) = a > u(f, 9).

(3) (P) By lemma 2.2 (4) and lemma 2.5 (4), we have

é%{(\/iel fir 9) = /\xeX(\/ieI fl(x) - q/{(uTX/ g))
= Niet Awex(fi(x) = Uur,, 9)) = Nier Eulfi, 9)-

E‘Ll(fr Nier gl) = /\xeX(f(x) - 7’[(”1}, /\ie[gi))
= Naxex(f(X) = Nier Uuir,, 5,))
= Niet Naex(f(x) = U(ur,, ) = Nier Eulf, 9i)-

(4) By Lemma 2.5 (8), we have

Eulf,9) = Neex(f) = Ulur, )
= Neex (f0) = UN\oex(7" @) = 117,72))
> Avex (F) = Auex(9° (@) = Ulur, 72)
= Ausex (f0) = (97(2) = U(ur, 7).

By Lemma 2.5 (9), we have

Eu(f,9) = Naex(f(¥) = Ulur,, g)) < U(Nsex(f(x) = ur,, 4)) = Uluy, ).
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(5) By lemma 2.5 (1) and for each x € X, we have
Eu(Te, T) = Npex (To(®) > Uur,r)) =T > T =T,
Eu(Th T2 = Neex (T30 = Uury 7)) = L > T =T.
(6) (TS) By (3), (QU) and Lemma 2.5 (3), we have

Vierx Eu(f, ) © Eulh, g9) = Vyerx Ulug) © Ulup,y)
> (Uugg) luph o ung < tiggl = Eulf, 9).
Hence, &4 is a L-fuzzy topogenous space on X.

Theorem 3.4. Let (X, Ux) and (Y, Uy) be two L-fuzzy pre-uniformities. If a map ¢ : (X, Ux) — (¥, Uy)
is LF-uniformly continuous, then the map ¢ : (X, &4,) = (Y, &at,) is LF-topogenous map.

Proof.
Eud @ (), 97@) = Naex (¢ (HE) = Ux(uir,, p))
= Nuex (f(©() = Ux (st 6-(0)))
= Nex (f(@() > Us((@ X 9)(ur,, )
> Nopw=yey (f(y) - Uy(ur,, 57)) = Eu(f, 9)-

Theorem 3.5. Let V be a L-fuzzy pre-uniformity on X. Define amap & : LX X LX — Las

Ev(f,9) = Vo[ V@) lv <05} ¥ fgelX.

Then, the following hold

(1) & is a L-fuzzy topogenous order on X,

(2) If V is stratified, then &« is stratified,

(3) If V is perfect, then &« is perfect,

(4) If V is separated, then & is separated,

(5) If Vis a L-fuzzy quasi-uniformity on X, then &« is a L-fuzzy topogenous space on X,
(

6) Eu:(f, ) = Ev(g, f)-
Proof. (1) (5T1) By (U1) and (U2), we have

gvi(f,9) =\ {V@ 1o <oy o} 2 Vg ) 2 \/ f0 > N\ g).

4 xeX xeX

(ST2) By (U4), we have  &v(f,9) = V, {V(0) |0 <05, .} < S(f, 9).
(ST3) By lemma 2.5 (2), we have

Ev(fug) =V [V@)|v<op,)
=V, V(@) |v<0y, 4 < vf,g} = Ey(f, 9).

(ST4) For every fi, f2,91,92 € LX and by lemma 2.5 (5), (U2), we have

Ev(fi, 1) ©&v(f2,92) =V [ V@) 0 <05 5} 0 Vo [V@) lw <0y )
= Viou [V©) 0 V() [0 w < vp, 4, 005, 4,

< \/v®w VY@wow)|vow < Ufof, glogz} = éW(fl ®f2/!]1 @_172)-

Similarly, by Lemma 2.5 (6) we can prove that

Ev(fi® fo, 91 @ g2) = Ev(f1, 91) © Ev(fa, 92).
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Hence, & is a L-fuzzy topogenous order on X.
(2) (St) By Lemma 2.5 (7) and (U5), we have

a—Ey(fg) =a—V,|[V©)lv<og,
<V,
= \/U

(3) (P) By lemma 2.5 (4) and (U3), we have

‘V(a—>v)|a—’050‘_>vf/9}
(V(Oé—>v)|0é—>7)§va®f,g}zé(V(aeffg)'

EvViar fug) = Vol V@) v <0y,5 )
=V, V@) v < A Uf, g
> Niet Vo {V©) 19 S 05, o} = Aier £ (fir ).

In a similar way, we can prove that Ey(f, Vi1 9i) = Ve Ev(f, 9i)-
(4) (SE) By lemma 2.5 (1) and for each x € X, we have

Ev(To T = Ao V@) [0 <0, 7} = Vior,7) 2 T

Similarly, (T3, Ty) = T.
() (TS) By (U3), (QU) and lemma 2.5 (3), we have

Views Ev(f 0 v g) = Vies Vo [ V@) lu <up f o Vo V) [0 <o), )

= Vierx Vo [ V@) 0 V(@) [u < upp, 0 <03 )
> Vo [ V@) [t 00 <w, up, 00, , < wj,

= Vo [ V@) |w < wy, ) = £4(f, 9).

Hence, & is a L-fuzzy topogenous space on X.
(6) By lemma 2.5 (11) and remark 2.7 (2), we have

Ern(f,9) = Vo (VI o< 04) = VoV 0 <07 )

Vs
Vo V@) v <o, 1} = (g, )

Theorem 3.6. Let (X, Vx) and (Y, Vy) be two L-fuzzy pre-uniformities. If a map ¢ : (X, Vx) — (¥, Vy)
is LF-uniformly continuous, then the map ¢ : (X, &v,) — (Y, &v,) is a LF-topogenous map.

Proof. For f,g € LY, we have

v (f.9) = No{Vy@) |0 <0p 0 )
2 Ao [ Vil(® X )~ @) | ($ X ) (0) < (¢ X §) (v, )}
= N Vi@ X D)@ (¢ X )7 (0) < 09-(prio-1r} = Ev, (@ (), 4™ (9)).

Theorem 3.7. Let & be a L-fuzzy topogenous order on X. Define amap U : LX*X — L as

Us(u) = VIE(f, 9) luf, g <u} ¥ f,gelX

Then, the following hold

(1) Uy is a L-fuzzy pre-uniformity on X,
(2) If € is stratified, then U is stratified,
(3) If £ is separated, then U is separated,
(4) If & is perfect, then U is perfect,
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(5) If & is a L-fuzzy topogenous space on X, then U is a L-fuzzy quasi-uniformity on X,

(6) & =&y, and Us, <U.

Proof. (1) (U1),(U2),(U4) Easy to be proved.

(U3) For every u,v € L**X and by (ST4) and lemma 2.5 (5), we have
U:(uw) 0 U:(v) = V{(f,91) lup, o < ub© V{E(f2, 92) lup, 4, < 0}

VAE(f1, 91) © E(f2, 92) L U, g, O Ui, 4, S UO D)

V

SVIE(FLO fo,01092) | up, g Oligy, g, S Ufiof, gog, < UO V) = Us(uOD).

(2) (St) By lemma 2.2 (2), lemma 2.5 (7) and (St), we have

a—->Uw) =a—- VIS, g) lus g <ul
=Vi{a—-<&(f,9)la—us,<a—ul
< VIO f,9) | taof, g < @ = u} = Us(a — u).

(3) Easily proved.
(4) (P) Suppose that there exist u; € LX*X for all i € I such that
(u«i(/\ ui) # /\ Ue(ui)-
i€l i€l

Then for each i € I, there exist uf, ;, < u such that
U(N\w) # )\ &(fig) figieLX.
i€l i€l

For each i € I, there exist j;, k; € [ with f;, = f;, us,, g < Ui and gy, = gi, uy, g, < Ui
suchthat [={ji:iel}, K=1{k:iel}, JuK=1I and

Us(N\w) 2 \ &g =0\ £ /\ 90
i€l i€l i€l i€l
On the other hand, since uy,_ £ A, oo = Nier s, g < Aier i, then we have
Us(/\ ) = &\ fir [\ 9) = €\ £, N\ 90 = N\ €.
i€l ji€] kieK i€l iel i€l

Which contradicts the assumption at first. Hence, Us(A;c;ui) > N Us(u;). And by (U2), we have
Us(Nier i) < Njeg Ue(uy). Thus, Uy is perfect.

(5) (QU) Suppose that Us(u) £ V{U:(v) © Us(w) | vow < u} for some u € L¥*X. By the definition of
U (u) and by (U2), we have

Ug(ug, ) < Us(w) 2 \/1U@) © Us(w) |[vo w < ).

By the definition of U (1), then we have

Us(ug, o) £ \/ Uslug, ) © U, o).
heLX
Since ufy oupy < g, <u and by Theorem 3.6 (2), we have

Uy, o) = \/ Uslug, n) © Us(y, 4) < \/{(U(0) © Us(w) [0 0w < u).

helX
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Which is a contradiction. Hence, U; is a L-fuzzy quasi-uniformity on X.

6) Eu(f,9) = VulUc(u) - u < ug, 4} = E(f, 9),

Ue, (1) = v{éw(f,!]) cup g < u) < U).

Theorem 3.8. Let (X, £x) and (Y, £y) be two L-fuzzy topogenous spaces. If a map ¢ : (X, Ex) — (Y, Ey) is
a LF-topogenous map, then the map ¢ : (X, Us,) — (Y, U¢,) is LF-uniformly continuous.

Proof. For every v € LYY, we have

U (P x9) () = VIEx(@T (), (@T(D)) : Up—(p), p=0) < (P X P) ™ (V)}
= VA<x(@T (), () : (@ X P)~(uy, 9) < (P X P)7(v)}
2 \/{EY(f/.q) TUf g < v} = (l’{'iy(v)-
Theorem 3.9.

(1) Y : L-FPUNS — L-FTGS defined as Y(X, U) = (X, &) and Y(¢) = ¢ is a concrete functor,
(2) @ : L-FTGS — L-FPUNS defined as ®(X, &) = (X, U;) and P(¢) = ¢ is a concrete functor,
(3) The pair (Y, D) is a Galois correspondence between L-FPUNS and L-FTGS.

Proof.
(1) Follows from theorems 3.5 and 3.6 and (2) Follows from theorems 3.7 and 3.8.
(3) By Theorem 3.7 (6), if (X, &) is a L-fuzzy topogenous space, then

(Yo D)X, &) = Y(P(X, &) = Y(X, Us) = (X, Eur) = (X, E).

Hence, the identity map Y o @ = id; is a LF-topogenous map.
By Theorem 3.7 (6), if (X, U) is an L-fuzzy pre-uniformity, then

(@ o V)X, U) = DV(X, U)) = DX, Eur) = (X, U, ) < (X, U).

Hence, the identity map @ o Y =idq is LF-uniformly continuous. Therefore, the pair (Y, ®) is a Galois
correspondence.
Example 3.10. Let R € L¥*X be a reflexive L-fuzzy relation. Define a map U : L**X — L as

U = [\ Rexy) = u(,y)).

x,yeX

Then, (U1), (U2), (U3) can be easily proved.
(U4)
Uy, g) = NayexROx, y) = 1y, o(x, )
= Niyex(R(x, y) = (f(x) = 9())
< Awex(R(x, x) = (f(x) = g(x))) = S(f, 9).

Hence, U is a L-fuzzy pre-uniformity on X.
For Ri(x,y) = Txxx, we obtain

U= N\ Ry - utey) = [\ (Toxy) - uy) = [\ we@y).

x,yeX x,yeX x,yeX

For Ry(x,y) = Axxx, where
T, ify=x
Axox (¥, ) = { 1, otherwise,
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we obtain

W)= [\ Ralx,y) = utxy) = /\ Gxoax@y) = ulx,y) = /\ ulx»).

x,yeX x,yeX xeX
(1) From theorem 3.3, we obtain a L-fuzzy topogenous order &y : LX X LX — L as

Eu(f,9) = Niex(f(x) > Uur,, 4)
= /\xEX(f(x) - /\x,yGX(R(x/ y) - Ur,, g(x/ ]/)))
= Nxex(f(0) = Agyex(R(x, y) = (Tx(x) = g9(y))))
= Nayex(f(0) = (R, y) = g1) = Aryex(R(x, y) = (f(x) = g(y))).

For Ri(x,y) = Txxx, we have

Eu(f,9) = Neyex(Ralx, y) = (f(x) = g(v))
= Awyex(Txxx(x,y) = (f(x) = 9())) = Aryex () = 9().

For Ry(x, y) = Axxx, we have

Eu(fr9) = Niyex(Ra(x, ) = (f(x) = 9()))
= Nryex(xxx(x,y) = (f(x) = 9(¥) = Nsex f(x) = g(x) = S(f, 9).

(2) From theorem 3.5, we obtain a L-fuzzy topogenous order &y : LX X LX — L as
é(V(f/ !]) = \/v{(V(U) | v< vy, g} = \/v{/\x,yeX(R(x/ 3/) - U(x/ y)) | v< 0f, g}'

For Ri(x,y) = Txxx, we have

5(V1(f’g)

\/v{/\x,yeX(Rl(x/ 3/) - U(xl y)) | v < oy, g}
\/v{/\x,yEX(TXXX(x/ y) - U(X, ]/)) o< oy, g}
\/v /\x,yeX{v(x/ ]/) v < Uy, g}-

For Ry(x, y) = Axxx, we have

Ev,(f,9) Awyex(Rax, ) = 00, 1) [0 < 07, )
A yex(Bxxx (1) = 0(x, 1) [0 < 07, 5)

= Vo Avexlv(x, x) |0 < oy, g}-

:\/v
=V,

(3) From theorem 3.7, we obtain a L-fuzzy pre-uniformity U : LX*X — L as

wéfu(u) = \/{éﬂ(f/g) TUf g < u}
= V{ A yexR(x, y) = (f(x) = g(W)) : uy, g < up < U(u).
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