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Abstract. In this paper, we define an operation on the intuitionistic fuzzy matrices called the Gödel
implication operator as an extension to the definition of this operator in the case of ordinary fuzzy matrices
due to Sanchez and Hashimoto. Using this operator, we prove several important results for intuitionistic
fuzzy matrices. Particularly, some properties concerning pre-orders, sub-inverses, and regularity . We
concentrate our discussion on the reflexive and transitive matrices. This studying enables us to give
a largest sub-inverse and a largest generalized inverse for a reflexive and transitive intuitionistic fuzzy
matrix. Also, we obtain an idempotent intuitionistic fuzzy matrix from any given one .

1. Introduction

In 1965, Zadeh [15] has introduced the concept of fuzzy sets as an extension to the theory of ordinary
sets by assigning to each element in the universe X a number in the unit interval [0, 1] called the degree of
membership. In 1977, Thomason [14] has introduced the concept of fuzzy matrices (matrices having values
any where in the closed interval [0, 1]). In 1980, Kim and Roush have developed a theory for fuzzy matrices
analogous to that for Boolean matrices [7]. After that a lot of works have been done on fuzzy matrices and its
variants [4 − 6]. In 1986, Atanasove [1] has introduced the concept of intuitionistic fuzzy sets as an extension
to the theory of ordinary fuzzy sets by assigning to each element in the universe not only a membership
degree but also a non-membership degree. In 2002, Khan, Shymal and Pal [10] have introduced the concept
of intuitionistic fuzzy matrices as an extension to the theory of ordinary fuzzy matrices. So, the concept
of intuitionistic fuzzy matrices (or finite intuitionistic fuzzy relations) is an extension of the concept of
ordinary fuzzy matrices (finite fuzzy relations).

In this paper, we define the Gödel implication operator B as an extension of the Sanchez α operator on
fuzzy relations [12]. Sanchez used this operator to solve some kinds of fuzzy relational equations. Also,
Hashimoto used this operator for presenting many properties of fuzzy matrices [4, 5, 6]. By extending this
operator to intuitionistic fuzzy matrices we also obtain several results as extension to the results obtained
on the ordinary fuzzy matrices and finite binary relations or Boolean matrices due to Schein [13]. However,
we concentrate our studying to some kinds of intuitionistic fuzzy matrices, namely, reflexive and transitive
intuitionistic fuzzy matrices which are well known representing pre-orders. We obtain more than pre-order
from any intuitionistic fuzzy matrix. Moreover, we can construct an idempotent intuitionistic fuzzy matrix
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from any given one through the operator B as we shall see in Section 3. Also, this operator is useful in
studying the sub-inverses and generalized inverses of intuitionistic fuzzy matrices as we also shall see in
Section 4.

2. Preliminaries

In this section we recall the notion of an intuitionistic fuzzy matrix and we define some operations on
intuitionistic fuzzy matrices. As it is well known, a fuzzy matrix A is a function from the Cartesian product
X×Y to the unit interval [0, 1], where X and Y are finite. If |X| = m, |Y| = n, then the number A(xi, y j) = ai j for
i = 1, 2, ...,m and j = 1, 2, ...,n is called the degree of membership of the element A(xi, y j) in the fuzzy matrix
A. Thus in briefly, a fuzzy matrix takes its elements from the interval [0, 1] and we denote it by A =

[
ai j

]
m×n

.
Now, we extend this definition to intuitionistic fuzzy matrices as follows.

Definition 2.1. (intuitionistic fuzzy matrices [2, 3, 10]) Let A′

= [a′i j]m×n and A′′

=
[
a′′i j

]
m×n

be two fuzzy

matrices such that a′i j + a′′i j ≤ 1 for every i ≤ m, and j ≤ n. The pair
〈
A′

,A′′
〉

is called an intuitionistic fuzzy

matrix and is denoted by A and then we may write A =
[
ai j =

〈
a′i j, a

′′

i j

〉]
m×n

.

As an example of an intuitionistic fuzzy matrix, we put the identity intuitionistic fuzzy matrix In =[
δi j =

〈
δ′i j, δ

′′

i j

〉]
in the form

In =



〈1, 0〉 〈0, 1〉 ... 〈0, 1〉
〈0, 1〉 〈1, 0〉 ... 〈0, 1〉
.
.
.
〈0, 1〉 〈0, 1〉 ... 〈1, 0〉


n×n

i.e.,

δ′i j =

{
1 if i = j,
0 if i , j. , δ′′i j =

{
0 if i = j,
1 if i , j. .

We see in Definition 2.1 that the intuitionistic fuzzy matrix is a pair of fuzzy matrices which represent
a membership and a non-membership function, respectively. Thus, an intuitionistic fuzzy matrix takes its
elements from the set F = {a =< a′, a′′ >: a′, a′′ ∈ [0, 1], a′ + a′′ ≤ 1}. When a′i j + a′′i j = 1 for every i ≤ m and
j ≤ n, the intuitionistic fuzzy matrix A is reduced to be an ordinary fuzzy matrix. The existence of the
membership degree interval [a′i j, a

′′

i j = 1 − a′i j] is always possible thanks to the condition a′i j + a′′i j ≤ 1 which

an intuitionistic fuzzy matrix A =
[
ai j =

〈
a′i j, a

′′

i j

〉]
should fulfill. The number πi j = 1 − a′i j − a′′i j is called an

index of an element ai j in the intuitionistic fuzzy matrix A. It is also described as an index or degree of
hesitation whether ai j is in the intuitionistic fuzzy matrix A or not. The larger of the intuitionistic indices
πi j the higher is the value of non-determinancy or uncertainty.

Now, we define some operations on the set F. For a, b ∈ F, we have:
a ∨ b =< a′, a′′ > ∨ < b′, b′′ >=< a′ ∨ b′, a′′ ∧ b′′ >,
a ∧ b =< a′, a′′ > ∧ < b′, b′′ >=< a′ ∧ b′, a′′ ∨ b′′ >,
a ≤ b if and only if a′ ≤ b′ and a′′ ≥ b′′ where a′ ∨ b′ = max(a′ , b′ ) and a′ ∧ b′ = min(a′ , b′ ).

We may write 0 instead of the element < 0, 1 >∈ F and 1 instead of the element < 1, 0 >. It is noted that
a ∨ 0 = 0∨a = a and a ∧ 1 = 1 ∧ a = a, for any a ∈ F.
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Basic operations on intuitionistic fuzzy matrices are extensions of the respective operations on fuzzy
matrices. As a result, operations on fuzzy matrices are particular cases of the ones on intuitionistic fuzzy
matrices which are defined in the following way.

Definition 2.2. [2, 3, 10] Let A =
[
ai j =

〈
a′i j, a

′′

i j

〉]
m×n

,B =
[
bi j =

〈
b′i j, b

′′

i j

〉]
m×n

and C =
[
ci j =

〈
c′i j, c

′′

i j

〉]
n×l

be
three intuitionistic fuzzy matrices. We define the following operations:

A ∨ B =
[
ai j ∨ bi j

]
m×n

,

A ∧ B =
[
ai j ∧ bi j

]
m×n

,

At =
[
a ji =

〈
a′ji, a

′′

ji

〉]
(the transpose of A),

D = AC =
[
di j =

〈
d′i j, d

′′

i j

〉
=

〈
n∨

k=1
(a′ik ∧ c′kj),

n∧
k=1

(a′′ik ∨ c′′kj)
〉]

m×l
,

A ≤ B if and only if ai j ≤ bi j for every i = 1, 2, ...,m and j = 1, 2, ...,n.

Definition 2.3. For a = 〈a′, a′′〉 , b = 〈b′, b′′〉 ∈ F, we define a B b as:

a B b =


〈1, 0〉 if a′ ≤ b′,
〈b′, 0〉 if a′ > b′, a′′ ≥ b′′,
〈b′, b′′〉 if a′ > b′, a′′ < b′′.

This definition is an extension of the definition of Hashimoto [4] for the ordinary fuzzy matrices which
corresponds to Sanchez α operator [8]. We recall the definition of this operation in the ordinary fuzzy case
which is as follows:

a B b =
{

1 if a ≤ b,
b if a > b

for every a, b ∈ [0, 1].
However, the operator B is the Gödel implication operator which is well known in many branches of

fuzzy mathematics. Its properties in ordinary fuzzy case were examined by some authors [5, 6, 9, 11]. From
the definition of the operation B on the set F, it is noted that a B b ≥ b, a B 1 = 1 and 0 B a = 1 for every
a, b ∈ F. Moreover, a B b = b C a.

The min− B composition of two intuitionistic fuzzy matrices A =
[
ai j =

〈
a′i j, a

′′

i j

〉]
m×n

and C =
[
ci j =

〈
c′i j, c

′′

i j

〉]
n×l

is denoted by D = A B C and is defined as:

di j =
n∧

k=1
(aik B ckj).

3. Reflexivity and Transitivity of Intuitionistic Fuzzy Matrices

In this section, we examine some properties of the operations defined above. Also, we examine in
briefly, some properties of intuitionistic fuzzy matrices representing intuitionistic fuzzy pre-orders using
the operations B (C). We concentrate our discussions on the reflexive and transitive intuitionistic fuzzy
matrices. Now, let us point out some useful properties of the operations C (B).

Lemma 3.1. For a = 〈a′, a′′〉 , b = 〈b′, b′′〉 , c = 〈c′, c′′〉 ∈ F, we have: (a B b) C c = a B (b C c) = b C (a ∧ c).

Proof. Based on the definition of the operation B on the set F, we have the following three cases, each
of them has also three subcases. The cases are:

Case (1). If a′ ≤ b′.
Case (2). If a′ > b′ and a′′ ≥ b′′.
Case (3). If a′ > b′ and a′′ < b′′.
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The subcases of each case are:
(i) If c′ ≤ b′.
(ii) If c′ > b′ and c′′ ≥ b′′.
(iii) If c′ > b′ and c′′ < b′′.

We prove one case, namely, Case (2) and the proofs of the other two cases are similar. To do that, suppose
a′ > b′ and a′′ ≥ b′′.

(i) If c′ ≤ b′, then
(〈a′, a′′〉 B 〈b′, b′′〉) C 〈c′, c′′〉 = 〈b′, 0〉 C 〈c′, c′′〉 = 〈1, 0〉
and
〈a′, a′′〉 B (〈b′, b′′〉 C 〈c′, c′′〉) = 〈a′, a′′〉 B 〈1, 0〉 = 〈1, 0〉 .
Since a′ ∧ c′ ≤ b′, we get
〈b′, b′′〉 C (〈a′, a′′〉 ∧ 〈c′, c′′〉) = 〈1, 0〉 .

(ii) If c′ > b′ and c′′ < b′′, then
(〈a′, a′′〉 B 〈b′, b′′〉) C 〈c′, c′′〉 = 〈b′, 0〉 C 〈c′, c′′〉 = 〈b′, 0〉
and
〈a′, a′′〉 B (〈b′, b′′〉 C 〈c′, c′′〉) = 〈a′, a′′〉 B 〈b′, b′′〉 = 〈b′, 0〉 .
Since a′ ∧ c′ > b′ and a′′ ∨ c′′ ≥ b′′ we get
〈b′, b′′〉 C (〈a′, a′′〉 ∧ 〈c′, c′′〉) = 〈b′, 0〉 .

(iii) If c′ > b′ and c′′ ≥ b′′, then
(〈a′, a′′〉 B 〈b′, b′′〉) C 〈c′, c′′〉 = 〈b′, 0〉 C 〈c′, c′′〉 = 〈b′, 0〉
and
〈a′, a′′〉 B (〈b′, b′′〉 C 〈c′, c′′〉) = 〈a′, a′′〉 B 〈b′, 0〉 = 〈b′, 0〉 .
Last, a′ ∧ c′ > b′ and a′′ ∨ c′′ ≥ b′′ imply
〈b′, b′′〉 C (〈a′, a′′〉 ∧ 〈c′, c′′〉) = 〈b′, 0〉 .

Hence from all the above cases we conclude
(a B b) C c = a B (b C c) = b C (a ∧ c) for every a, b, c ∈ F. �

From this lemma we can write a B b C c instead of (a B b) C c or a B (b C c). That is, we may remove
parentheses. Also, we note that this lemma is equivalent to the relationship

(a ∧ c) B b = a B (c B b) = c B (a B b).

Lemma 3.2. For a, b, c, d ∈ F, we have b B a C c < d implies a < b, c, d.

Proof. Let b B a C c < d. Then we have a ≤ b B a ≤ (b B a) C c = b B a C c < d. Thus a < d and
b B a < d which yields a < b and so (b B a) C c = a C c < d. But this means a < c. �

Lemma 3.3. For a, b, c ∈ F, if we have a′ ∧ c′ ≤ b′, then a B b C c = 1.

Proof. By Lemma 3.1. �

Proposition 3.4. Let A =
[
ai j

]
m×p

,B =
[
bi j

]
p×1

and C =
[
ci j

]
1×n

be three intuitionistic fuzzy matrices. Then

(A B B) C C = A B (B C C).

Proof. Let D = (A B B) C C and R = A B (B C C). Then by Lemma 3.1,

di j =
1∧

l=1

[
p∧

k=1
(aik B bkl) C cl j

]
=
1∧

l=1

p∧
k=1

(aik B bkl C cl j).

Also,
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ri j =
p∧

k=1

[
aik B

1∧
l=1

(bkl C cl j)
]
=

p∧
k=1

1∧
l=1

(aik B bkl C cl j).

Hence di j = ri j. �

By this proposition we denote (A B B) C C or A B (B C C) by A B B C C.

Proposition 3.5. For any m × n intuitionistic fuzzy matrix A, we have:
(1) A C In = A,
(2) Im B A = A.

Proof. (1). Let B = A C In. Then bi j =
n∧

k=1
(aik C δkj) = ai j C δ j j = ai j C 1 = ai j.Thus B = A

(2). Similar to (1). �

Definition 3.6. [2, 3, 10] An n × n intuitionistic fuzzy matrix A is called reflexive (irreflexive) if and only
if aii = 1 (0) for every i ≤ n.

Definition 3.7. [2, 3, 10] An n × n intuitionistic fuzzy matrix A is called transitive if and only if A2
≤ A

and it is called idempotent if and only if A2 = A.

From this definition, it is noted that the idempotent intuitionistic fuzzy matrix is transitive and not
vice-versa.

Proposition 3.8. If an intuitionistic fuzzy matrix A is reflexive and transitive, then A is idempotent.

Proof. Since A is transitive, it is enough to show that A2
≥ A. Now, let A be of order n×n and let S = A2.

Then

si j =
〈
s′i j, s

′′

i j

〉
=

〈
n∨

k=1
(a′ik ∧ a′kj),

n∧
k=1

(a′′ik ∨ a′′kj)
〉

≥

〈
a′i j ∧ a′j j, a

′′

i j ∨ a′′j j

〉
=

〈
a′i j ∧ 1, a′′i j ∨ 0

〉
=

〈
a′i j, a

′′

i j

〉
= ai j (since A is reflexive).

That is A2
≥ A and A is so idempotent. �

Theorem 3.9. Let A and B be two m × n intuitionistic fuzzy matrices such that A ≤ B. Then A C Bt and
Bt B A are transitive.

Proof. Let T = A C Bt. To prove that T is transitive, we must show that ti j ≥ til ∧ tl j for every l ≤ n.
Suppose that til ∧ tl j = c > 0.Then

til =
n∧

k=1
(aik C blk) ≥ c and tl j =

n∧
k=1

(alk C b jk) ≥ c.

If ti j =
〈
t′i j, t

′′

i j

〉
be such that t′i j < c′ and t′′i j > c′′ where c = 〈c′, c′′〉 , that is, if

〈
a′ih, a

′′

ih

〉
C

〈
b′jh, b

′′

jh

〉
< 〈c′, c′′〉,

then〈
a′ih, a

′′

ih

〉
C

〈
b′jh, b

′′

jh

〉
, 〈1, 0〉 ,

〈
a′ih, 0

〉
(since 0 ≤ c′′ ).

So that,〈
a′ih, a

′′

ih

〉
C b′jh, b

′′

jh =
〈
a′ih, a

′′

ih

〉
< 〈c′, c′′〉 .

Thus, a′ih < c′ and a′′ih > c′′ and in this case, a′ih < b′jh and a′′ih > b′′jh by the definition of C .

Since til ≥ c, we have
〈
a′ih, a

′′

ih

〉
C

〈
b′lh, b

′′

lh

〉
≥ 〈c′, c′′〉 and so

〈
a′ih, a

′′

ih

〉
C

〈
b′lh, b

′′

lh

〉
,

〈
a′ih, 0

〉
,
〈
a′ih, a

′′

ih

〉
.
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Therefore,〈
a′ih, a

′′

ih

〉
C

〈
b′lh, b

′′

lh

〉
= 〈1, 0〉 .

But
a′ih < c′ and a′′ih > c′′.
Then
a′ih ≥ b′lh and a′′ih ≤ b′′lh.

Also, since tl j ≥ c, we have that
〈
a′lh, a

′′

lh

〉
C

〈
b′jh, b

′′

jh

〉
≥ 〈c′, c′′〉 and so that a′lh ≥ b′jh and a′′lh ≤ b′′jh.

Since A ≤ B, we have c′ > a′ih ≥ b′lh ≥ a′lh ≥ b′jh. However, this contradicts that a′ih < b′jh. So that t′i j ≥ c′.

Also, Since A ≤ B, we have c′′ < a′′ih ≤ b′′lh ≤ a′′lh ≤ b′′jh. However, this contradicts that a′′ih > b′′jh .So that

t′′i j ≤ c′′. Therefore, ti j =
〈
t′i j, t

′′

i j

〉
≥ 〈c′, c′′〉 = c and T is thus transitive.

The transitivity of the matrix Bt B A can be obtaied by a similar manner. �

Corollary 3.10. For any m × n intuitionistic fuzzy matrix A, the intuitionistic fuzzy matrices A C At and
At B A are idempotent.

Proof. It is easy to see that A C At and At B A are reflexive. Then by Theorem 3.9 and Proposition 3.8
they are idempotent. �

As it is well known, if the intuitionistic fuzzy relation R is reflexive and transitive, then R is a pre-order.
Since, At B A and A C At are idempotent, we can obtain two pre-orders from a given intuitionistic fuzzy
matrix A.

Theorem 3.11. Let A be any n × n intuitionistic fuzzy matrix. Then A is reflexive and transitive if and
only if A C At = A (also if and only if At B A = A).

Proof. Suppose A is reflexive and transitive and let T = A C At. i.e;

ti j =
n∧

k=1

(〈
a′ik, a

′′

ik

〉
C

〈
a′jk, a

′′

jk

〉)
.

Suppose ti j =
〈
t′i j, t

′′

i j

〉
= 〈c′, c′′〉 > 〈0, 1〉 . Then

〈
a′i j, a

′′

i j

〉
C

〈
a′j j, a

′′

j j

〉
≥ 〈c′, c′′〉 . That is

〈
a′i j, a

′′

i j

〉
C 〈1, 0〉 ≥

〈c′, c′′〉 (by the reflexivity of A) which yielding ai j =
〈
a′i j, a

′′

i j

〉
≥ 〈c′, c′′〉 = ti j and so A ≥ A C At.

On the other hand we will show that A ≤ A C At using the transitivity of A. Suppose that ai j =
〈
a′i j, a

′′

i j

〉
=

〈c′, c′′〉 > 〈0, 1〉 and ti j =
〈
t′i j, t

′′

i j

〉
=

〈
a′il, a

′′

il

〉
C

〈
a′jl, a

′′

jl

〉
for some l ≤ n. Based on the definition of the operation

C, we have the following three cases:

Case (1). If
〈
a′il, a

′′

il

〉
C

〈
a′jl, a

′′

jl

〉
= 〈1, 0〉, then it is clear that ti j ≥ c = ai j. Thus T ≥ A.

Case (2). If
〈
a′il, a

′′

il

〉
C

〈
a′jl, a

′′

jl

〉
=

〈
a′il, a

′′

il

〉
< 〈c′, c′′〉 , then a′il < c′ , a′jl, and a′′il > c′′ , a′′jl .i.e;

a′il < c′ ∧ a′jl and a′′il > c′′ ∨ a′′jl .

Now since we have that A is transitive, we get
〈
a′i j, a

′′

i j

〉
∧

〈
a′jl, a

′′

jl

〉
≤

〈
a′il, a

′′

il

〉
. Thus. 〈c′, c′′〉 ∧

〈
a′jl, a

′′

jl

〉
≤〈

a′il, a
′′

il

〉
. Therefore, a′il < c′ ∧ a′jl ≤ a′il and a′′il > c′′ ∨ a′′jl ≥ a′′il . However, these are contradictions and so t′i j ≥ c′

and t′′i j ≤ c′′. Thus ti j ≥ c = ai j and so T ≥ A.

Case (3). If ti j =
〈
a′il, 0

〉
, then a′il < a′jl. Since we have that 0 < c′′, it is enough to show that a′il ≥ c′.

Suppose that a′il < c′. Then
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a′il < c′ ∧ a′jl = a′i j ∧ a′jl ≤ a′il ( Again by the transitivity of A) and also we have a contradiction and so
a′il ≥ c′ and ti j ≥ c. Thus ti j ≥ c = ai j. i.,e. T ≥ A.

Conversely, if A C At = A, then by the proof of Corollary 3.10, A is reflexive and transitive so it is
idempotent.

Similarly, we can show that At B A = A. �

Corollary 3.12. If A is a reflexive and transitive intuitionistic fuzzy matrix, then (A C At)A = (At B A)A =
A.

Proof. By Theorem 3.11 and Corollary 3.10. �

Corollary 3.13. If A is a reflexive and transitive intuitionistic fuzzy matrix, then (At B A) C At = A.

Theorem 3.11 shows interesting properties of preorders. Thus A is a matrix representing a preorder if
and only if A C At = A (or At B A = A). However, since A C At is obtained by using A if we multiply A C At

by A, any information is not added to A. That is, the product (A C At)A is equal to A.

Example 3.14. Let

A =

〈0.5, 0.4〉 〈0.7, 0.3〉〈0.6, 0.3〉 〈0.8, 0.2〉
〈0.9, 0〉 〈0.4, 0.6〉

.
Then

A C At =

〈0.5, 0.4〉 〈0.7, 0.3〉〈0.6, 0.3〉 〈0.8, 0.2〉
〈0.9, 0〉 〈0.4, 0.6〉

 C
[
〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.9, 0〉
〈0.7, 0.3〉 〈0.8, 0.2〉 〈0.4, 0.6〉

]

=

 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉

.
It is clear that A C At is reflexive and

(A C At)2 =

 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉


 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉


=

 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉

 = A C At.

That is A C At is reflexive and transitive and so idempotent. Moreover, if we let B = A C At. Then

B C Bt =

 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉

 C
 〈1, 0〉 〈1, 0〉 〈0.4, 0.6〉
〈0.5, 0.4〉 〈1, 0〉 〈0.4, 0.6〉
〈0.5, 0.4〉 〈0.6, 0.3〉 〈1, 0〉


=

 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉

 = B,
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(B C Bt)B =

 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉


 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉


=

 〈1, 0〉 〈0.5, 0.4〉 〈0.5, 0.4〉
〈1, 0〉 〈1, 0〉 〈0.6, 0.3〉
〈0.4, 0.6〉 〈0.4, 0.6〉 〈1, 0〉

 = B.

Proposition 3.15. Let A =
[
ai j

]
m×n

,B =
[
bi j

]
m×p

and C =
[
ci j

]
p×n

be three intuitionistic fuzzy matrices. If

BC ≤ A, then Bt B A C Ct is reflexive.

Proof. Suppose that BC ≤ A and let D = Bt B A C Ct. Then dii =
m∧

k=1

n∧
l=1

(bki B akl C cil). Since bki ∧ cil ≤ akl,

by Lemma 3.3 we have dii = 1. �

Corollary 3.16. If an intuitionistic fuzzy matrix A is transitive, then At B A C At is reflexive.

Proof. By Proposition 3.15. �

4. Inverses and Sub-Inverses of Intuitionistic Fuzzy Matrices

In this section we establish interesting matrix inequalities which we use in discussing sub-inverses and
generalized inverses of intuitionistic fuzzy matrices. This discussion is an extension of that on the ordinary
fuzzy matrices and binary relations or Boolean matrices

Definition 4.1. [5, 9, 13] Let A be any m×n intuitionistic fuzzy matrix. If ABA ≤ A for some intuitionistic
fuzzy matrix B, then B is called a sub-inverse of A.

From this definition it is noted that the set of sub-inverses of an intuitionistic fuzzy matrix A is closed
under the operation ∨. That is if we have B1 and B2 are two sub-inverses to an intuitionistic fuzzy matrix
A, then B1 ∨ B2 is also a sub-inverse of A.

Theorem 4.2. For intuitionistic fuzzy matrices A =
[
ai j

]
m×n

,B =
[
bi j

]
m×p

,C =
[
ci j

]
1×n

and D =
[
di j

]
p×1

, if

BDC ≤ A, then D ≤ Bt B A C Ct.

Proof. Let W = Bt B A C Ct. Then wi j =
m∧

k=1

n∧
l=1

(〈
b′ki, b

′′

ki

〉
B

〈
a′kl, a

′′

kl

〉
C

〈
c′jl, c

′′

jl

〉)
.

Suppose di j =
〈
d′i j, d

′′

i j

〉
= 〈e′, e′′〉 > 〈0, 1〉. If wi j =

〈
w′i j,w

′′

i j

〉
< 〈e′, e′′〉, then〈

b′ui, b
′′

ui

〉
B

〈
a′uv, a′′uv

〉
C

〈
c′jv, c

′′

jv

〉
< 〈e′, e′′〉 for some u ≤ m, v ≤ n.

By Lemma 3.2, we have
〈
a′uv, a′′uv

〉
<

〈
b′ui, b

′′

ui

〉
,
〈
a′uv, a′′uv

〉
< 〈e′, e′′〉 and

〈
a′uv, a′′uv

〉
<

〈
c′jv, c

′′

jv

〉
.

Thus, b′ui ∧ d′i j ∧ c′jv > a′uv which contradicts BDC ≤ A. Hence w′i j ≥ e′.

Similarly, since a′′uv > b′′ui, a
′′
uv > c′′jv and a′′uv > e′′. Thus b′′ui ∨ d′′i j ∨ c′′jv < a′′uv which is also a contradiction and

so w′′i j ≤ e′′. Therefore, wi j ≥ e = di j. �

Corollary 4.3. If A is transitive intuitionistic fuzzy matrix, then A ≤ At B A C At.

Proof. By Theorem 4.2. �
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Proposition 4.4 [3, 10]. For intuitionistic fuzzy matrices A =
[
ai j

]
m×n

, B =
[
bi j

]
m×n

, C =
[
ci j

]
n×p

and

D =
[
di j

]
p×m

, if A ≤ B, then AC ≤ BC and DA ≤ DB.

Proposition 4.5. For intuitionistic fuzzy matrices A =
[
ai j

]
m×n

, B =
[
bi j

]
m×p

, C =
[
ci j

]
q×n

and D =
[
di j

]
p×q

,

if BDC = A, then A ≤ B(Bt B A C Ct)C.

Proof. Suppose that A = BDC. Then by Theorem 4.2, D ≤ Bt B A C Ct and so by Proposition 4.4,
BDC ≤ B(Bt B A C Ct)C. Thus

A ≤ B(Bt B A C Ct)C. �

Proposition 4.6. If B is a sub-inverse of A, then B ≤ At B A C At.

Proof. By Theorem 4.2. �

Proposition 4.7. If B is a sub-inverse of transitive intuitionistic fuzzy matrix A, then AB and BA are also
sub-inverses of A.

Proof. Since we have that B is a sub-inverse of A, we get AABA ≤ ABA ≤ A and ABAA ≤ ABA ≤ A.
Hence the proof. �

Clearly In and A itself are sub-inverses of any n × n transitive intuitionistic fuzzy matrix A. In fact, if
B ≤ A, then B is a sub-inverse of A.

Remark. Let S be the set of such subinverses constructed as in Proposition 4.7. Then it is clear that the
pair (S, ∨) forms a commutative monoid with AO = O (the zero matrix) as the unit element of the operation
∨. Also, the pair (S, ◦) forms a semigroup with the composition of intuitionistic fuzzy matrices (◦). Here
in this paper,we write AB instead of A ◦ B - when the composition is suitable- with In as a unit element.
Moreover, the triple (S, ∨, ◦) forms a semiring of sub-inverses of the transitive intuitionistic fuzzy matrix
A. Note that if AB1,AB2 and AB3 are sub-inverses of A, then AB1(AB2 ∨ AB3) = AB1AB2 ∨ AB1AB3 and
(AB2 ∨ AB3)AB1 = AB2AB1 ∨ AB3AB1

Definition 4.8. [5, 8, 9] An intuitionistic fuzzy matrix A of order m× n is said to be regular if there exists
an intuitionistic fuzzy matrix G of order n×m such that AGA = A and then G is called a generalized inverse
(g-inverse) of A .

Example 4.9. From[
〈1, 0〉 〈1, 0〉
〈0.4, 0, 5〉 〈0, 1〉

] [
〈0, 1〉 〈0.4, 0.5〉
〈1, 0〉 〈1, 0〉

] [
〈1, 0〉 〈1, 0〉
〈0.4, 0, 5〉 〈0, 1〉

]
=

[
〈1, 0〉 〈1, 0〉
〈0.4, 0, 5〉 〈0, 1〉

]
.

We see that the intuitionistic fuzzy matrix on the right is regular.

Proposition 4.10. If A is regular intuitionistic fuzzy matrix and G is a g-inverse of A, then
(i) G ≤ At B A C At,
(ii) A ≤ A(At B A C At)A.

Proof. (i) By Theorem 4.2.
(ii) By Proposition 4.5. �

In the case when an intuitionistic fuzzy matrix A is reflexive and transitive, the matrix A itself is a
sub-inverse of A. It is also a g-inverse of A. But in this case A = At B A C At by Corollary 3.13. Thus
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At B A C At is a sub-inverse of A and it is also a g-inverse of A. In fact, this matrix is the largest one as we
seen in Propositions 4.6 and 4.10.

5. Conclusions

In this paper we have shown some properties of the pre- orders and subinverses of intuitionistic fuzzy
matrices. They are useful in discussion of regularity of intuitionistic fuzzy matrices. The results we have
obtained on subinverses are generalizations of Schein’s results [13] and Hashimoto’s results [5]. Of course
these results hold for Boolean matrices and also for ordinary fuzzy matrices. However, the operation
B plays an important role in our discussions. We may use this operation in future for decomposition of
rectangular intuitionistic fuzzy matrices which is useful for decomposition of intuitionistic fuzzy databases.
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