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Available at: http://www.pmf.ni.ac.rs/filomat

On a Sampling Expansion With Partial Derivatives for Functions of Several
Variables

Saulius Norvidasa

aInstitute of Data Science and Digital Technologies, Vilnius University, Akademijos str. 4, Vilnius LT-04812, Lithuania

Abstract. Let Bp
σ , 1 ≤ p < ∞, σ > 0, denote the space of all f ∈ Lp(R) such that the Fourier transform of f

(in the sense of distributions) vanishes outside [−σ ,σ ]. The classical sampling theorem states that each f ∈ Bp
σ

may be reconstructed exactly from its sample values at equispaced sampling points {πm/σ}m∈Z spaced by π/σ .
Reconstruction is also possible from sample values at sampling points {πθm/σ}m with certain 1 < θ ≤ 2 if we know
f (θπm/σ) and f ′(θπm/σ), m∈Z. In this paper we present sampling series for functions of several variables. These
series involves samples of functions and their partial derivatives.

1. Introduction

We start with some notation and definitions. Let Zn, Rn and Cn be the n-dimensional integer lattice, the real
Euclidean space and the complex Euclidean space, respectively. For any τ ∈ C and each a,b ∈ Cn we write

τa = (τa1, . . . ,τan), ab = (a1b1, . . . ,anbn).

If, in addition, b j , 0, j = 1, . . . ,n, then a/b denotes the vector of fractions
(
a1/b1, . . . ,an/bn

)
. For σ ∈Rn such that

σ j > 0, j = 1, . . . ,n, let us denote by σZn the lattice⊕n
j=1
(
σ jZ

)
. Also if A,B⊂Cn, then A+B= {a+b : a∈A,b∈B}.

For f ∈ L1(Rn), we define the Fourier of f transform by

f̂ (t) =
∫
Rn

e−i〈x,t〉 f (x)dx,

x ∈ Rn, where 〈x, t〉 = ∑
n
k=1 xktk is the scalar product on Rn. If f < L1(Rn), then we understand f̂ in a distributional

sense of tempered distributions S′(Rn). Given a closed subset Ω ⊂ Rn, a function f : Rn→ C is called bandlimited
to Ω if f̂ vanishes outside Ω.

For 1≤ p≤ ∞ and σ ∈Rn such that σ j > 0, j = 1, . . . ,n, let

Qn
σ = {x ∈Rn : |x j| ≤ σ j, j = 1, . . . ,n} and Bp

Qn
σ
= { f ∈ Lp(Rn) : supp f̂ ⊂ Qn

σ}.

The space Bp
Qn

σ
is a Banach space in Lp(Rn)-norm. In the case of functions of one variable, let us write Bp

σ instead of
Bp

Q1
σ

.
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By the Paley-Wiener-Schwartz theorem (see [9, p. 181]), each f ∈ Bp
Qn

σ
, 1 ≤ p ≤ ∞, is infinitely differentiable

on Rn. Moreover, f has an extension onto Cn to an entire function. Note that we shall identify any f ∈ Bp
Qn

σ
with a

Lp(Rn)-function f (x) defined on Rn and in other cases we consider the same f as entire function f (z) defined on the
whole Cn. In the sequel, we shall frequently use the following functions defined on Cn

sincn (z) =
n

∏
j=1

sinπz j

πz j
and sicn(z) =

n

∏
j=1

sin
z j

2
.

Of course, sicn ∈ B∞

Qn
σ

with σ = (1/2, . . . ,1/2) and sincn ∈ Bp
Qn

π
for each 1 < p≤ ∞.

The classical Whittaker-Shanon-Kotelnikov theorem states that for any f ∈ Bp
σ , 1 ≤ p < ∞, the following sam-

pling expansion holds (see, e.g., [8, p. 51])

f (z) = ∑
m∈Z

f
(

π m
σ

)
sinc1

(
σ

π

(
z− π m

σ

))
= ∑

u∈(π/σ)Z

f (u)sinc1

(
σ

π
(z−u)

)
. (1)

In particular, this series converges absolutely for z ∈ C, uniformly on R and also on compact subsets of C. Hence,
(1) shows that each f ∈ Bp

σ , 1 ≤ p < ∞, may be reconstructed exactly from sample values f (πm/σ) at equispaced
sampling points {πm/σ}m∈Z spaced by π/σ . Note, that this spaced value π/σ is exact, i.e., for any θ > 1 there exist
two f j ∈ Bp

σ , j = 1,2 such that f1 . f2, but f1(θπm/σ) = f2(θπm/σ) for all m ∈Z. On the other hand, if we know
sample values f (θπm/σ) with certain 1 < θ ≤ 2, then the reconstruction of f is possible in the case if we also use its
derivative values f ′(θπm/σ). In particular, if f ∈ Bp

σ with 1≤ p < ∞, then (see e.g., [10, p. 145])

f (z) = ∑
u∈(2π/σ)Z

(
f (u)+ f ′(u)(z−u)

)
sinc2

1

(
σ

2π
(z−u)

)
. (2)

Derivative sampling formula (2) is well known in classical sampling theory. The general formula, which uses samples
of f and samples of its derivatives { f ( j)}k

j=1 was first given in [12]. Reconstruction formulas of such a type are
also called the uniform sampled formulas because the nodes (sampling sequences) {2πm/σ}m and {kπm/σ}m are
equidistantly spaced. On the other hand, if { f ( j)(·)}k

j=0 are sampled nonuniformly, then much less is known about
reconstruction of f (see, for example, [13] and the references therein).

The following n-dimensional sampling theorem is a standard extension of (1) in Bp
Qn

σ
, 1≤ p < ∞ (see, e.g., [6, p.

172])

f (z) = ∑
u∈(π/σ)Zn

f (u)sincn

(
σ

π
(z−u)

)
. (3)

The first multidimensional sampling series using values of the function and its partial derivatives was introduced by
Montgomery [14]. The aim of this paper is to prove a multidimensional version of (2). Note that in [3] (see also a
tutorial review [11, p. 40]) was given the following expression

f (z) = ∑
u∈Zn

{[
f
(

2π
u
σ

)
+

n

∑
k=1

(
zk−

2πuk

σk

)
· ∂ f

∂ zk

(
2π

u
σ

)]
sincn

2
( 1

2π
σ(z−u)

)}
(4)

for f ∈ Bp
Qn

σ
with 1 ≤ p < ∞. We say that such a sampling theorem fails in general. Indeed, let χ be any function of

two variables from the Schwartz space S(R2) such that χ . 0 and supp χ ⊂ Q2
σ/2. Then the function

f (z) = χ̂(z)sic2 (σz) (5)

is in Bp
Q2

σ

for each 1≤ p≤ ∞. Moreover,

f
(

2π
u
σ

)
=

∂ f
∂ z1

(
2π

u
σ

)
=

∂ f
∂ z2

(
2π

u
σ

)
= 0
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for all u ∈Z2. Hence, in this case the series (4) generates the zero function, but not the function (5). Even more, (5)
shows that the same still true if we added to (4) an arbitrary number of the following sample values

∂ m f
∂xm

j

(
2π

u
σ

)
with u ∈Z2, j = 1,2 and m = 2,3, . . . . Therefore, any multidimensional version of (2) must necessarily contains also
mixed partial derivatives of f .

Now we shall provide some more notation and formulate our main theorem. For k ∈Zn with k j ≥ 0, j = 1, . . . ,n,
and z ∈ Cn, here and subsequently, we denote the operator

∂ |k|

∂ k1z1 . . .∂ knzn
, |k|= k1 + · · ·+ kn

by ∂ k
z for short. Note that if k j = 0 for all j = 1, . . . ,n, then ∂ k

z f (z) is simply f (z). Set

En =
{
(t1, . . . , tn) : t j ∈ {0;1}, j = 1, . . . ,n

}
.

For fixed k ∈ En, v ∈Zn and f ∈ Bp
Qn

σ
, let us define the following polynomial in λ ∈ Cn by

Pf ,k,v(λ ) =
(

∂
k
z f
)
(v) ·

n

∏
j=1

λ
k j
j . (6)

Theorem 1.1. . Let f ∈ Bp
Qn

σ
with 1≤ p < ∞. Then

f (z) = ∑
u∈(2π/σ)Zn

(
∑

k∈En
Pf ,k,u(z−u)

)
sincn

2
( 1

2π
σ(z−u)

)
. (7)

The series (7) converges absolutely and uniformly on Rn and also on any compact subset of Cn.

For fixed u ∈ (2π/σ)Zn, the representation (7) contains 2n values of partial derivatives ∂ k
z f (u) when k obtain all

possible values from En. To demonstrate this, let us give two special cases of (7) for n = 2 and n = 3. If f ∈ Bp
Q2

σ

,
then the following formula was given in [1, Corollary 3.6]

f (z) = ∑
u∈Z2

[
f
(

2π
u
σ

)
+
(

z1−
2πu1

σ1

)
· ∂ f

∂ z1

(
2π

u
σ

)
+
(

z2−
2πu2

σ2

)
· ∂ f

∂ z2

(
2π

u
σ

)
+
(

z1−
2πu1

σ1

)(
z2−

2πu2

σ2

)
· ∂ 2 f

∂ z1∂ z2

]
sinc2

2
( 1

2π
σ(z−u).

)
(8)

(compare representation (4)). Also we have that

f (z) = ∑
u∈Z3

[
f
(

2π
u
σ

)
+
(

z1−
2πu1

σ1

)
· ∂ f

∂ z1

(
2π

u
σ

)
+
(

z2−
2πu2

σ2

)
· ∂ f

∂ z2

(
2π

u
σ

)
+
(

z3−
2πu3

σ3

)
· ∂ f

∂ z3

(
2π

u
σ

)
+
(

z1−
2πu1

σ1

)(
z2−

2πu2

σ2

)
· ∂ 2 f

∂ z1∂ z2

+
(

z1−
2πu1

σ1

)(
z3−

2πu3

σ3

)
· ∂ 2 f

∂ z1∂ z3
+
(

z2−
2πu2

σ2

)(
z3−

2πu3

σ3

)
· ∂ 2 f

∂ z2∂ z3

+
(

z1−
2πu1

σ1

)(
z2−

2πu2

σ2

)(
z3−

2πu3

σ3

)
· ∂ 3 f

∂ z1∂ z2∂ z3

]
sinc3

2
( 1

2π
σ(z−u)

)
.
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for any f ∈ Bp
Q3

σ

. Note that representation (7) is exact in some sense. More precisely, if we eliminate in (7) an arbitrary

polynomial Pf ,k,u with certain k = k̃ ∈ En, then such a formula will be false. Indeed, let

f̃ (z) = χ̂(z)
∂ n−|̃k|sicn (σz)

∂ 1−k̃1z1 . . .∂ 1−k̃nzn

where χ̂(z) ∈ S(Rn) is such that χ . 0 and supp χ ⊂ Qn
σ/2. Then an easy computation shows that

∂
k
z f̃
(2πu

σ

)
= 0

for all u ∈Zn and each k ∈ En such that k , k̃. Therefore, in such a case f̃ will generate by (7) the zero function, but
not f̃ .

Finally, note that relatively loss papers have investigated nonuniform sampling with derivatives for functions of
several variables. For example, for functions from L2(Rn) bandlimited to a compact subset Ω in [7] certain necessary
density conditions on sampling nodes for stable reconstruction are given. On the other hand, in [16] a numerical
analysis of the truncation error for (8) was given.

2. Preliminaries and proofs

In the sequel, we consider only the case Qn
σ = Qn

π = {x ∈ Rn : max1≤ j≤n |x j| ≤ π}. This involves no loss of
generality, since the operator

Tσ f (z) = θ · f
(

πz
σ

)
with θ =

(
∏

n
j=1 σ j

πn

)1/p

,

z ∈ Cn, is an isometric isomorphism between Bp
Qn

σ
and Bp

Qn
π

for all 1≤ p≤ ∞.
For technical reasons, let us define the following Banach space

BQn
π
= { f ∈C0(R

n) : supp f̂ ⊂ Qn
π},

where C0(Rn) is the usual space of continuous functions on Rn that vanish at infinity. If 1≤ p < ∞, then any f ∈ Bp
Qn

π

satisfies lim|x|→∞ f (x) = 0 (see [15, p. 118]). Hence Bp
Qn

π
⊂ BQn

π
for all 1≤ p < ∞. Moreover,

B1
Qn

σ
⊂ Bp

Qn
π
⊂ Bq

Qn
π
⊂ BQn

π
⊂ B∞

Qn
π

(9)

for 1≤ p < q < ∞. Given m ∈ {1,2, . . . ,n}, set

Hn
m = {z = (z1, . . . ,zn) ∈ Cn : zm ∈ 2Z}.

It is clear that

2k+Hn
m = Hn

m (10)

for each k ∈Zn. Let

Hn =
n⋃

m=1

Hn
m.

If ρ is a permutation of the set {1,2, . . . ,n}, then

w ∈ Hn if and only if (wρ(1),wρ(2), . . . ,wρ(n)) ∈ Hn. (11)

Assume that f : Cn→ C is analytic in a neighbourhood Ua of a ∈ Cn and f (a) = 0. Let f (z) = ∑
∞
m=0 Pm(z−a)

be the expansion of f into homogeneous polynomials in (z−a)-powers. Recall that the minimal value of m such that
Pm . 0 on Ua is called the order of the zero a for f . We denote this order by orda( f ). Note that if f (a) , 0, then say
that orda( f ) = 0.
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Lemma 2.1. Let f ∈ BQn
π
. If f (z) = 0 for all z ∈ Hn, then there is an entire function g : Cn→ C such that

f (z) = sicn(πz)g(z),

z ∈ Cn.

Proof. It is easy to see that the zeros set (all complex zeros) of sicn(πz) coincides with Hn. Therefore, the statement
of our lema follows immediately from application to f of the following fact (see [2, p. 12]): if F and H are entire
functions on Cn such that ordz(H) ≤ ordz(F) for all z ∈ Cn, then there is an entire function G such that F ≡ G ·H.
The proof is complete.

Let M(Rn) denote the Banach algebra of bounded regular Borel measures on Rn with the total variation norm
‖µ‖= ‖µ‖M(Rn) and convolution as multiplication. The Fourier-Stieltjes transform of µ ∈M(Rn) is given by

µ̂(x) =
∫
Rn

e−i〈x,t〉 dµ(t), x ∈Rn.

We need certain facts about differential and convolution operators on BQn
π
. Bernstein’s inequality (see 15, [p. 116])

states that each partial derivative operator acts on Bp
Qn

π
, 1 ≤ p ≤ ∞, as bounded operator. We do not find the proof of

the similar fact in the case of BQn
π
. For this reason, the proof of the following lemma is added here for completeness.

Lemma 2.2. Let f ∈ BQn
π
. Then ∂ k

z f ∈ BQn
π

for all k ∈Zn such that k1, . . . ,kn ≥ 0.

Proof. Let µ ∈M(Rn). Then

Tµ f (x) =
∫
Rn

f (x− y)dµ(y) = f ∗µ(x), (12)

x ∈ Rn, is well-defined linear bounded operator operator on B∞

Qn
π

(see [4, p. 646]). Next, if ν ∈M(Rn) is such that
µ̂ = ν̂ on Qn

π , then Tµ = Tν on B∞

Qn
π

([5, p. 90]). From (12) it follows that ‖Tµ‖B∞

Qn
π

≤ ‖µ‖M(Rn). Moreover ([4, p.
646]),

‖Tµ‖B∞

Qn
π

= inf{‖ν‖ : ν ∈M(Rn), ν̂ = µ̂ on Qn
π}. (13)

Next, if in a complex neighbourhood Uc ⊂ Cn of Qn
π there exists an analytic function ζ such that ζ (x) = µ̂(x) for all

x ∈ Qn
π , then Tµ coincides on B∞

Qn
π

with the differential operator ζ (D), where

D =
(
−i

∂

∂x1
, . . . ,−i

∂

∂xn

)
,

(see [4, p. 646]). It is clearly that, given m ∈ En, there exists µm ∈M(Rn) such that

µ̂m(t) =
n

∏
j=1

t
m j
j

for all t ∈ Qn
π . Therefore, if f ∈ B∞

Qn
π
, then

∂
m
z f (x) = µ̂m(D) f (x) =

∫
Rn

f (x− y)dµm(y). (14)

Assume now that f ∈ BQn
π
. Fix any y ∈Rn. Then the function fy(x) := f (x− y), x ∈Rn, is also in BQn

π
Finally, using

that ‖µm‖M(Rn) < ∞ and that BQn
π

is a closed subspace of B∞

Qn
π
, we conclude from (14) that ∂ m

z f ∈ BQn
π
. The lemma is

proved.
Recall that any f ∈ B∞

Qn
π

satisfies

| f (z)| ≤ sup
x∈Rn
| f (x)|eπ ∑

n
j=1 |y j |, (15)

where z = x+ iy, x,y ∈ Rn (see, e.g., [15, p. 117]). In addition, (9) implies that this estimate is also true for any
f ∈ Bp

Qn
π
, 1≤ p < ∞ .
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Proposition 2.3. Let f ∈ BQn
π
. Suppose that

∂
k
z f (u) = 0 (16)

for each k ∈ En and all u ∈ 2Zn. Then f ≡ 0.

Proof. Our proof is by induction on the dimension n of Cn. If n = 1, then (16) is equivalent to

f (2k) = f ′(2k) = 0 (17)

for each f ∈ Bπ and all k ∈Z. Set

g(z) =
f (z)

sin2(πz/2)
. (18)

Then (17) implies that g is an entire function on C. For each τ ∈Z, τ > 0, let us define

Dτ = {z ∈ C : |ℜz| ≤ 1+2τ, |ℑz| ≤ 2}.

Then

min
z∈∂Dτ

∣∣∣sin
πz
2

∣∣∣≥ 1 (19)

for all τ = 1,2, . . . . Combining (15) with (19) and using the maximum modules principe for analytic function in
the domain Dτ , we see that |g| is bounded on each Dτ by the same finite constant. Hence, |g| is bounded on D =:
∪∞

p=1Dτ = {z ∈ C : |ℑz| ≤ 2}. On the other hand, if z ∈ C\D, then it is easy to verify that∣∣∣sin
πz
2

∣∣∣≥ 1
2

eπ|ℑz|/2|. (20)

Combining this with (15), we conclude that |g| is bounded on C\D. Hence g is a constant c ∈C. Then (18) gives that
f (z) = csin2(πz/2). Finally, c = 0, since limx∈R;x→∞ f (x) = 0.

Suppose that our proposition holds for dimension m ≥ 1. First, we claim that if f ∈ BQm+1
π

satisfies (16) with
n = m+1, then

∂
s
z f (z) = 0 (21)

for each s ∈ Em+1 and all z ∈ Hm+1. Fix any z̃ ∈ Hm+1. According to (11), without loss of generality we can assume
that z̃ = (2u, z̃2, . . . , z̃n) with u ∈Z and (z̃2, . . . , z̃m+1) ∈ Cm. Let us define

F(z) = f (2u,z1, . . . ,zm)

for our fixed u ∈Z and all z = (z1, . . . ,zm) ∈Cm. Then F ∈ BQm
π

. By the induction hypothesis, the condition (16) with
n = m implies that

∂
s
z F(z) = 0

for each s ∈ Em and all z ∈ 2Zm. Therefore, the induction hypothesis gives F ≡ 0 on Cm, yielding our claim (21).
Now from lemma 2.1 it follows that there is an entire function g on Cm+1 such that

f (z) = sicm+1(πz)g(z). (22)

Second, we claim that

g(z) = 0 (23)
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for all z ∈ Hm+1. Fix any z̃ ∈ Hm+1. We need to show that g(z̃) = 0. By (11), we can assume that there is r ∈ Z,
1≤ r ≤ m+1, such that

z̃ = (2u1, . . . ,2ur, z̃r+1, . . . , z̃m+1)

for certain u1, . . . ,ur ∈ Z and some z̃r+1, . . . , z̃m+1 < 2Z. Using our fixed numbers u1, . . . ,ur ∈ Z, let us define on
Cm+1−r the function

F̃z(λ ) =
∂ r

∂ z1 · · ·∂ zr
f (2u1, . . . ,2ur,λ1, . . . ,λm+1−r), (24)

λ ∈ Cm+1−r. Then (16) implies that

∂ |ω|

∂ ω1λ1 · · ·∂ ωm+1−r λm+1−r
F̃z(λ ) = 0 (25)

for each ω ∈ Em+1−r and all λ ∈ 2Zm+1−r. Next, Lemma 2.2 shows that F̃z ∈ BQm+1−r
π

. Therefore, using the induction
hypothesis for dimension m and keeping in mind that m+1− r ≤ m, we conclude from (25) that F̃z ≡ 0 on Cm+1−r.
On the other hand, (22) implies that

F̃z(λ ) = (−1)u1+···+ur
(

π

2

)r m+1−r

∏
j=1

sin
(

π

2
λ j

)
g(2u, . . . ,2ur,λ1, . . . ,λm+1−r),

for all λ ∈ Cm+1−r. Finally, if we take here λ j = z̃r+ j, j = 1, . . . ,m+ 1− r, use the fact that F̃z ≡ 0 on Cm+1−r, and
keeping in mind that z̃r+ j < 2Z for all j = 1, . . . ,m+1− r, then we get g(z̃) = 0. This proves (22).

Now lemma 2.1 shows that there is an entire function h on Cm+1 such that g(z) = sicm+1(πz)h(z). Using (21),
we get

h(z) =
f (z)

sic2
m+1(πz)

for all z ∈ Cm+1. Now combining (15) with (19) and (20), we conclude that h is bounded on Cm+1. By Liouville’s
theorem, it follows that h is a constant c ∈C. Therefore, f (z) = c · sic2

m+1(πz), z ∈Cm+1. Using the fact that f ∈ BQn
π
,

i.e., lim|x|→∞ f (x) = 0, we see that c = 0, which completes the proof of Proposition 2.3.
For 1 ≤ p < ∞, let lp

n denote the usual Banach space of sequences of complex numbers {cn}u∈Zn such that
∑u∈Zn |cu|p < ∞. By Nikol’skii’s inequality ([15, p. 123]), for any 0 < θ < ∞, there exists a finite constant a =
a(p,σ ,θ) such that(

∑
u∈Zn
| f (θu)|p

)1/p

≤ a‖ f‖Bp
Qn

π

for all f ∈Bp
Qn

π
. Combining this with Bernstein’s inequality in Bp

Qn
π

(see [15, p. 116]), we deduce that a similar estimate
holds also for all derivatives ∂ k

z f with k ∈ En, i.e.,(
∑

u∈Zn
|∂ k

z f (θu)|p
)1/p

≤ A‖ f‖Bp
Qn

π

for each 0 < θ < ∞, certain A = A(k, p,σ ,θ)< ∞ and all f ∈ Bp
Qn

π
. In particular, this this means that if f ∈ Bp

Qn
π
, then{

∂
k
z f (θu)

}
u∈Zn

∈ lp
n (26)

for each 0 < θ < ∞ and all k ∈ En.
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Recall that if 1 < r < ∞, then (see [17, p. 811])

∑
m∈Zn

∣∣∣∣sincn

(
ax−m

)∣∣∣∣r ≤ (1+
1

r−1

)n
(27)

for each a > 0 and all x ∈Rn.
Proof of Theorem 1.1. Let us first show that (7) converges absolutely and uniformly onRn. To this end, we divide

(7) into 2n series of the following type

Sk(x) = ∑
u∈2Zn

Pf ,k,u(x−u)sincn
2
(x−u

2

)
= ∑

u∈2Zn

(
∂

k
x f (u)

n

∏
j=1

(x j−u j)
k j sincn

2
(x−u

2

))
, (28)

x ∈Rn, k ∈ En. Now it remains to prove that for any ε > 0 there is a positive integer τ such that

|Sk,τ(x)|=
∣∣∣ ∑

u∈2Zn

|u1|,...|un|≥τ

∂
k
x f (u)

n

∏
j=1

(x j−u j)
k j sincn

2
(x−u

2

)∣∣∣< ε (29)

for all x ∈Rn and each k ∈ En.
Fix an arbitrary number p1 such that p1 ≥ p and 1 < p1 < ∞. Let q1 = p1/(p1−1). Applying Hölder’s inequality

to (28) gives

|Sk,τ(x)| ≤
(

∑
u∈2Zn

|u1|,...|un|≥τ

∣∣∣∂ k
x f (u)

∣∣∣p1
)1/p1

(
∑

u∈2Zn

|u1|,...|un|≥τ

n

∏
j=1
|x j−u j|q1k j

∣∣∣sincn

(x−u
2

)∣∣∣2q1
)1/q1

. (30)

The condition p1 ≥ p implies that lp
n ⊂ lp1

n . Hence, we conclude from (27) that there exists a positive integer τ1 such
that (

∑
u∈2Zn

|u1|,...|un|≥τ1

∣∣∣∂ k
x f (u)

∣∣∣p1
)1/p1

< ε. (31)

Since |sinc1 t| ≤ 1 for t ∈R and k1, . . . ,kn ∈ {0;1}, we see that

|x j−u j|q1k j
∣∣∣sinc1

(x j−u j

2

)∣∣∣2q1
≤
( 2

π

)q1k j
∣∣∣sinc1

(x j−u j

2

)∣∣∣q1(2−k j)

≤
( 2

π

)q1k j
∣∣∣sinc1

(x j−u j

2

)∣∣∣q1

for all x j ∈R and each u j ∈Z, j = 1, . . . ,n. Therefore, the second factor on the right of (30) is estimated by

∑
u∈2Zn

|u1|,...|un|≥τ

n

∏
j=1
|x j−u j|q1k j

∣∣∣sincn

(x−u
2

)∣∣∣2q1

≤
( 2

π

)(k1+···+kn)q1

∑
u∈2Zn

|u1|,...|un|≥τ

n

∏
j=1

∣∣∣sinc1

(x j−u j

2

)∣∣∣q1

=
( 2

π

)(k1+···+kn)q1

∑
u∈2Zn

|u1|,...|un|≥τ

∣∣∣sincn

(x−u
2

)∣∣∣q1
,

(32)
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x ∈Rn. Now the condition 1 < p1 < ∞ implies that 1 < q1 < ∞. Therefore, using (27), we conclude that there exists
positive integer τ2 such that(

∑
u∈2Zn

|u1|,...|un|≥τ2

n

∏
j=1
|x j−u j|q1k j

∣∣∣sincn

(x−u
2

)∣∣∣2q1
)1/q1

< ε (33)

for all x ∈ Rn. Finally, if we assume that ε < 1 and take τ = max{τ1,τ2}, then combining (30), (31) and (33), we
obtain (29). This complete the proof that (7) converges absolutely and uniformly on Rn.

If f ∈ Bp
Qn

π
, 1 < p < ∞, then any partial sum of (7) is also in Bp

Qn
π
. For f ∈ B1

Qn
π
, these partial sums is in Bp

Qn
π

for
each 1 < p < ∞. Hence, by (9), these sums are also elements of BQn

π
for any 1 ≤ p < ∞. Let F be the sum of (7).

Since BQn
π

is a Banach space and (7) converges absolutely and uniformly onRn, it follows that F ∈ BQn
π
. Let us denote

f1 = f −F . Then f1 ∈ BQn
π
. Using the fact that (7) converges uniformly on Rn to F , we conclude that f1 satisfies the

all conditions (16). By Proposition 2.3, we have that f1 ≡ 0. Hence, F ≡ f , i.e., equality (7) holds for all x ∈Rn.
Let K be a compact subset of Cn. Then there exists 0 < a < ∞ such that K is a subset of the strip Ma = {z ∈ Cn :

|ℑz j| ≤ a, j = 1, . . . ,n}. Given ω ∈Zn, let us define the partial sum of (7) by

Wω(z) = ∑
u∈2Zn

|u1|≥|ω1|,...|un|≥|ωn|

(
∑

k∈En
Pf ,k,u(z−u)

)
sincn

2
( 1

2π
σ(z−u)

)
.

According to (9), we have from (15) that

sup
z∈K
| f (z)−Wω(z)| ≤ sup

x∈Rn
| f (x)−Wω(x)|eπan. (34)

Since (7) converges uniformly on Rn to f , we see from (34) that (7) converges uniformly also on K to f . Theorem
1.1 is proved.
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