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Abstract. In this paper, we establish new inequalities of the Hermite-Hadamard, midpoint and trapezoid
types for functions whose first derivatives in absolute value are n-quasiconvex by means of generalized
fractional integral operators with respect to another function w : [a, f] — (0, ). Our theorems reduce to
results involving the Riemann-Liouville fractional integral operators if w is the identity map, and results
involving the Hadamard operators if w(x) = Inx. More inequalities can be deduced by choosing different

bifunctions for . To the best of our knowledge, the results obtained herein are new and we hope that they
will stimulate further interest in this direction.

1. Introduction

In the theory of convex analysis, the standard Hermite-Hadamard inequality, christened after the french

mathematicians, Charles Hermite and Jacques S. Hadamard, stipulates the following two-sided estimate of
the mean value of a continuous convex function h : [, f] — R:

a+p 1 p h(a) + h(B)
h( > )S,B—a[xh(r)drST'

The above inequality has generated loads of papers in this direction. In 2013, Sarikaya et al. [17] extended
(1) via the Riemann-Liouville fractional integral operators. Specifically, they proved:

1)

Theorem 1.1. Let e > Oand h : [a, f] — R be a positive function with 0 < a < fand h € L([a, B]). If h is a convex
function on [a, B], then the following inequalities hold:

h(cv+ﬁ)S T'e+1)
2 28— )

h(a) + h
[16.1(B) + I h(@)] < M

2010 Mathematics Subject Classification. 26A51, 26D15, 26E60, 41A55

Keywords. Hermite-Hadamard inequality, convex functions, quasiconvex functions, Riemann-Liouville operators, Hadamard
fractional operators.

Received: 02 November 2019; Accepted: 17 January 2020

Communicated by Miodrag Spalevi¢

Corresponding author: Eze R. Nwaeze

Email addresses: enwaeze@alasu.edu (Eze R. Nwaeze), artionkashuri@gmail.com (Artion Kashuri)



E. R. Nwaeze, A. Kashuri / Filomat 34:10 (2020), 3349-3360 3350

where the Riemann—Liouville fractional integrals, I¢ , and I;,, are defined as thus:

I h(x) = % f X(x = h(r)dr

and

€ _ 1 i e-1
Iﬁ,h(x) = m‘f; (r—x)"h(r)dr
Here I'(€) is the Gamma function defined by I'(e) = fooo e x1dx.

More papers in this sense can be found in [6, 13]. We now recall the definition of functions integrated
with respect to another function in the fractional sense:

Definition 1.2 ([10]). Let w : [a, f] — R be an increasing and positive monotone function on (a, ] having a
continuous derivative w'(x) on (a, B). The left- and right-sided fractional integral of h with respect to the function w
on [a, B] of order € > 0 are defined respectively by:

o€

Ry —— = h(r)dr, x> a

" T f [w(X) w(r) Ji-e
and
1 b w'(r)

@ Jo [0 —weope O x<F

3 ) =
Remark 1.3. In view of the above definition, we make the following observations that will aid the readability of this
article.
1. If w(x) = x, then
S () = L h(x)  and S;,;wh(x) = Ig,h(x).
2. Let w(x) = Inx. Then the fractional operators given in Definition 1.2 become the Hadamard fractional integrals,
¢ and ];,, defined as follows:

elh
I (@) = JSh(x) = e f 1 z Q

B e—lh
35, hx) = J5 h(x) = (1) f (m)-t) gdr

Using the operators given in Definition 1.2, Budak [2] recently established the following inequalities of
the Hermite-Hadamard type:

and

Theorem 1.4 ([2]). Let € > 0. Suppose w : [a, ] — R is an increasing and positive monotone function on («, f]
having a continuous derivative w'(x) on (a,p). If h is a convex function on [a,Bl, then we have the following
Hermite-Hadamard type inequality for generalized fractional integrals,

h(“ o ) < TZ(T( 11)) [\5 oy @ JET)+;Q)H(13)] LMD,
where

H(x) = h(x) + h(x) and h(x) = h(a + B—x) (2)
and

AS (1) = [a)(ﬁ) —w (%a +2 . Tﬁ)]e ; [a) (%ﬁ ; Z_TTa) - a)(a)]e . 3)
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In the same paper, Budak established the following midpoint and trapezoid type results:

Theorem 1.5 ([2]). Let € > 0. Suppose w : [a, f] — R is an increasing and positive monotone function on («, f]
having a continuous derivative w’(x) on (a, B). If |W’| is a convex function on [a, f], then we have the following
inequality for generalized fractional integrals:

F(e + 1) ~e€ ~e o +ﬁ
2AE (D) [\s(w;ﬁ);wH(a) + o(a;ﬁ)+;wH(ﬁ)] -h (T)‘
— 1

Theorem 1.6 ([2]). Let € > 0. Suppose w : [a, f] — R is an increasing and positive monotone function on (a, f]
having a continuous derivative w’(x) on (a, ). If |W’| is a convex function on [a, ], then we have the following
trapezoid type inequality for generalized fractional integrals:

h@)+hp) T(e+1) .. -
2 T 2A8(1) [ (a%g)f;wH(a) +\5(ﬂzﬁ)+;wH(ﬁ)”

e )
sl @ ol [ am - as] de

<

Next, we recall the notion of quasiconvexity.
Definition 1.7. A function h: I ¢ R — R is called quasiconvex on the interval I if
h(tx + (1 = 7)y) < max {h(x), h(y)}
forallx,y € Iand T € [0,1].
Recently, Gordji et al. [5] further generalized the class of quasiconvex functions in the following manner:

Definition 1.8 ([5]). A function h:I C R — R s called n-quasiconvex on I with respect ton : Rx R — R if

h(tx + (1 = 1)y) < max {h(y), h(y) + n(rx), h(y))}
forallx,y € Iand T € [0,1].

It is well known that every convex function is quasiconvex but the converse is not necessarily true. For
this reason, it is our purpose to, among other things, extend Theorems 1.4, 1.5 and 1.6 to a larger class
of functions — the n-quasiconvex functions. If, in particular, we take the bifunction n(x, y) = x — y, then
our results boil down to that of the quasiconvex functions. Results involving the Riemann-Liouville and
Hadamard fractional integral operators are deduced as special cases. Since this class of functions is new, it
will be of interest to further develop it in this direction. For some recent results involving these generalized
fractional integral operators, we invite the interested reader to see the papers [7, 12] and the references cited
therein.

This paper is organized as follows: in Section 2, we state and give proofs to our main results in three
subsections. In the next section thereafter, a brief conclusion is presented.
2. Main Results

For the sake of convenience, we set the following notations: for any n-quasiconvex function f : [a, f] —
R, we denote

ME(f; 1) = max {f(@), f(@) + 1(f(B), f(@))} (4)

and

NE(f; ) = max {£(B), F(B) + n(f (@), F(B))}. (5)
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2.1. Right-sided Inequality of the Hermite-Hadamard type

Theorem 2.1. Let € > 0. Suppose w : [a, f] = R is an increasing and positive monotone function on (a, f] having
a continuous derivative w’(x) on (a, B). If h is an n-quasiconvex function on [a, f], then we have the succeeding
inequality for generalized fractional integrals

5 AG(1)
Sy @ + Sy HE) < 5 [ Mot + NG,

where
250 = (0~ o FE)) + (o*5E) - et@) ©

and H, Mf,(h; n) and Nf (h; n) are defined by (2), (4) and (5), respectively.

Proof. Using the n-quasiconvexity of &, one gets that for all € [0, 1], the following inequalities hold:

h(%ﬁ + 2%0() < M) @)
and
h(%a + Z%ﬁ) < Nim; 7). (8)

Adding (7) and (8) gives:

T
’“(5

Now multiplying both sides of (9) by

)+h( Ta+ —/3)<Mﬁ(h )+ N ). )

poa @ (3a+3p)
2I'(e) [w(,B) B w(%a N ZE_T )]1—e

and integrate the resultant inequality over [0, 1] to give:

Ta)+h(%a+2;Tﬁ)][ w'(%“‘*% ) —drt

e L w ) —)w(%m )] 10)
o+ —ﬁ
< [M’5 I 1) + NG )| —dt
2F( f [a) B - a)( a+ 5t )]l
If we substitute x = Jo + 3%, then dt = =72 dx, o + p — x = 1 + % a and Inequality (10) becomes:
1 (F @' (x)
— h h - d
T Je 10 ) e )

@' (x)

dx.
[w(B) — w(a + B —x)]"° g

p
< g [Mos < Mos] [,
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p @’ (x) 1 [ (a +ﬁ)}€
dx = = |w(B) -
. wp-aarpar PN

2

Employing the fact that

and Definition 1.2, we obtain from (11) the following inequality

Ry x€ i 1 B 1,. B1,. a_-'-ﬁ ‘
Sy JO+ N 0 < s M0+ M) o9 - 052

That is;
1 a+B\|
Sy B < gy [Masm) + Mo [w(ﬁ) ~w (T)] : (12)
Similarly, one gets by multiplying (9) by
p-a o (3p+%a)

2T (e) [w (% B+ z-TTa) _ w(a)]l—e

and integrating the resultant inequality over [0, 1] the succeeding inequality:

gy < r( )

Adding inequalities (12) and (13) amounts to:

[ MG 1) + N n)][ (—ﬁ) - w(a)] : (13)

ETp)f, H(a) + ‘5(#)*;@

< Fea Mt + M )] [(a)(ﬁ) (#)) +(w(“7+ﬁ)_w<a)) ]

from where the desired inequality follows. [

H(p)

By taking 1(x, ) = x — y, Theorem 2.1 becomes:

Corollary 2.2. Let € > 0. Suppose w : [, f] = R is an increasing and positive monotone function on (a, f] having
a continuous derivative w’(x) on (a, B). If h is a positive quasiconvex function on [a, ], then we have the succeeding
inequality for generalized fractional integrals:

e 2AG,(1)
Sfany @) + Sy HE) < T35 max (i), hp))
If0<a<pBand w: [a, ] = Ris defined by w(x) = k(x) = x, then (6) becomes
s =T (14)

and hence the inequality in Corollary 2.2 reduces to:

H@+T,, HP) < - (€1+ 5 (¢ 2: 2)

() max {h(a) h(ﬁ)}

(“Zﬁ )
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Also, by letting 0 < a < fand w : [, f)] = R be defined by w(x) = Inx, then (6) becomes
¢ v 28 T a+p]
AL (1) = [In " +ﬁ] + [ln o ] . (15)
Using (15), the inequality in Corollary 2.2 amounts to:
I'e+1)
2 €
[in 5]+ [ 5]

2.2. Midpoint type Inequalities in Generalized form

[J o H@) + T H(ﬁ)] < 2max {(a), h(p)}.

The following lemma will be needed in the proof of our results in this subsection:

Lemma 2.3 ([2]). Let € > 0and let the mapping w be as in Theorem 2.1. Ifh : [a, B] — IR be a differentiable mapping
on (a, B) with a < B, then the following equality holds:

T'e+1) . a+p
0 ey ‘W)*WH(ﬁ’] -+{%5)

4Af,(1) f (T) h' +2 + 5 Tﬁ) - (% Ta)] dr,

where the mappings H and A, are deﬁned as in (2) and (3), respectively.

Theorem 2.4. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.3, respectively. If |i’| is
an n-quasiconvex mapping on [a, f], then the following generalized fractional integral inequality holds:

Te+1) a+p
2/\2)(1) |:\5(a+[5) H(a)"'\s(xz/) H(ﬁ)]_h( 2 )

1
i 5 M+ M) fo A () .

Proof. Given that the function |i’| is n-quasiconvex on [a, f] implies that for all T € [0, 1], the following
inequalities hold:

w (36 + 257 a)| < M 16
and
h’( o+ —5) < NEQH'L ). (17)
Taking absolute values of both sides of Lemma 2.3 and using inequalities (16) and (17), we get
T'e+1) a+p
- (1) [\s(w) H() + \s(m,) H(ﬁ)] ( _ )
2
4A€ =) f |A (T)| a+ —ﬁ) (% Ta) dt
4A€(1)f %) h’( “+_5) dt
, 2 -7
4A€ 0 f %) h “) at

= 4A2)(1) [Mﬁ In'l; 77)+Nﬁ H'1; ) f |A (T)| dr.

This completes the proof. [
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Corollary 2.5. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.3, respectively. If |h'| is a
quasiconvex mapping on [a, ], then the following generalized fractional integral inequality holds:

Te+1) ~e ~c a +ﬁ

285D [J(“;ﬂ)sz (@) + ‘5(“2%)*;&)1{(5)] ~h (T)
—a ) ) 1 .

< g (K@@ [ A

Proof. The proof follows by taking 1(x, y) = x — y and then observing that
Ma( ;) = NEAR'| 1) = max {1 (@), I B)1].
O

Corollary 2.6. Let € > 0 and let the mapping h be as in Lemma 2.3. If || is a quasiconvex mapping on [a, B], then
the following Riemann—Liouville fractional integral inequality holds:

(B—a) h(f”ﬁ
T(e+1)2¢2 | 2

_H(a) + IEﬂYH(B) -

max [l ()], I (B)]}-

'

)
(ﬁ _ 0()6+1

T 267 1T(e + 2)

Proof. Let0 < a < fand w : [a, f] = R be defined by w(x) = k(x) = x. From (3), we observe that

(B —a)

€
2e-1 T,

A(T) =

and

1 . ~ 1(‘3—0()€ . B (ﬁ_a)e
L |Ak(T)) dt = ; e t¢dt = m

Hence, we get the desired inequality by applying Corollary 2.5. O

Corollary 2.7. Let € > 0 and let the mapping h be as in Lemma 2.3. If || is a quasiconvex mapping on [a, ], then
the following Hadamard fractional integral inequality holds:

. . 2 28 I a+Bl\ (a+p
I eaay B+ T o) HE) = Fgy ([h‘wﬁ] +[1“ % ])h( 2 )‘

- 1
<tz p @) [ o

where

e 28 € B+ 2-1a\l
50~ il | () "

Proof. In this case, let 0 < a < fand w : [a, f] = R be defined by w(x) = Inx. We get the intended result by
applying (3) and (15) in Corollary 2.5. [

Theorem 2.8. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.3, respectively. If |h'|7,
q > 1, is an n-quasiconvex mapping on [a, f] with % + % = 1, then the following generalized fractional integral
inequality holds:

Te+1)|.
205 ()

_ 1 p 1 :
< et | [ Inscol o] [(wtann)’ « (M),

- He@)+ Seﬂ;)+;mH(,B)] —h (0‘ X P )‘

a
1
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Proof. Following a similar approach as in the proof of Theorem 2.4 and using the Holder’s inequality, one

)
) (55
o)

TEe+1)
‘ZAZ(D[(W) LOEN H(ﬁ)] h(

4A€ (1) f a5 @l

4/\5)(1)

* 4A:(1)f |AZ(T)| h’(% Ta)
sl [t o [ 355 o]
i o) U oo dT] Uol (5257 dr]q

AP df] (V) + (Ve )]

dt

< p-a
AN [ 0
The desired inequality is achieved. [

Substituting n(x, y) = x — y, one gets:

Corollary 2.9. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.3, respectively. If ||,
q > 1, is a quasiconvex mapping on [, B] with % + % =1, then the following generalized fractional integral inequality
holds:

Te+1) c a+p
A1) [‘S(W)‘ H@) + S, HE )] } h( 2 )‘

1

< 352 U g ol dT] [max @, 1))

2.3. Trapezoid type Inequalities in Generalized form

The main result, in this subsection, shall be anchored on the following lemma:

Lemma 2.10 (12]). Let € > 0 and let the mapping w be as in Theorem 2.1. If h : [a, f] — R be a differentiable
mapping on (a, B) with o < B, then the following equality holds:

h(a) + h(B) F(e +1)
2 2A¢(1)

S 10+ Sy

e R

where the mappings H and A, are the same as in Lemma 2.3.

H(ﬁ)]
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Theorem 2.11. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.10, respectively. If |l'| is
an n-quasiconvex mapping on [a, f], then the following generalized fractional integral inequality holds:

h(a) +h(p) T(e+1) .
2 - 2/\;(1) I:'\S((H»ﬁ)_ H(O[) + xs(a;rﬁ)+;wH(ﬁ):|‘

2

< e ML + M| fo AL - AL @] dr

Proof. In this case, we employ Lemma 2.10 and take absolute values of both sides to obtain:

h(a) +h(B) T(e+1)|.. -
2 B 2A¢ (1) [\S(‘Hﬁ)_;mH(a) + ‘5(# +;“)H(ﬁ)”

< it [ o= asole (o 25703
_4/\2(1)f |AS(1) - A% (D) h’( 22 )

4A€(1)f)A€(1) A% ()| h'( ;Toc)

/3 ’ B1,
< o o+ Mo [ s - gl o

dr,

Ta)

dt

dt

This finishes the proof. [
Putting n(x, y) = x — y, gives:

Corollary 2.12. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.10, respectively. If |h’'|
is a quasiconvex mapping on [a, ], then the following generalized fractional integral inequality holds:

h@) +h(B) T(e+1) [
() 5

2 2A8,(1) i H(a)+‘s('*ﬁ) e )”

< B- , , . A
i ( 5 max (I @), () f A1) - AS ()] dr.
Let0 < a <fand w : [a, f] = R be defined by w(x) = k(x) = x. Then

! € € _(ﬁ_a)e ! € _(‘B_a)f €
f() |Aa)(1) - Aw(T)) dt = 2e-1 fo (1 -t )dT - 2e-1 e4+1°

Hence, the inequality in Corollary 2.12 reduces to the following result involving the fractional Riemann-
Liouville operators:

h(@) +h(p) 2°2T(e+1)
2 (B—a)

< E 2 max i @l )

If, in the other hand, we let w(x) = Inx with x € [a, 8] C (0, ). Then we deduce from Corollary 2.12 the
following Hadamard fractional integral inequality:

[ (M),H(oz) + IEM) H(ﬁ)”
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h(a) + h(B) T(e+1)
2 - 2Ae (1) [ (a+ﬁ)*H(a) +J( x+p) (‘8):”

<2ﬁAe X0 max (|l (@), I (B) f |AS () = AS (0)] dr,

where A} (1) and Aj (7) are defined by (15) and (18), respectively.
Theorem 2.13. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.10, respectively. If

|9, q > 1, is an n-quasiconvex mapping on [a, B] with ’1—7 + % =1, then the following generalized fractional integral
inequality holds:

h(@) +h(B) T(e+1) .
0] S H(“’”(z*’*r:wH‘ﬁ)”

2 Sa

4./\6 ) [f |A€ (1) = A (7) ‘P d’[] [(Mﬁ(lhlw 77))% (Nﬁ(|h'|q 77))%]

Proof. Applying Lemma 2.10 together with the Holder’s inequality and the n-quasiconvexity of |[l’|7, one
gets

h(a) + h(B) _Te+1)
2 ZAZ(l) I:\S(mﬁ)‘ H(O{) + (25)'*,“)H(ﬁ):”

< gty [ ool o 257w 5+ 2574
<5 A;(l) fo |AS (1) - A (D) h/(gmz%ﬁ)
* 3R fol A5 - Aol i (38+ 250
<[ oot of [ (229 o]
g vt o | o255+
4Af<1) U 45 - A df]l[(Mfiqh'w;n))” « (M)

The desired inequality is obtained. [

dt

dt

dt

Corollary 2.14. Let € > 0 and let the mappings w and h be as in Theorem 2.1 and Lemma 2.10, respectively. If
|9, g > 1, is an quasiconvex mapping on [e, f] with % + % =1, then the following generalized fractional integral
inequality holds:

h(@)+h(B) Tle+1)[.. g
2 2A5(D) [«5(35)_ _H(w) +\s(%+m)H(ﬁ)”

szﬁA;g) U 1A (1) — A% (0)f dT] [max i @, )]
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Remark 2.15. Many interesting inequalities can be deduced from Corollaries 2.9 and 2.14 by choosing different
functions for w. For instance, if we take w(x) = x and € € (0, 1], then

‘B__a ' € _ A€ P ];_‘3_0‘[ ! _ € ];
2R5() Uo - asl a| = E7| [T et ar
_ 1 ;

_'BT{X[]O‘ |1—T|”€d’c}

pa( 1y
2 (pe+1)'

Using this, the inequality in Corollary 2.14 becomes the following estimate involving the Riemann—Liouville fractional
integral operators:

h(e) + h(B) 2°2T(e + 1)

2 (B—a)
p-af 1
2 \pe+1

IE“T”;)_H(D() + Iza;ﬁyH(ﬁ)”

)" [mase [l @l I @)

<

3. Conclusion

In 2016, the class of n-(quasi)convex function was introduced. Some results concerning this class of
functions have been published, see [1, 3, 4, 8, 9, 11, 14-16] and the references therein. In this article,
fractional integral inequalities of the Hermite-Hadamard, midpoint and trapezoid types are established.
Our results reduce to inequalities involving the Riemann-Liouville and Hadamard operators as particular
cases. Since this is a new class, we anticipate that this paper will stimulate further interest in this regard.
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