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Abstract. We presented bitopological approximation space as a generalization of classical approximation
space. This generalization is based on a topological space that have a subbases generated by a family of
binary relations defined on the universe of discourse. We studied some properties of rough sets on bitopo-
logical approximation spaces. Many new membership functions and inclusion functions are defined and
are used for redefining the rough approximations. Finally, some real life application examples are given to
illustrate the benefit of our approach.

1. Introduction

For a long time we dreamed that the general topological spaces can apply in life sciences. Since 2004,
I have been working on topology with rough sets and with information systems and tried to reduct the
information system by topology by using general binary relations instead of equivalence relations. In 2010,
I solved the problem of finding the missing attribute values by using the topological base relation that
defined in [8]. More generalizations of the topological approach of information systems can do using near
open sets such as pre-open sets, e-open sets and so on [5].

Many approaches generalized rough sets and fuzzy sets using topological spaces [9, 11, 12, 17, 18, 19,
20]. Liu in [6] has studied a comparison of two types of rough sets induced by coverings and he in [7]
has introduced the axiomatic systems for rough sets and fuzzy rough sets. The main purpose from these
generalizations is to add new objects in the positive region of decision categories. Deleting some objects
from negative region is equivalent target for the addition, objects in the positive region. A topological
generalizations achievement many aspects such as reduction of large data sets and generate decision rules
that help in data mining. Also, attribute reduction in ordering information systems based on evidence
theory is one of the directions of study on this topic [10].

Rough sets and topology with their generalizations have developed the similarity measure at the base of
granular computing methodology. Knowledge discovery, according to granular computing models based
on rough sets and topological spaces is a different technique for data pre-processing, reduction, and data
mining [21, 22, 23, 24].

In [1] Abu-Donia introduced multi knowledge bases using rough approximations and topology, they
used these knowledge bases in applications. He also in [2], introduced a comparison between different
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kinds of approximations using a family of binary relations. He with Salama in [3, 4] have generalized the
classical rough approximation spaces using topological near open sets called δβ-open sets.

δβ-open sets have opened the door about using other topological approaches for information systems.
In our approach we used any finite number of binary relations defined on attributes of an information
system to generate two topological spaces and used them in generalizations. We organized our work at the
following:

In Section 2 we defined the notion of bitopological approximation space with some important accuracy
measures on it. We introduced in Section 3 some important properties of bitopological spaces and we
defined the concept of rough set on it. In Section 4, we introduced an application approach for data
reduction in multi-valued information systems. The conclusion of our work is given in Section 5.

2. Bitopological Approximation Space

The approximation space A = (X,R) is the core of rough set theory, where X is the universe and R is an
equivalence relation [8, 14]. The equivalence class [x]R is the basic tool for defining rough approximations,
lower R(A) = {x ∈ X : [x]x ⊆ A}and upper R(A) = {x ∈ X : [x]x

⋂
A , ϕ}. In application this theory have a

wide range when we use positive POSR(A) = R(A), negative NEGR(A) = X−R(A) and BNR(A) = R(A)−R(A)
regions of some categories X of the universe.

To measure the quality of applications Pawlak define the accuracy measure as follows:

αR(A) =
|R(A)|

|R(A)|
where A , ϕ.

By accuracy measure we can capture the large of the boundary region of a given category. From the
advantage of this theory is the ability to handle a category only using the given data.

In the case of equivalence relations the essential rough set approximations lower and upper coincide
with the topological interior and the closure operation respectively. This open the door for using the theory
of topological spaces for more generalizations of rough sets. A topological space (X, τ) consisting of a set X
and family τ of subsets of X that satisfies the conditions:

1. The empty set and the universe are basic members in τ.
2. The arbitrary unions of members in τ are again a member in τ.
3. The finite intersections of members in τ are again a member in τ.

The topological interior and the topological closure of A ⊂ X are defined as follows:

1. int(A) =
⋃
{G ⊆ X : G ∈ τ,G ⊆ A},

2. cl(A) =
⋂
{F ⊆ X : X − F ∈ τ,A ⊆ F} .

We can generate a lower and upper approximation operator based on a topological bases generated by
binary relations.

Suppose Ri, i = 1, 2, 3, ..., n be any binary relations defined on a universe U, if x, y ∈ U then the set
Ri−R(x) = {y : xRiy, (x, y) ∈ Ri,∀i}is called the right blocks of x. The family of all right blocksSR = {Ri−R(x) :
x ∈ U} is a subbase of a topology τRon the universe. In the same way the left blocks Ri−L(x) = {y :
yRix, (x, y) ∈ Ri,∀i} define a subbase SL = {Ri−L(x) : x ∈ U} of another topology τLon the universe. The
approximation space BiT = (U,Ri, τR, τL)is a generalization of the classical approximation space of Pawlak
and we named it biotopological approximation space.

The subbase SR defines lower and upper approximations of A ⊂ Uas follows:

1. SR(A) =
⋃
{Ri−R(x) ∈ SR : Ri−R(x) ⊆ A},

2. SR(A) =
⋂
{Ri−R(x) ∈ SR : Ri−R(x)

⋂
A , ϕ},

Also, the subbase SL defines lower and upper approximations of A ⊂ Uas follows:
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1. SL(A) =
⋃
{Ri−L(x) ∈ SL : Ri−L(x) ⊆ A},

2. SL(A) =
⋂
{Ri−L(x) ∈ SL : Ri−L(x)

⋂
A , ϕ},

The accuracy measures of a subset A ⊂ Uof the above approximations defined as follows:

αSR (A) =
|A
⋂

SR(A)|

|A
⋃

SR(A)|
, αSL (A) =

|A
⋂

SL(A)|

|A
⋃

SL(A)|
.

A subset A ⊆ U of a bitopological space BiT = (U,Ri, τR, τL) is called βRopen if A ⊂ clR(intR(clR(A)))and
calledβL if A ⊂ clL(intL(clL(A))). The subset A ⊆ U is called βopen if A ⊂ clR(intR(clR(A)))

⋂
clL(intL(clL(A))).

A subset A ⊆ U that discernible the objects using the decision attribute in the bitopological space
BiT = (U,Ri, τR, τL) is called δR open if A = SRδ(A), where SRδ(A) =

⋂
{G ∈ τR : A ⊂ G}and it called δL open

if A = SLδ(A), where SLδ(A) =
⋂
{G ∈ τL : A ⊂ G}. The subset A ⊆ U is called δopen if A = SRδ(A)

⋂
SLδ(A).

A subset A ⊆ U that discernible the objects using the decision attribute in the bitopological space
BiT = (U,Ri, τR, τL) is called δ−o

R open if A ⊆ clR(intR(SRδ(A)))and it is called δ−o
L open if A ⊆ clL(intL(SLδ(A))).

The subset A ⊆ U is called (δβ)open if A ⊆ clR(intR(SRδ(A)))
⋂

clL(intL(SLδ(A))).
The family of all δβopen (resp. Rand Lopen) sets of A ⊆ U is denoted by (δβ)O(U) (resp. RO(U)and

LO(U)). The complement of (δβ) open (resp. Rand Lopen) set is (δβ) closed (resp. Rand Lclosed) set. We
denote the set of all (δβ)closed (resp. Rand Lopen closed) sets by (δβ)C(U)(resp. RC(U)and LC(U)).

Let BiT = (U,Ri, τR, τL) be a bitopological space. Rlower approximation and Rupper approximation of
the subset A ⊆ U is defined as follows:

1. BiT
R
(A) =

⋃
{G ∈ RO(U) : G ⊆ A} ,

2. BiTR (A) =
⋂
{F ∈ RC(U) : F ⊇ A}.

Let BiT = (U,Ri, τR, τL) be a bitopological space. Llower approximation and Lupper approximation of
the subset A ⊆ U is defined as follows:

1. BiT
L
(A) =

⋃
{G ∈ LO(U) : G ⊆ A} ,

2. BiTL (A) =
⋂
{F ∈ LC(U) : F ⊇ A}.

. Let BiT = (U,Ri, τR, τL) be a bitopological space. (δβ)lower approximation and (δβ)upper approxima-
tion of the subset A ⊆ U is defined as follows:

1. BiT
(δβ)

(A) =
⋃
{G ∈ (δβ)O(A) : G ⊆ A} ,

2. BiT(δβ) (A) =
⋂
{F ∈ (δβ)C(U) : F ⊇ A}.

The accuracy measures of a subset A ⊂ Uof the above approximations defined as follows:

αR(A) =
|A
⋂

BiTR(A)|

|A
⋃

BiTR(A)|
, αL(A) =

|A
⋂

BiTL(A)|

|A
⋃

BiTL(A)|
, α(δβ)(A) =

|A
⋂

BiT(δβ)(A)|

|A
⋃

BiT(δβ)(A)|

Example 2.1. Let U = {a, b, c, d, e} be a universe we define three relations on U by:

R1 = {(a, a), (a, e), (b, c), (b, d), (c, e), (d, a), (d, e), (e, e)},

R2 = {(a, c), (a, a), (a, e), (b, c), (b, d), (c, e), (d, a), (d, e), (e, e), (b, e)},

R3 = {(c, c), (a, a), (a, e), (b, c), (b, d), (c, e), (d, a), (d, e), (e, e), (d, d)}

Then we have:

SR = {{a, e}, {c, d}, {e}},
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SL = {{a, d}, {b}, {a, c, d, e}}.

Then the topologies associated with these relations are:

τR = {U, ϕ, {e}, {c, d}, {a, e}, {c, d, e}, {a, c, d, e}},

τL = {U, ϕ, {b}, {a, d}, {a, b, d}, {a, c, d, e}}.

Table 1 below showing the degree of accuracy measure αR(A),αL(A) and α(δβ)(A) for some subsets of the universe.

A ⊆ U αR(A)% αL(A)% α(δβ)(A)%
{a, c} 0 50 100
{b, e} 33 33 100
{a, b, e} 66 100 100
{a, c, d} 50 66 100
{b, c, e} 20 75 100
{c, d, e} 60 75 100
{a, c, d, e} 80 80 80
{a, b, d, e} 40 100 100
{b, c, d, e} 60 80 100

Table 1: Accuracy measure αR(A),αL(A) and α(δβ)(A) of some subsets

We see that the degree of exactness of the set {c, d, e} by using R accuracy measure equal to 60%, by
using Laccuracy measure equal to 75% and by using (δβ)accuracy measure equal to100%. Consequently,
(δβ)accuracy measure is the best accuracy measure.

According to the above approximations any subset A ⊆ Uhas the following regions:

1. The Rinternal edg of A, Ed1
R

(A) = A − BiT
R
(A).

2. The Linternal edg of A, Ed1
L
(A) = A − BiT

L
(A).

3. The (δβ)internal edg of A, Ed1
(δβ)

(A) = A − BiT
(δβ)

(A).

4. The Rexternal edg of A, Ed1R(A) = BiTR (A) − A.

5. The Lexternal edg of A, Ed1L(A) = BiTL (A) − A.

6. The (δβ) external edg of A, Ed1(δβ)(A) = BiT(δβ) (A) − A.

7. The Rboundary of A, BONR(A) = BiTR (A) − BiT
R
(A).

8. The Lboundary of A, BONL(A) = BiTL (A) − BiT
L
(A).

9. The (δβ) boundary of A, BON(δβ)(A) = BiT(δβ) (A) − BiT
(δβ)

(A).

10. The R negative of A, NEGR(A) = U − BiTR (A).

11. The L negative of A, NEGL(A) = U − BiTL (A).

12. The (δβ) negative of A, NEG(δβ)(A) = U − BiT(δβ) (A).

Proposition 2.1. For any bitopological approximation space BiT = (U,Ri, τR, τL), and for any A ⊆ Xwe have:

1. BONR(A) = Ed1
R

(A)
⋃

Ed1R(A)

2. BONL(A) = Ed1
L
(A)
⋃

Ed1L(A)

3. BON(δβ)(A) = Ed1
(δβ)

(A)
⋃

Ed1(δβ)(A)
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Proof. all three parts can proved as follows:
BONR(A) = BiTR (A) − BiT

R
(A)= (BiTR (A) −A)

⋃
(A − BiT

R
(A)) but Ed1R(A) = BiTR (A) −A and Ed1

R
(A) =

A − BiT
R
(A), then we have BONR(A) = Ed1

R
(A)
⋃

Ed1R(A).
The next two propositions give the connection between the classical lower and apper edge and that of

our approach. Here R(A)and R(A)are the classical lower and upper approximations of rough sets.

Proposition 2.2. For any bitopological approximation space BiT = (U,Ri, τR, τL), and for any A ⊆ Xwe have:

1. R(A) − BiT
R
(A) = Ed1(A)

⋃
Ed1

R
(A)

2. R(A) − BiT
L
(A) = Ed1(A)

⋃
Ed1

L
(A)

3. R(A) − BiT
(δβ)

(A) = Ed1(A)
⋃

Ed1
(δβ)

(A)

4. BiTR (A) − R(A) = Ed1R(A)
⋃

Ed1(A)

5. BiTL (A) − R(A) = Ed1L(A)
⋃

Ed1(A)

6. BiT(δβ) (A) − R(A) = Ed1(δβ)(A)
⋃

Ed1(A)

Proof. Obvious.

Proposition 2.3. For any bitopological approximation space BiT = (U,Ri, τR, τL), and for any A ⊆ Xwe have:

1. Ed1(A) = Ed1
R

(A)
⋃

(BiT
R
(A) − R(A))

2. Ed1(A) = Ed1
L
(A)
⋃

(BiT
L
(A) − R(A))

3. Ed1(A) = Ed1
(δβ)

(A)
⋃

(BiT
(δβ)

(A) − R(A))

4. Ed1(A) = Ed1R(A)
⋃

(R(A) − BiTR (A))
5. Ed1(A) = Ed1L(A)

⋃
(R(A) − BiTL (A))

6. Ed1(A) = Ed1(δβ)(A)
⋃

(R(A) − BiT(δβ) (A))

Proof. Obvious.

Let BiT = (U,Ri, τR, τL)be a bitopological approximation space and A ⊆ U. Then we define the following
membership functions:

1. x∈
R
A iff x ∈ BiT

R
(A), that called R-strong membership function.

2. x∈
L
A iff x ∈ BiT

L
(A), that called L-strong membership function.

3. x∈
(δβ)

A iff x ∈ BiT
(δβ)

(A), that called (δβ)-strong membership function.

4. x∈R A iff x ∈ BiTR (A), that called R-weak membership function.
5. x∈L A iff x ∈ BiTL (A), that called L-weak membership function.
6. x∈(δβ) A iff x ∈ BiT(δβ) (A), that called (δβ)-weak membership function.

According to the definitions of membership functions above we can redefine the lower and the upper
approximations of a set A ⊆ X as follows:

(1)BiT
R
(A) = {x ∈ A : x∈

R
A},

(2)BiT
L
(A) = {x ∈ A : x∈

L
A},

(3)BiT
(δβ)

(A) = {x ∈ A : x∈
(δβ)

A},

(4)BiTR (A) = {x ∈ A : x∈R A},

(5)BiTL (A) = {x ∈ A : x∈L A},

(6)BiT(δβ) (A) = {x ∈ A : x∈(δβ) A}

Let BiT = (U,Ri, τR, τL)be a bitopological approximation space and A,B ⊆ U. Then we have the following
cases with respect to A and B:
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1. R-roughly bottom equal (A∼RB) if BiT
R
(A) = BiT

R
(B),

2. L-roughly bottom equal (A∼LB) if BiT
L
(A) = BiT

L
(B),

3. (δβ)-roughly bottom equal (A∼(δβ)B) if BiT
(δβ)

(A) = BiT
(δβ)

(B),

4. R-roughly top equal (A'RB) if BiTR (A) = BiTR (B),
5. L-roughly top equal (A'LB) if BiTL (A) = BiTL (B),
6. (δβ)-roughly top equal (A'(δβ)B) if BiT(δβ) (A) = BiT(δβ) (B),
7. R-roughly equal (A ≈R B) if (A∼RB) and (A'RB),
8. L-roughly equal (A ≈L B) if (A∼LB) and (A'LB),
9. (δβ)-roughly equal (A ≈(δβ) B) if (A∼(δβ)B) and (A'(δβ)B).

Let BiT = (U,Ri, τR, τL)be a bitopological approximation space and A,B ⊆ U. Then we have the following
cases with respect to A and B:

1. A is R roughly bottom included in B (A ⊂R
∼ B) if BiT

R
(A) ⊆ BiT

R
(B)

2. A is L roughly bottom included in B (A ⊂L
∼ B) if BiT

L
(A) ⊆ BiT

L
(B)

3. A is (δβ) roughly bottom included in B (A ⊂(δβ)
∼ B) if BiT

(δβ)
(A) ⊆ BiT

(δβ)
(B)

4. A is R roughly top included in B (A ⊂∼R B) if BiTR (A) ⊆ BiTR (B)

5. A is L roughly top included in B (A ⊂∼L B) if BiTL (A) ⊆ BiTL (B)

6. A is (δβ) roughly top included in B (A ⊂∼(δβ) B) if BiT(δβ) (A) ⊆ BiT(δβ) (B)

7. A is R roughly included in B(A ⊂∼
∼R B) if (A ⊂R

∼ B) and (A ⊂∼R B)
8. A is L roughly included in B(A ⊂∼

∼L B) if (A ⊂L
∼ B) and (A ⊂∼L B)

9. A is (δβ) roughly included in B(A ⊂∼
∼(δβ) B) if (A ⊂(δβ)

∼ B) and (A ⊂∼(δβ) B)

3. Properties of bitopological rough approximations

In this section, we introduced some important properties of bitopological spaces and we will define the
concept of rough set in BiT = (U,Ri, τR, τL). For any bitopological approximation space BiT = (U,Ri, τR, τL)a
subset A of U is called:

1. R definable set if BiTR (A) = BiT
R
(A) or BONR(A) = ϕ

2. L definable set if BiTL (A) = BiT
L
(A) or BONL(A) = ϕ

3. (δβ) definable set if BiT(δβ) (A) = BiT
(δβ)

(A) or BON(δβ)(A) = ϕ

4. R rough if BiTR (A) , BiT
R
(A) or BONR(A) , ϕ

5. L rough set if BiTL (A) , BiT
L
(A) or BONL(A) , ϕ

6. (δβ) rough set if BiT(δβ) (A) , BiT
(δβ)

(A) or BON(δβ)(A) , ϕ

For any bitopological approximation space BiT = (U,Ri, τR, τL)a subset A of U is called:

1. Roughly R definable, if BiT
R
(A) , ϕ and BiTR (A) , U.

2. Roughly L definable, if BiT
L
(A) , ϕ and BiTL (A) , U.

3. Roughly (δβ) definable, if BiT
(δβ)

(A) , ϕ and BiT(δβ) (A) , U.

4. Internally R undefinable, if BiT
R
(A) = ϕ and BiTR (A) , U.

5. Internally L undefinable, if BiT
L
(A) = ϕ and BiTL (A) , U.

6. Internally (δβ) undefinable, if BiT
(δβ)

(A) = ϕ and BiT(δβ) (A) , U.
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7. Externally R undefinable, if BiT
R
(A) , ϕ and BiTR (A) = U.

8. Externally L undefinable, if BiT
L
(A) , ϕ and BiTL (A) = U.

9. Externally (δβ) undefinable, if BiT
(δβ)

(A) , ϕ and BiT(δβ) (A) = U.

10. Totally R undefinable, if BiT
R
(A) = ϕ and BiTR (A) = U.

11. Totally L undefinable, if BiT
L
(A) = ϕ and BiTL (A) = U.

12. Totally (δβ) undefinable, if BiT
(δβ)

(A) = ϕ and BiT(δβ) (A) = U.

Proposition 3.1. For any bitopological approximation space BiT = (U,Ri, τR, τL)and for all x, y ∈ U, we have:

1. if x ∈ BiTR ({y}) and y ∈ BiTR ({x}) then BiTR ({x}) = BiTR ({y}).
2. if x ∈ BiTL ({y}) and y ∈ BiTL ({x}) then BiTL ({x}) = BiTL ({y}).
3. if x ∈ BiT(δβ) ({y}) and y ∈ BiT(δβ) ({x}) then BiT(δβ) ({x}) = BiT(δβ) ({y}).

Proof. (1) By definition of R upper approximation of a set is the τR closure of this set, and since clτR ({y}) is
R closed set containing x while BiTR ({x}) is the smallest Rclosed set containing x, thus BiTR ({x}) ⊆ BiTR ({y}).
The opposite inclusion follows by symmetry BiTR ({y}) ⊆ BiTR ({x}). Hence BiTR ({x}) = BiTR ({y}). The proof
of Parts (2) and (3) are by the same way.

4. Data deduction in information systems using bitopological spaces

Decision tables (information systems) are widely used in applications and it have many different types.
Some of them, its rows are represented objects, while its columns are labeled by attributes. In this system,
independent attributes named condition attributes and dependent attributes called decision attributes. For
the decision table T = (U,C,D), Uis the set of objects, Cis the set of independent attributes and D is the
dependent attribute. On any decision table we define an information function f that maps the direct
product of Uand C into the set of all attribute values VC. A decision table is called incomplete when some
values of specified attributes are missing.

Reduction of attributes and derivation of decision rules from decision tables are important for applica-
tions and this will done using hybird approach between rough set theory and topology. By reduction of the
information table we mean smaller subsets B ⊆ Cof attributes that preserve the quality of approximations.

With respect to our approach the subset B′ ⊂ B ⊆ C is a reduct of subset Bwith respect to the bitopological
approximation space BiT = (U, C, τR, τL) if it is a minimal subset of Bwhich keeps the quality of classification
unchanged. Another important topic in rough set theory on decision table is called decision rules. A decision
rule r generated by a reduct B ⊆ C is represented in the following form :

r = ∧
a∈B

( f (a(x), v))→ (D(x),w) where v ∈ Vaand w ∈ VD.

We denote by s = (a(x), v)and by t = (D(x),w) to the condition and decision parts of a decision rule,
respectively. Let rsand rt be the set of objects satisfying condition and decision parts of the decision rule r.
Objects satisfying both condition and decision parts of the decision rule are called the support of this rule.
Decision rules are certain if rs ⊆ rt.

Another important issue in information systems is the discover of dependency among attributes. the
set of attributes A ⊆ C depends totally on the set of attributes B ⊆ C, denoted B⇒ A if the set of all values
of attributes from A are contained in the values of attributes from B. In other words, A depends totally on
B, if there exists a functional dependency between values of A and B.

When we need to measure the dependency of attributes we define three important regions of each
approximation type of a subset A ⊂ C as follows:

1. The R positive region POSR(A) = BiT
R
(A).

2. The L positive region POSL(A) = BiT
L
(A).

3. The (δβ) positive region POS(δβ)(A) = BiT
(δβ)

(A).
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4. The R negative region NEGR(A) = U − BiTR (A)
5. The L negative region NEGL(A) = U − BiTL (A)
6. The (δβ) negative region NEG(δβ)(A) = U − BiT(δβ) (A),

7. The R boundary region BONR(A) = BiTR (A) − BiT
R
(A)

8. The L boundary region BONL(A) = BiTL (A) − BiT
L
(A)

9. The (δβ) boundary region BON(δβ) (A) = BiT
(δβ)

(A) − BiT
(δβ)

(A),

Formally dependency can be defined in the following way. Let A and B be subsets of C. We will say
that A depends on B with respect to τR, denoted B⇒

R
A , if γR(A,B) =

|POSR(A)|
|U| , and with respect to τL,B⇒

L
A, if

γL(A,B) =
|POSL(A)|
|U|

.

Example 4.1. Consider the multi-valued information system given in Table 2 below:
In this table the set U = {u1,u2,u3,u4,u5,u6,u7}is a set of objects and C = {A1,A2,A3}is the set of condition

attributes and Decision = {D}is the decision attribute. In this example we need to determine the condition attributes
that support the decision attribute.

D A3 A2 A1 U
Yes {3} {1,2,3} {0} u1

No {3,4} {1,2} {0, 1} u2

Yes {3} {1,3} {2} u3

No {4} {1,2,4} {1} u4

Maybe {3,4} {4} {1} u5

Yes {3} {1,2} {1,2} u6

Maybe {3,4} {1,2,3} {0,2} u7

Table 2: Multi-valued Information System

The power set of condition attributes is given as follows:

P(C) = {C, ϕ, {A1}, {A2}, {A3}, {A1,A2}, {A1,A3}, {A2,A3}}

Now we define the following binary relations on Uas follows:

RB⊆C = {(x, y) : fB⊆C(x) ⊆ fB⊆C(y),∀B ⊆ C,B , ϕ,∀x, y ∈ U}

For this done, we constract the following relations on condition attributes:

R{A1} = {(u1,u1), (u1,u2), (u1,u7), (u2,u2), (u3,u3), (u3,u7),
(u4,u4), (u4,u2), (u4,u5), (u4,u6), (u5,u5),
(u5,u2), (u5,u4), (u5,u6), (u6,u6), (u7,u7)}

,

R{A2} = {(u1,u1), (u1,u7), (u2,u2), (u2,u1), (u2,u4), (u2,u6), (u2,u7), (u3,u1),
(u3,u3), (u3,u7), (u4,u4), (u5,u4), (u5,u5), (u6,u6), (u6,u1),
(u6,u2), (u6,u4), (u6,u7), (u7,u1), (u7,u7)}

,

R{A3} = {(u1,u1), (u1,u2), (u1,u3), (u1,u5), (u1,u6), (u1,u7),
(u2,u2), (u2,u5), (u2,u7), (u4,u2), (u4,u5), (u4,u7), (4, 4),

(u3,u1), (u3,u2), (u3,u3), (u3,u5), (u3,u6), (u3,u7),
(u6,u1), (u6,u2), (u6,u3), (u6,u5), (u6,u6), (u6,u7),

(u5,u2), (u5,u5), (u5,u7), (u7,u2), (u7,u5), (u7,u7)}
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R{A1,A2} = {(u1,u1), (u2,u2), (u3,u3), (u3,u7), (u4,u4),
(u5,u4), (u5,u5), (u6,u6), (u7,u7)}

R{A1,A3} = {(u1,u1), (u1,u2), (u1,u7), (u2,u2), (u3,u3), (u3,u6), (u3,u7),
(u4,u4), (u4,u2), (u4,u5), (u5,u5), (u5,u2), (u6,u6), (u7,u7)} ,

R{A2,A3} = {(u1,u1), (u1,u7), (u2,u2), (u2,u7), (u3,u3), (u3,u1),
(u3,u7), (u4,u4), (u5,u5), (u6,u6), (u6,u1), (u6,u2), (u6,u7), (u7,u7)} ,

RC = {(u1,u1), (u1,u7), (u2,u2), (u3,u3), (u3,u7), (u4,u4),
(u5,u5), (u4,u6), (u6,u6), (u7,u7)} ,

The right and left blocks of R{A1}are a subbase as follows:

S{A1}−R = {{u1,u2,u7}, {u2}, {u3,u7}, {u2,u4,u5,u6}, {u6}, {u7}}

S{A1}−L = {{u1}, {u1,u2}, {u3}, {u4,u5}, {u4,u5,u6}, {u1,u3,u7}}

The right and left blocks of R{A2} are a subbase as follows:

S{A2}−R = {{u1,u7}, {u1,u2,u4,u6,u7}, {u1,u3,u7}, {u4}, {u4,u5}}

S{A2}−L = {{u1,u2,u3,u6,u7}, {u2,u6}, {u3}, {u2,u4,u5,u6}, {u5}}

The right and left blocks of R{A3} are a subbase as follows:

S{A3}−R = {{u1,u2,u3,u5,u6,u7}, {u2,u5,u7}, {u2,u4,u5,u7}}

S{A3}−L = {{u1,u3,u6}, {u4},U}

The right and left blocks of R{A1,A2} are a subbase as follows:

S{A1,A2}−R = {{u1}, {u2}, {u3,u7}, {u4,u5}, {u5}, {u6}, {u3,u7}}

S{A1,A2}−L = {{u1}, {u2}, {u3}, {u4}, {u4,u5}, {u6}, {u7}}

The right and left blocks of R{A1,A3} are a subbase as follows:

R{A1,A3}−R = {{u1,u2,u7}, {u2}, {u3,u6,u7}, {u2,u4,u5}, {u2,u5}, {u6}, {u7}}

R{A1,A3}−L = {{u1}, {u1,u2,u4,u5}, {u3}, {u4}, {u3,u6}, {u1,u3,u7}}

The right and left blocks of R{A2,A3} are a subbase as follows:

S{A2,A3}−R = {{u1,u7}, {u2,u7}, {u1,u3,u7}, {u4}, {u5}, {u1,u2,u6,u7}, {u7}}

S{A2,A3}−L = {{u1,u3,u6}, {u2,u6}, {u3}, {u4}, {u5}, {u6}, {u1,u2,u3,u6,u7}}

The right and left blocks of RC are a subbase as follows:

SC−R = {{u1,u7}, {u2}, {u3,u7}, {u4}, {u5}, {u6}, {u7}}

SC−L = {{u1}, {u2}, {u3}, {u4}, {u5}, {u6}, {u1,u3,u7}}

The two topologies we need in the reduction process is given by:

τR = {U, ϕ, {u2}, {u4}, {u5}, {u6}, {u7}, {u1,u7}, {u3,u7},
{u2,u4}, {u4,u6}, {u4,u7}, {u2,u5}, {u2,u6}, {u2,u7},
{u4,u5}, {u5,u6}, {u5,u7}, {u6,u7}, {u3,u4,u7},
{u1,u4,u7}, {u2,u3,u7}, {u1,u2,u7}, {u3,u5,u7},
{u1,u5,u7}, {u3,u6,u7}, {u1,u6,u7}, {u1,u3,u7},
{u2,u4,u5}, {u2,u4,u6}, {u2,u4,u7}, {u4,u5,u6},
{u4,u5,u7}, {u2,u3,u4,u7}, {u1,u2,u4,u7},
{u3,u4,u5,u7}, {u1,u4,u5,u7}, {u2,u4,u5,u6,u7},
{u2,u3,u4,u5,u6,u7}, {u1,u2,u4,u5,u6,u7}}
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τL = {U, ϕ, {u1}, {u2}, {u3}, {u4}, {u5}, {u6}, {u1,u3,u7},
{u1,u2}, {u1,u3}, {u1,u4}, {u1,u5}, {u1,u6}, {u2,u3}, {u2,u4},
{u2,u5}, {u1,u6}, {u3,u4}, {u3,u5}, {u3,u6}, {u1,u2,u3,u7},
{u4,u5}, {u4,u6}, {u1,u3,u4,u7}, {u5,u6}, {u1,u3,u5,u7},
{u1,u3,u6,u7}, {u1,u2,u3}, {u1,u2,u4}, {u1,u2,u5}, {u1,u2,u6},
{u1,u3,u4}, {u1,u3,u5}, {u1,u3,u6}, {u1,u4,u5}, {u1,u4,u6},
{u1,u5,u6}, {u2,u3,u4}, {u2,u3,u5}, {u2,u3,u6}, {u2,u4,u5},
{u2,u4,u6}, {u1,u2,u3,u4,u7}, {u2,u5,u6}, {u3,u4,u5},
{u1,u2,u3,u4,u7}, {u1,u2,u3,u5,u7}, {u1,u2,u3,u6,u7},
{u3,u4,u6}, {u4,u5,u6}, {u1,u3,u4,u5,u7}, {u1,u3,u5,u6,u7},
{u1,u2,u3,u4}, {u1,u2,u3,u5}, {u1,u2,u3,u6}, {u2,u3,u4,u5},
{u2,u3,u4,u6}, {u1,u2,u3,u4,u7}, {u3,u4,u5,u6},
{u1,u2,u3,u4,u5}, {u2,u3,u4,u5,u6}, {u1,u2,u3,u4,u6},
{u1,u2,u3,u4,u5,u6}}

Now these topologies are considered as the basic knowledge base for our system that we can generate decision rules
from Table 2.
The discernible subsets of the decision attribute are:

D1 = Decision(Yes) = {u1,u3,u6},

D2 = Decision(No) = {u2,u4},

D1 = Decision(Maybe) = {u5,u7},

Now we need to calculate SRδ(Di), i = 1, 2, 3 and SLδ(Di), i = 1, 2, 3, and then we know if the above categories
about decision are δRopen (Di = SRδ(Di)) or δLopen (Di = SLδ(Di)).
δR(D1) = SRδ(D1) =

⋂
{G ∈ τR : D1 ⊂ G} = {u1,u3,u6,u7}, then D1is not δRopen category.

δL(D1) = SLδ(D1) =
⋂
{G ∈ τL : D1 ⊂ G} = {u1,u3,u6}, then D1is δLopen category.

δR(D2) = SRδ(D2) =
⋂
{G ∈ τR : D2 ⊂ G} = {u2,u4}, then D2is δRopen category.

δL(D2) = SLδ(D2) =
⋂
{G ∈ τL : D2 ⊂ G} = {u2,u4}, then D2is δLopen category.

δR(D3) = SRδ(D3) =
⋂
{G ∈ τR : D3 ⊂ G} = {u5,u6,u7}, then D3is not δRopen category.

δL(D3) = SLδ(D3) =
⋂
{G ∈ τL : D3 ⊂ G} = {u1,u3,u5,u7}, then D3is not δLopen category.

We notice that δR(D1) ∩ δL(D1) = D1, δR(D2) ∩ δL(D2) = D2and δR(D3) ∩ δL(D3) = D3, hence all decision
catogries are δ open.

If we tried to separate among these decision categories using (δβ)open approach, then we need to calculate
clR(intR(δR(Di))), i = 1, 2, 3 and clL(intL(δL(Di))), i = 1, 2, 3.

δ−o
R (D1) = clR(intR(δR(D1))) = U, δ−o

L (D1) = clL(intL(δL(D1))) = {u1,u3,u5,u6,u7},

δ−o
R (D2) = clR(intR(δR(D2))) = {u2,u4}, δ−o

L (D2) = clL(intL(δL(D2))) = {u2,u4,u6},

δ−o
R (D3) = clR(intR(δR(D3))) = {u3,u5,u6,u7}, δ−o

L (D3) = clL(intL(δL(D3))) = {u1,u3,u5,u6,u7},

Now we notice that Di ⊆ δ−o
R (Di)∩δ−o

L (Di), ∀i = 1, 2, 3then Di,∀i = 1, 2, 3 are (δβ) open. After many calculations
using the topologies τRand τL the Rlower approximation and Rupper approximation of the subset Di, i = 1, 2, 3 are
given by:
BiT

R
(D1) = {u1,u6} , BiTR (D1) = {u1,u3,u6,u7}, then BONR(D1) = {u3,u7}

BiT
R
(D2) = {u2,u4} , BiTR (D2) = {u2,u4}, then BONR(D2) = ϕ

BiT
R
(D3) = {u5,u7} , BiTR (D3) = {u1,u3,u5,u6,u7}, then BONR(D3) = {u1,u3,u6}

Also, the Llower approximation and Lupper approximation of the subset Di, i = 1, 2, 3 are given by:
BiT

L
(D1) = {u1,u3,u6} , BiTL (D1) = {u1,u3,u6,u7}, then BONL(D1) = {u7},

BiT
L
(D2) = {u2,u4} , BiTL (D2) = {u2,u4}, then BONL(D2) = ϕ,
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BiT
L
(D3) = {u5,u7} , BiTL (D3) = {u1,u3,u5,u7}, then BONL(D3) = {u1,u3}.

Also, the (δβ)lower approximation and (δβ)upper approximation of the subset Di, i = 1, 2, 3 are given by:
BiT

(δβ)
(D1) = {u1,u3,u6} ,BiT(δβ) (D1) = {u1,u3,u6,u7}, then BON(δβ)(D1) = {u7}

BiT
(δβ)

(D2) = {u2,u4} ,BiT(δβ) (D2) = {u2,u4}, then BON(δβ)(D2) = ϕ

BiT
(δβ)

(D3) = {u5,u7} ,BiT(δβ) (D3) = {u3,u5,u7}. then BON(δβ)(D3) = {u3}.

The conclusions about the accurate approach (exactly(δβ) approach) with respect to the information given in Table
2 are given as the following:

1. The decision value “Yes” is not exactly such that {u7}is in the boundary region.
2. The decision value “No” is exactly 100% such that its boundary region is empty.
3. The decision value “Maybe” is not exactly such that {u7}is in its boundary region.

5. Conclusion

We generalized Pawlak approximation space by family of binary relations to bitopological approxima-
tion space. Using Rblocks and Lblocks of these relations we generated two topological spaces and using
them we defined the lower and upper approximations of any subset in the universe. We generalized the
rough approximations of any subset to three regions namely, R region, Lregion and (δβ)-region and used
these regions for reduction of information systems.

The same category in a descision system can distinguishable by three accuracy measures αR(D),αL(D)
and α(δβ)(D). The applications are proved that the measure α(δβ)(D)is the best than other measures.
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