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Abstract. In this article, we use the (M,N)-Lucas polynomials to define a new family HΣ(λ; x) of normalized
holomorphic and bi-univalent functions and to establish the bounds for |a2| and |a3|, where a2, a3 are the
initial Taylor-Maclaurin coefficients. Further we investigate Fekete-Szegö inequality for functions in the
family HΣ(λ; x) which we have introduced here.

1. Introduction

LetA denote the family of functions which are holomorphic in the open unit disk

D = {z : z ∈ C and |z| < 1}

and have the following normalized form:

f (z) = z +

∞∑
n=2

anzn. (1)

We also denote by S the subclass ofA consisting of functions which are also univalent inD. According
to the Koebe-one quarter theorem [2], every function f ∈ S has an inverse f−1 defined by

f−1
(

f (z)
)

= z (z ∈ D)

and
f
(

f−1(w)
)

= w
(
|w| < r0( f ); r0( f ) =

1
4

)
,

where

f−1(w) = w − a2w2 +
(
2a2

2 − a3

)
w3
−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is called bi-univalent inD if both f and f−1 are univalent inD, We indicate by Σ the
class of normalized bi-univalent functions in D given by (1). For a brief historical account and for several
interesting examples of functions in the class Σ; see the pioneering work on this subject by Srivastava et al.
[20], which actually revived the study of bi-univalent functions in recent years. From the work of Srivastava
et al. [20], we choose to recall the following examples of functions in the class Σ :
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z
1 − z

, − log(1 − z) and
1
2

log
(1 + z

1 − z

)
.

We notice that the class Σ is not empty. However, the Koebe function is not a member of Σ.
In a considerably large number of sequels to the aforementioned work of Srivastava et al. [20], several

different subclasses of the bi-univalent function class Σ were introduced and studied analogously by the
many authors (see, for example, [1, 5, 6, 9–16, 18, 21, 23, 24]), but only non-sharp estimates on the initial
coefficients |a2| and |a3| in the Taylor Maclaurin expansion (1) were obtained in several recent papers. The
problem to find the general coefficient bounds on the Taylor-Maclaurin coefficients

|an| (n ∈N; n = 3)

for functions f ∈ Σ is still not completely addressed for many of the subclasses of the bi-univalent function
class Σ (see, for example, [14, 21, 23]). The Fekete-Szegö functional

∣∣∣a3 − δa2
2

∣∣∣ for f ∈ S is well known for its
rich history in the field of Geometric Function Theory. Its origin was in the disproof by Fekete and Szegö
[3] of the Littlewood-Paley conjecture that the coefficients of odd univalent functions are bounded by unity.
The functional has since received great attention, particularly in the study of many subclasses of the family
of univalent functions. This topic has become of considerable interest among researchers in Geometric
Function Theory (see, for example, [17, 19, 22]).

Let the functions f and 1 be analytic inD, we say that the function f is subordinate to 1, if there exists a
Schwarz function ω, which is analytic inDwith

ω(0) = 0 and |ω(z)| < 1 (z ∈ D),

such that
f (z) = 1

(
ω(z)

)
.

This subordination is indicated by

f ≺ 1 or f (z) ≺ 1(z) (z ∈ D).

The Lucas polynomials plays an important role in a variety of disciplines in the mathematical, statistical,
physical and engineering sciences (see, for example [4, 8, 25]).

For the polynomials M(x) and N(x) with real coefficients, Lee and Aşcı [7] considered the (M,N)-Lucas
polynomials LM,N,k(x), which are given by the following recurrence relation:

LM,N,k(x) = M(x)LM,N,k−1(x) + N(x)LM,N,k−2(x) (k = 2),

with

LM,N,0(x) = 2, LM,N,1(x) = M(x) and LM,N,2(x) = M2(x) + 2N(x). (3)

The generating function of the (M,N)-Lucas polynomial LM,N,k(x) (see [7]) is given by

T
{LM,N,k(x)}(z) =

∞∑
k=0

LM,N,k(x)zk =
2 −M(x)z

1 −M(x)z −N(x)z2 .

2. Main Results

We begin this section by defining the new class HΣ(λ; x) as follows:
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Definition 2.1. For 0 5 λ 5 1, a function f ∈ Σ is called in the class HΣ(λ; x) if it fulfills the conditions:

1 +
z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

−
λz2 f ′′(z) + z f ′(z)

λz f ′(z) + (1 − λ) f (z)
≺ T
{LM,N,k(x)}(z) − 1

and

1 +
w

(
f−1(w)

)′
f−1(w)

+
w

(
f−1(w)

)′′(
f−1(w)

)′ − λw2
(

f−1(w)
)′′

+ w
(

f−1(w)
)′

λw
(

f−1(w)
)′

+ (1 − λ) f−1(w)
≺ T
{LM,N,k(x)}(w) − 1,

where f−1 is given by (2).

Example 2.2. For λ = 1, a function f ∈ Σ is called in the class HΣ(1; x) =: SΣ(x) if it fulfills the conditions:

z f ′(z)
f (z)

≺ T
{LM,N,k(x)}(z) − 1

and
w

(
f−1(w)

)′
f−1(w)

≺ T
{LM,N,k(x)}(w) − 1,

where f−1 is given by (2).

Example 2.3. For λ = 0, a function f ∈ Σ is called in the class HΣ(0; x) =: CΣ(x) if it fulfills the conditions:

1 +
z f ′′(z)
f ′(z)

≺ T
{LM,N,k(x)}(z) − 1

and

1 +
w

(
f−1(w)

)′′(
f−1(w)

)′ ≺ T
{LM,N,k(x)}(w) − 1,

where f−1 is given by(2).

Our first main result is asserted by Theorem 2.4 below.

Theorem 2.4. For 0 5 λ 5 1, let f ∈ A be in the class HΣ(λ; x). Then

|a2| 5
|M(x)|

√
|M(x)|√

2
∣∣∣(λ − 1) M2(x) − (2 − λ)2 N(x)

∣∣∣
and

|a3| 5
M2(x)

(2 − λ)2 +
|M(x)|

2(3 − 2λ)
.

Proof. Suppose that f ∈ HΣ(λ; x). Then there are two analytic functions φ,ψ : D −→ D given by

φ(z) = r1z + r2z2 + r3z3 + · · · (z ∈ D) (4)

and

ψ(w) = s1w + s2w2 + s3w3 + · · · (w ∈ D), (5)

with
φ(0) = ψ(0) = 0 and max

{∣∣∣φ(z)
∣∣∣ , ∣∣∣ψ(w)

∣∣∣} < 1 (z,w ∈ D),
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such that

1 +
z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

−
λz2 f ′′(z) + z f ′(z)

λz f ′(z) + (1 − λ) f (z)
= −1 + LM,N,0(x) + LM,N,1(x)φ(z) + LM,N,2(x)φ2(z) + · · · (6)

and

1 +
w

(
f−1(w)

)′
f−1(w)

+
w

(
f−1(w)

)′′(
f−1(w)

)′ − λw2
(

f−1(w)
)′′

+ w
(

f−1(w)
)′

λw
(

f−1(w)
)′

+ (1 − λ) f−1(w)

= −1 + LM,N,0(x) + LM,N,1(x)ψ(w) + LM,N,2(x)ψ2(w) + · · · . (7)

Combining (4), (5), (6) and (7), yield

1 +
z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

−
λz2 f ′′(z) + z f ′(z)

λz f ′(z) + (1 − λ) f (z)
= 1 + LM,N,1(x)r1z +

[
LM,N,1(x)r2 + LM,N,2(x)r2

1

]
z2 + · · · (8)

and

1 +
w

(
f−1(w)

)′
f−1(w)

+
w

(
f−1(w)

)′′(
f−1(w)

)′ − λw2
(

f−1(w)
)′′

+ w
(

f−1(w)
)′

λw
(

f−1(w)
)′

+ (1 − λ) f−1(w)

= 1 + LM,N,1(x)s1w +
[
LM,N,1(x)s2 + LM,N,2(x)s2

1

]
w2 + · · · . (9)

It is well-known that, if
max

{∣∣∣φ(z)
∣∣∣ , ∣∣∣ψ(w)

∣∣∣} < 1 (z,w ∈ D),

then ∣∣∣r j

∣∣∣ 5 1 and
∣∣∣s j

∣∣∣ 5 1 (∀ j ∈N). (10)

Now, by comparing the corresponding coefficients in (8) and (9), and after simplifying, we find that

(2 − λ)a2 = LM,N,1(x)r1, (11)

2(3 − 2λ)a3 −
(
5 − (λ + 1)2

)
a2

2 = LM,N,1(x)r2 + LM,N,2(x)r2
1, (12)

(λ − 2)a2 = LM,N,1(x)s1 (13)

and (
7 − 8λ + (λ + 1)2

)
a2

2 − 2(3 − 2λ)a3 = LM,N,1(x)s2 + LM,N,2(x)s2
1. (14)

It follows from (11) and (13) that

r1 = −s1 (15)

and

2 (2 − λ)2 a2
2 = L2

M,N,1(x)(r2
1 + s2

1). (16)

If we add (12) to (14), we obtain

2
(
1 + (λ − 1)2

)
a2

2 = LM,N,1(x)(r2 + s2) + LM,N,2(x)(r2
1 + s2

1). (17)

Substituting the value of r2
1 + s2

1 from (16) in the right hand side of (17), we deduce that

2

1 + (λ − 1)2
−

LM,N,2(x)
L2

M,N,1(x)
(2 − λ)2

 a2
2 = LM,N,1(x)(r2 + s2). (18)
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Moreover computations using (3), (10) and (18), we find that

|a2| 5
|M(x)|

√
|M(x)|√

2
∣∣∣(λ − 1) M2(x) − (2 − λ)2 N(x)

∣∣∣ .
Next, if we subtract (14) from (12), we can easily see that

4(3 − 2λ)(a3 − a2
2) = LM,N,1(x)(r2 − s2) + LM,N,2(x)(r2

1 − s2
1). (19)

In view of (15) and (16), we get from (19)

a3 =
L2

M,N,1(x)

2 (2 − λ)2 (r2
1 + s2

1) +
LM,N,1(x)
4(3 − 2λ)

(r2 − s2).

Thus applying (3), we conclude that

|a3| 5
M2(x)

(2 − λ)2 +
|M(x)|

2(3 − 2λ)
.

Putting λ = 1 in Theorem 2.4, we obtain the following result:

Corollary 2.5. If f ∈ A be in the class SΣ(x), then

|a2| 5 |M(x)|

√∣∣∣∣∣ M(x)
2N(x)

∣∣∣∣∣
and

|a3| 5M2(x) +
|M(x)|

2
.

Putting λ = 0 in Theorem 2.4, we obtain the following result:

Corollary 2.6. If f ∈ A be in the class CΣ(x), then

|a2| 5
|M(x)|

√
|M(x)|√

2
∣∣∣M2(x) + 4N(x)

∣∣∣
and

|a3| 5
M2(x)

4
+
|M(x)|

6
.

In the next theorem, we present the ”Fekete-Szegö inequality” for f ∈ HΣ(λ; x).

Theorem 2.7. For 0 5 λ 5 1 and δ ∈ R, let f ∈ A be in the class HΣ(λ; x). Then

∣∣∣a3 − δa2
2

∣∣∣ 5



|M(x)|
2(3−2λ)(
|δ − 1| 5 1

3−2λ

∣∣∣∣λ − 1 − (2−λ)2N(x)
M2(x)

∣∣∣∣)
|M(x)|3 |δ−1|

2|(λ−1)M2(x)−(2−λ)2N(x)|(
|δ − 1| = 1

3−2λ

∣∣∣∣λ − 1 − (2−λ)2N(x)
M2(x)

∣∣∣∣) .



A. K. Wanas / Filomat 34:10 (2020), 3361–3368 3366

Proof. By making use of (18) and (19), we conclude that

a3 − δa2
2 = (1 − δ)

L3
M,N,1(x)(r2 + s2)

2
[(

(λ − 1)2 + 1
)

L2
M,N,1(x) − (2 − λ)2 LM,N,2(x)

] +
LM,N,1(x)(r2 − s2)

4(3 − 2λ)

= LM,N,1(x)
[(
ϕ(δ; x) +

1
4(3 − 2λ)

)
r2 +

(
ϕ(δ; x) −

1
4(3 − 2λ)

)
s2

]
,

where

ϕ(δ; x) =
L2

M,N,1(x)(1 − δ)

2
[(

(λ − 1)2 + 1
)

L2
M,N,1(x) − (2 − λ)2 LM,N,2(x)

] .
Thus, according to (3), we find that

∣∣∣a3 − δa2
2

∣∣∣ 5



|M(x)|
2(3−2λ)(
0 5

∣∣∣ϕ(δ; x)
∣∣∣ 5 1

4(3−2λ)

)
2 |M(x)| .

∣∣∣ϕ(δ; x)
∣∣∣

(∣∣∣ϕ(δ; x)
∣∣∣ = 1

4(3−2λ)

)
,

which, after some computations, yields

∣∣∣a3 − δa2
2

∣∣∣ 5



|M(x)|
2(3−2λ)(
|δ − 1| 5 1

3−2λ

∣∣∣∣λ − 1 − (2−λ)2N(x)
M2(x)

∣∣∣∣)
|M(x)|3 |δ−1|

2|(λ−1)M2(x)−(2−λ)2N(x)|(
|δ − 1| = 1

3−2λ

∣∣∣∣λ − 1 − (2−λ)2N(x)
M2(x)

∣∣∣∣) .
Putting λ = 1 in Theorem 2.7, we obtain the following result:

Corollary 2.8. If f ∈ A be in the class SΣ(x), then

∣∣∣a3 − δa2
2

∣∣∣ 5



|M(x)|
2(
|δ − 1| 5 |N(x)|

M2(x)

)
|M(x)|3 |δ−1|

2|N(x)|(
|δ − 1| = |N(x)|

M2(x)

)
.

Putting λ = 0 in Theorem 2.7, we obtain the following result:
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Corollary 2.9. If f ∈ A be in the class CΣ(x), then

∣∣∣a3 − δa2
2

∣∣∣ 5



|M(x)|
6(
|δ − 1| 5 1

3

∣∣∣∣1 +
4N(x)
M2(x)

∣∣∣∣)
|M(x)|3 |δ−1|

2|M2(x)+4N(x)|(
|δ − 1| = 1

3

∣∣∣∣1 +
4N(x)
M2(x)

∣∣∣∣) .
Putting δ = 1 in Theorem 2.7, we obtain the following result:

Corollary 2.10. If f ∈ A be in the class HΣ(λ; x), then∣∣∣a3 − a2
2

∣∣∣ 5 |M(x)|
2(3 − 2λ)

.
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