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Complete Moment Convergence for Weighted Sums of Pairwise
Negatively Quadrant Dependent Random Variables

Mingming Zhao?, Shengnan Ding?, Di Zhang?, Xuejun Wang?

#School of Mathematical Sciences, Anhui University, Hefei 230601, P.R. China

Abstract. In this article, the complete moment convergence for weighted sums of pairwise negatively
quadrant dependent (NQD, for short) random variables is studied. Several sufficient conditions to prove
the complete moment convergence for weighted sums of NQD random variables are presented. The results
obtained in the paper extend some corresponding ones in the literature. The simulation is also presented
which can verify the validity of the theoretical result.

1. Introduction

As is known to all, complete convergence plays an important role in the probability limit theory and
mathematical statistics, especially in establishing the strong convergence rate for partial sums of random
variables.

The concept of complete convergence was first introduced by Hsu and Robbins [1] as follows: A
sequence {X,, n > 1} of random variables converges completely to a constant C, if for all ¢ > 0,

Zp(m —C]>¢) < oo.
n=1

Gut [2] extended and generalized some recent results of complete convergence for an array of rowwise
independent random variables. Liang and Su [3] obtained the complete convergence for weighted sums of
negatively associated (NA, for short) sequences and discussed its necessity.

Chow [4] first investigated the complete moment convergence, which is stronger than the complete
convergence. The concept of complete moment convergence is as follows : Let {X;,, n > 1} be a sequence of
random variables and a, > 0, b, >0, g > 0. If

Y anElb; Xl - e} < oo
n=1
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for all € > 0, then {X,,, n > 1} is said to be complete moment convergence. As is known to all, complete
moment convergence implies complete convergence. For more details about the complete moment conver-
gence, we refer the readers to Chen and Wang [5] and Qiu and Chen [6]. Recently, Wu et al. [7] obtained
the following complete moment convergence for p*-mixing random variables.

1
Theorem 1.1. Letv >0, a > > ap>1,q>(pVvv). Let {X, X, n > 1} be a sequence of identically distributed

p*-mixing random variables with EX = 0if p Vv > 1. Assume that {a,;, 1 <i <n, n > 1} is an array of constants
satisfying

n
Z lanil? < 1. 1.1)
i=1
If
E|X|p < 00, V< p/
EIXPlog(l1+|X]) <o, v=p, (1.2)
EIX]" < o0, v>p,

then for any € > 0,

o k v
Zn“’”‘“v‘zE max Zam'Xi —en®| < oo, (1.3)
p— 1<k<n pc .

and thus
) k
Zn“”_zP max Zam'Xi > en® | < oo, (1.4)
p— 1<k<n pcy

Qiu and Xiao [8] generalized the result of Theorem 1.1 for p*-mixing random variables to the case of
extended negatively dependent (END, for short) random variables and obtained the following result.

Theorem 1.2. Letv >0, a > 5 ap> 1, g>(pVvv) =1 Let {X, X, n > 1} be a sequence of identically distributed

END random variables with EX=0. Assume that {a,;, 1 <i < n, n > 1} is an array of constants satisfying (1.1). If
(1.2) holds, then for any € > 0, (1.3) holds, and thus (1.4) holds.

The main purpose of this paper is to extend Theorem 1.1 and Theorem 1.2 from p*-mixing, respectively
and END random variables to the case of NQD random variables.

The concept of NQD random variables was introduced by Lehmann [9] as follows: two random variables
X and Y are said to be negative quadrant dependent (NQD, for short), if for any x, y € R,

PX<x,Y<y) <PX<x)P(Y<y).

The sequence {X;,,n > 1} is said be pairwise NQD, if X; and X; are NQD for any i # j. It's known that
NQD contains NA as a special case. It’s not difficult to see that NQD has many applications. For example,
Matula [10] extended the classical strong law of large numbers for independent and identically distributed
random variables and three series theorem to the case of negatively associated random variables, especially
generalized to the case of pairwise NQD random variables. Wang et al. [11] established the Marcinkiewicz’s
weak law of large numbers and the strong stability of Jamison’s weighted sum for pairwise NQD sequences.
For more details about NQD, we refer the readers to Su and Wang [12] and Wu [13] among others.

The layout of this paper is as follows. Some preliminary lemmas are provided in Section 2. Our main
results and their proofs are stated in Section 3. The simulation study is presented in Section 4.

Throughout the paper, C represents some positive constant whose value may vary in different places.
Let logx = Inmax(x,e). Denote x, = xI(x > 0). I(A) stands for the indicator function of the set A. a < b
implies that there exists some positive constant ¢, such that a < cb. a v b stands for max(a, b) and a A b means
min(a, b).
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2. Preliminary Lemmas

To prove our main result of this paper, we need the following lemmas. The first one comes from
Lehmann [9].
Lemma 2.1. Let {X,,, n > 1} be a sequence of pairwise NQD random variables. If { f,(x), n > 1} are all nondecreasing
(or all nonincreasing) functions, then {f,(X,),n > 1} are still pairwise NQD.

The next one is the Marcinkiewicz-Zygmund type moment inequality for NQD random variables, which
can be found in Chen et al. [14].
Lemma 2.2. Let 1 < u < 2and {X,,, n > 1} be a sequence of pairwise NQD random variables with EX,, = 0 for each
n > 1. Then there exists a positive constant C,, depending only on y such that

n
Y
i=1

H n
E <Cu Y EIXil,
i=1

and

k H

Y

i=1

n
< Cu(logn)* Y EIXGlF.

1<k< -
" =1

E [max

The following one comes from Wu et al. [7].
Lemma 2.3. Let Y and Z be two random variables. Then for any u >v > 0,a > 0 and ¢ > 0, we have that

E(Y + Z| - ea)’. < C, (5_“ o - V)av-ﬂayw + CEZI,

where C, =1if0<v<1,0rC, =2"ifv > 1.
The next one comes from Qiu and Xiao [8].

Lemma 2.4. Let a > 0, p > 0 and X be a random variable.
(i) For any v > 0,

N E|XP, v<p,
Z n T EIXI(X] > n®) < { E|IXPPlog|X], v=p,
L. EIXI", v>p.

(ii) For any u > p,

Z n--1EIXM(IX] < n%) < E|XP.

n=1

Inspired by Lemma 2.4, we have the following lemma.
Lemma 2.5. Let a > 0, p > 0, t > 0 and X be a random variable.
(i) For any v > 0,

N EIX[log' |X], v<p,
Z n @ og! nE[X|'I(X| > n%) < § EIXPlog™'|X|, v=p,
s EIXJ", v>p-

(ii) For any u > p,

Y, n-tlog! nEIXII(X] < %) < EIXY log' X].

n=1
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Proof. By some standard computation, we obtain that

and

<

<

<

Y = og! nEIXII(X] > n°)

n=1

o)

Z n= 1 og n Z EIX['I(m® < |X| < (m + 1)%)

n=1 m=n

00 m
Z EIXI'I(m® < [X] < (m +1)%) Z n=a"1ogl n
m=1 n=1

Y mP=%log mEIX['I(m® < |X| < (m +1)*) < E[XPPlog' |X|, ifv<p,
m=1

Y log"™ mEIX|'I(m® < |X] < (m + 1)%) < E|X[P log"*|X], ifv=np,
m=1
Y, EIX|PI(m* < |X] < (m+1)*) < EIX[", ifv>p,
m=1

o)

Y nrei log! nEIXII(X] < 1)

n=1

(o) n
Z nP=a gl Z EIXI“I((m — 1)* < |X] < m®)
n=1 m=1
Y EIXEI(m = 1) < [X| <m®) Y n" " log'n
m=1 n=m

Y m = log! mEIXII((m — 1)* < [X| < m®)
m=1

E|XPP log' IXI.

The proof of the lemma is completed. O

3. Main results and their proofs

With preliminaries accounted for, we can give our main results.

Theorem 3.1. Letv > 0, a >

3462

1
=, 0<p<2,0<@pVvv)<2 alpVvv)>1, and (X, X,, n > 1} be a sequence

of identically distributed pairwise NQD random variables with EX = 0. Assume that {a,;, 1 <i<n, n > 1}isan
array of constants satisfying

If

n
Z |la,ilT < n, for some g > (p Vv).

i=1

EIXJP < oo, v<p,
EIXP log|X]| < oo, v=p,
EIX]|" < o, v>p,

then for any € > 0,

)

Z n%~2F | max
1<k<n

n=1

k

Z i Xi
1

i=

v
- é‘na] < 00,
+

3.1)

(3.2)

(3.3)
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and thus

k

Z i X;

i=1

(o)
n% 2P| max
= 1<k<n

> sn“) < o0, (3.4)

n

n
Proof. Without loss of generality, we assume that }_ |a,;|? < n. By Holder’s inequality, we obtain
i=1

n n % n 1_%
Z lanl < (Z Iam-l‘?] [Z 1] <n, (3.5)
i=1 i=1

i=1

for any 0 < u < gq. The proof will be conducted under the following two cases.
Casel.O<pVv <l
Denote for 1 < i < n that

X = 0, X:(Xi| < n®),

X% = 0, X; - XU) = 2 XiI(1X > n%).

Take u = g A 1. We have by Lemma 2.3, Lemma 2.4 and C,-inequality that

o)

k
zn“p‘“v‘zE max Zﬂm’Xi
1<k<n -

n=1 [}

(o9

k
= Z‘n""’_m’_zE max Z(qull.) +Xf12i)) -

1<k<n |4

n=1 i=1
0 k t ) k v
—ap-2 1) —av-2 2

< Z nHCE max Z X+ Z n*°E ({gjﬁé Z X
n=1 =1 n=1 i =1
(e8] n 0 n

< Y Y PEIXIIOX] < n) + ) et Y Ja PEIXPIOX] > 1)
n=1 i=1 n=1 i=1

< oo,

which implies (3.3).

Case2. 1<pVvv<2
For any fixed n > 1 and ¢ > 0, we obtain by C,-inequality, (3.1) and (3.2) that

v
- en“} < o0.
+

Take O € ;, 1. Forl <i<nand n>1,let
alp Vv)

k

Z i X;

E { max
1<k<n

qull) = (a3, X; < —n%%) + 1, Xil (12, X < n%9) + n*°I(a,; X; > n*?),
Xffl.) = (X - n“e)l(n"‘g <a,;X; <n*+ n®) + n*l(a,;: X; > nvo + n%),

XS;‘) = (@uX; + n(=n" = n® < a,; X; < —n°%) — n®1(a,; X; < —n*% —n%),
XS? = (@uiXi — 1% = nM(a,X; > n° + n),

x® = (@, X; + n0 + n*)I(a,; X; < —n0 — n®).
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Thena,;X; = X7, X",
By the definition of Xffi) and (3.5), we have that
k
—-a @ _ ne (2)
n {2&); L EX:'| = Z EX

< w Z ElaiXill(a,Xi| > %)
i=1

n —
X\PVY 1
< n Z ElayiXil (la;;91|) I(jaiXi| > n*%)
i1

< n'mOPWEIXPYY — 0, asn — oo.

By the definition of X:? and the proof above, we have

n- max
1<k<n

n n
—— Z EXY < p Z ElanXilI(lanXi| > n%) — 0, as n — co.
i=1 i=1

Z EXY

Similarly, we have

lim n™% max

n—o0

lim n™% max

n—o0

Z EX®)
Z EX®)| =

1<k<n

. (©F
—313;[ )X ]—
— lim [—n 2EX<5>

1<k<n

If 0 < v <1, by EX; =0, Lemma 2.3 and C,-inequality, we obtain

IN

<

<

<

v

) k
Z n~=2F | max Z 4, X;| — en®
1<k<n |4
n=1 i=1 +
o v
2 naP—tW—ZE max Z E(X l? = EX(I)) —en®
T<ken ni ni
n=1 =1 +

o)

5
Z nap—m/—ZE max
7 1<k<n

n=1

i

Z(X — EXD)| - enc

ap-av-2 (1) <1> o) _ &

;n” E| max ;(X - Ex{ +Z ZX —]+
) 3 n 5 n v

" 2E | max Z(X“’ EXU) + Y Y x8 - ExO)+ ) ZX“) - 871“/3]
s L<ksn =2 |i=1 1=4 +
oo k B 3 o n H
Z noP-aH-2E max Z quli) - EX;(}I.) + Z Z neP--2f Z(Xgl) - EX,(Q )
n=1 B B 1=2 n=1 i=1

+ ZS" i nP--2E Zk: xY

1=4 n=
L+ 13+I4+I5.
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If 1 <v <2, similarly we have

o0 k v

Z n*~=2E | max Zale —en®
1<k<n

n=1 i=1 +

o)

k
< Zn"’j_‘w‘zE max Z(X‘1 ~ExY)
=1

Z x0| -

sn]
+

= 1<k<n =
- 2 | & en® ’
a2 M _ py® 0 0
< )| max Z(X Ex() +Z Y x0 - ExO)| - T]
n=1 - 1=2 |i=1 +
oo k u
< Zn“”‘“"‘zE max (X(l) EX(D)
p— 1<k<n P
3 o n IS 5 o v
ap2 0 0 2 0 0
+ Z Z nrw2E |y (X0 - Ex0) + Z Z ap-av-2 (Xm. -EX?)
1=2 n=1 i=1 =4 n=1 i=1

= L+L+L+I+I.

Take u = g A2. By Lemmas 2.1 and 2.2, C,-inequality, Jensen’s inequality, (3.2) and the definition of X;ll,), we
have

I < i ap—ap— 2(10gn u [ZE )X(l)

n=1 i=1
< Z n=2(log n)* [Z E lan X n= p)“eJ
n=1
< Z n==2(log n)* (E |XP n“(“_”)“e)
n=1
- Z neP= =21 (1p)ad (|00 ) E| X
n=1
< Z ~ap=P)=0-1 (Jog ) < co.

n=1

By Lemmas 2.1 and 2.2, C,-inequality, Jensen’s inequality, we also have that

L < Z ap-ap— ZZElx(Zi)w
< 2 i ZZ [Elai Xl IlaniXil < 20%) + n*P(a,iXi| > n*)]
= B1 + Bs.
Taket € (p,u) and A = g Note that

|2, XIFI(|2ni X| < 2n%)

lani XI*[1(jani X| < 2n%, |X] < n%) + I(ja,i X] < 2n%,1X] > n)]
@n")au XITX] < n%) + 20" Hau XIM(1X] > n).

IN
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Then we have by Lemma 2.4 that

By

Z apau-2 Z Elai X I(la,X] < 2n°)
n=1
n

pap-at= ZZ Elan XI'TI(X] < n) + Z nE Elam-Xlgl(lXI > n)

|M8

<
= n= i=
< Z nP X (IX] < n®) + Z n‘“%EIXI;I(IXI >n%)
n=1
_ Z ap—at— 1E|Xlt1(|X| <n%) + Z -1+ ZE|X|ZI(1 <Xl <(@+1)%
n=1 i=n
= Y nr XX < ) + Z EIXIFIG < X] < (i +1)%) Z e
n=1 i=1 n=1
< Z n T EIXI(1X] < n®) + Z EIXIP TG < |X] < (i +1))i%
n=1 i=1
< E|IXP
< oo,

For any s > 0, we have
I(lﬂnixl > na)

[(janX| > n®,|X] < n®) + [(la,; X] > n®,|X| > n)
(|amX|

Then we have by Lemma 2.4 and (3.5) that

IA

) I(anX| > n®, |X] < n%) + I(IX] > n).

00

n
By < ) n 2N ElayXI(auX| > n)

i=1

nov=e ZZEI i XI (=) (i X] > n®, [X] < ) + Z s 2Z"I:"|am><|VI<|X| > n)
i=1 i=1

|an1X|

IA
D1 3

I
—_

n

< Z pop-an-2 Z ElaXI'I(X] < n®) + Z pop-av=2 Z Ela XI'I(X] > n%)
n=1 i=1 n=1 =1

< Z nP I IXFI(IX] < n®) + Z nP = LEIXPI(X] > n)
n=1 n=1

< 00,

Hence, I, < o follows from By < oo and B, < 0.
When 0 < v < 1, similar to the proof of B, < oo, we have by the definition of Xfﬁ) and C,-inequality that

o n
L < Z nap—av=2 Z Eleﬁ)lv
i=1

n=1
0 n

< Y Y ElanXil (auXil > 1) < oo,
n=1 i=1

When 1 < v < 2, by the definition of Xfﬁ), Lemma 2.2, C;-inequality and Jensen’s inequality, we also have

(e8] n
< Y nr o2y RO < oo

n=1 i=1



M. Zhao et al. / Filomat 34:10 (2020), 3459-3471 3467

Similar to the proofs of I, < oo, I; < o0 and I, < oo, we can obtain I3 < o, Is < o and I; < co. This
completes the proof of the theorem. O
For a(p vV v) = 1, we have the following result.

1
Theorem 3.2. Letv > 0, a > > p>0,0<(Vvv) <2 apVvv) =1 and (X, X,, n > 1} be a sequence of

identically distributed pairwise NQD random variables with EX = 0ifpVv > 1. Assume that {a,;, 1 <i<n, n>1}
is an array of constants satisfying

Z |a,ilT < n, for some g > (p vV v). (3.6)
i=1
If
EIXPP log! |X] < oo, v<p,
EIXPlog™™™ |X| <0, v=p, whereu=qA2, (3.7)
EIX]V < oo, v>p,

then for any € > 0, (3.3) holds, and thus (3.4) holds.
Proof. We also assume without loss of generality that ) i_; |4,|7 < n. Note thatif 0 < p Vv < 1, the proof is
the same as that of Theorem 3.1. Now we only consider the case a(p Vv) =1for 1 <p Vv < 2. Denote

Yo = a[-n"I(X; < -n")+ XiI(Xi] < n®) +n®1(X;] > nY)],

Zni = 0niXi = Yui = a4 [(Xi + n)(X; < —n") + (X; = n)(X; > n")].
By the definition of Yy,;, |a,| < n% and ag > 1, we have that
k

Z EYm'
1

i=

n
< 1Yl EIXI(X] > )
i=1

< ' TCEX|I(X] > n%)

n- max
1<k<n

| | p\/V 1
< n"eEX| (—) 10X > n%)
n()l
= EXFYI(X| > n*) — 0, asn — oo.

Take p =g A2.1f0 <v <1, wehave by Lemma 2.3 that

o k v
Zn“p‘av‘zE max Zamxl —¢n ]
1<k<n
n=1 i=1 +
(o) k v
o ent
< Zna” *=2F | max Z —EY,i+ Zu)| -
1<k<n 2
n=1 i= +
0 k k v
< Zn""”_"‘“_zE max Z i EYm) Z n~=2F | max sz
1<k<n 1<k<n |4
n=1 i=1 n=1 i=1
= C+0C,.

and if 1 < v <2, we have that

(o)
Z n%~"2E [ max
1<k<n

n=1

(o)

< Zn"‘”‘“"_zE max

0 1<k<n
n=

=: C1 + CIZ

k

Z i X;
=1

i=

v
— sn"]
+
k

H co
L i ap—av-2
Z;(Ym EY,) ] + ) 2 [{g,gx

i= n=1

k

Z (Zni - EZni)

i=1
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We have by Lemmas 2.2 and 2.5, C,-inequality and Jensen'’s inequality that

(o) n
Ci <) ¥ 2(logm) Y EIY,¢
n=1 i=1
< Z n“’”‘““_l(log mHEIXIMI(1X] < n®) + Z n"‘p_"”_l(log m*E|X|"I(|1X] > n%)
n=1 n=1
< oo,

By Lemmas 2.2, 2.4 and 2.5, C;-inequality and Jensen’s inequality, we also have that

00 n
C < Zn“”’“v’zz|a,,i|VE|X|VI(|X|>n“)
n=1 i=1
< Z n=eLEIXI(X] > n%)
n=1
<

~

and

0 n
C, < Z n®=v-2Jog" 1 Z |l EIXII(IX] > n%)
n=1 i=1

< n?= 1 og" nE|X|'I(|X| > n%)
1

8 i

<

The proof is completed. O

From Theorem 3.2, we can obtain the following Marcinkiewicz-Zygmund type strong law of large
numbers for weighted sums of pairwise NQD random variables.
Corollary 3.1. Let 0 < p < 2. Let {X,X,,,n > 1} be a sequence of identically distributed pairwise NQD random
variables with EX = 0if 1 < p < 2. Assume further that {a,, n > 1} is a sequence of constants satisfying Y i_, lail’ < n
for some q > p. If EIXIP log""* |X| < oo, then

n
no ZaiX,- — 0a.s., asn — oo. (3.8)
i=1
Proof Taking 0 <v <p,a = % and a,; = a; foreach 1 <i <nand n > 1 in Theorem 3.2, we can obtained that
k

Z Lll'Xi
=1

which can derive (3.8) by some standard computation. The proof is completed. O

:Mg

1<k<n

nlp [max

> en;] < 0o, (3.9

4. Simulation

In this section, takea,, = 1foreachn > 1in Corollary 3.1. The data generation process is shown as follows.
First, we generate the data. Let X = (X3, Xy,---, X,))” ~ Ny(0, X), in which 0 represents n-dimensional zero



column vector, and

1 -0
-0 1
0 -o
=|:
0 0
0 0
0 0

M. Zhao et al. / Filomat 34:10 (2020), 3459-3471

0 0 0 0
-0 0 0 0
1 0 0 0
0 1 -0 O
0 -0 1 -0
0 0 -0 1

nxn

O<o<l1.

3469

According to Joag-Dev and Proschan [15], the X generated by the above method is proved to be a vector
of NA for each n > 3 with finite moment of any order, which is a special case of pairwise NQD. Taking
o =0.06,0.12,0.24,0.48 and n = 200, 400, 600, 800 respectively, we calculate n1S, for 100 times with the help
of MATLAB software. Then, we get some different boxplots of n1S, with ¢ = 0.06,0.12,0.24,0.48 in Figure

1 as follows.

0.2
0.1

value
=]

-0.1
0.2

0.2
01

value
[ =)

-01
0.2

oL,
%'L%
IT¢¥

200 400 600 800
o=0.06

¢iil
g4

200 400 600 800
o=0.24

Figure 1: Boxplots of n~1S, with 6=0.06, 0.12, 0.24, 0.48

value

value

0.2
0.1

0.1
0.2

0.2
0.1

=

0.1
0.2

200

400 600
o=0.48

800

We can see that the values of n71S,, fluctuate zero, and the range of variation decreases as ¢ increases.

These simulation results show good fits of the theoretical results.

To show the convergence behavior of n7'S, in a more intuitive way, we use a scatter plot to show the
convergence trend with o = 0.06,0.12,0.24,0.48 and n = 1,2, --- , 800 respectively. Similar to the boxplots
process shown above, the scatter plots of n~1S, are shown below in Figure 2.
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Figure 2: Scatter plot of n1S, with 6=0.06, 0.12, 0.24, 0.48

From the scatter plots in Figure 2, we confirm that n1S, converges to zero as n increases. Besides, with
the increase of o, n~1S, accelerates its convergence trend to 0. These conclusions verify the validity of our
theoretical result.
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