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Abstract. We introduce generalized Fiedler pencil with repetition(GFPR) for an n × n rational matrix
function G(λ) relative to a realization of G(λ). We show that a GFPR is a linearization of G(λ) when the
realization of G(λ) is minimal and describe recovery of eigenvectors of G(λ) from those of the GFPRs. In fact,
we show that a GFPR allows operation-free recovery of eigenvectors of G(λ).We describe construction of a
symmetric GFPR when G(λ) is symmetric. We also construct GFPR for the Rosenbrock system matrix S(λ)
associated with an linear time-invariant (LTI) state-space system and show that the GFPR are Rosenbrock
linearizations of S(λ). We also describe recovery of eigenvectors of S(λ) from those of the GFPR for S(λ).
Finally, We analyze operation-free Symmetric/self-adjoint structure Fiedler pencils of system matrix S(λ)
and rational matrix G(λ). We show that structure pencils are linearizations of G(λ).

1. Introduction

Consider an n × n rational matrix G(λ), that is, the entries of G(λ) are of the form p(λ)/q(λ), where p(λ)
and q(λ) are scalar polynomials. Zeros (eigenvalues) and poles (defined later in this section) of rational
matrix play an important role in many applications such as in acoustic emissions of high speed trains,
calculations of quantum dots, free vibration of plates with elastically attached masses, vibrations of fluid-
solid structures see [16, 19, 22, 23], Linear Systems Theory [15, 18], and references therein. Recently, by
considering realization [15] of G(λ), new classes of Fiedler-like pencils of G(λ) such as Fiedler Pencil (FP),
Generalized Fiedler (GF) Pencils have been introduced in [1, 3] to compute zeros, poles and eigenvectors
of G(λ).

Consider a minimal realization of G(λ) of the form

G(λ) =

m∑
j=0

λ jA j + C(λE − A)−1B =: P(λ) + C(λE − A)−1B, (1)

where A,E,C,B are constant matrices of appropriate dimensions. Considering a realization of G(λ) given
in (1), it is shown in [19] that the eigenvalues and the eigenvectors of G(λ) can be computed by solving the
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generalized eigenvalue problem for the pencil

C1(λ) := λ


Am

In
. . .

In
−E


+


Am−1 Am−2 · · · A0 C
−In 0 · · · 0

. . .
...

−In 0
B A


, (2)

where the void entries represent zero entries. The pencil C(λ) referred to as a companion linearization of G(λ)
in [19], where

C1(λ) := λ


Am 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

 +


Am−1 Am−2 · · · A0
−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

 (3)

of the matrix polynomial P(λ) =
∑m

j=0 λ
jA j.

For computing zeros (eigenvalues) and poles of rational matrix, linearizations of rational matrix have
been introduced recently in [1, 6] via matrix-fraction descriptions (MFD) of rational matrix. Let G(λ) =
N(λ)D(λ)−1 be a right coprime MFD of G(λ), where N(λ) and D(λ) are matrix polynomials with D(λ) being
regular. Then the zero structure of G(λ) is the same as the eigenstructure of N(λ) and the pole structure of G(λ)
is the same as the eigenstructure of D(λ), see [15]. Also G(λ) can be uniquely written as G(λ) = P(λ) + Q(λ),
where P(λ) is a matrix polynomial and Q(λ) is strictly proper [15]. We define deg(G) := deg(P), the degree
of the polynomial part of G(λ).

A realization of G(λ) of the form (1) is associated with a linear time-invariant (LTI) system Σ in state-
space-form (SSF) given by [18, 20]

Σ :
Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + P( d

dt )u(t) (4)

for which G(λ) := P(λ) + C(λE − A)−1B is the transfer function, where x(t) is the state vector and u(t) is the
control vector of the system. The Rosenbrock system polynomial (also referred to as the Rosenbrock system
matrix) associated with the LTI system Σ in (4) is an (n + r)× (n + r) matrix polynomial S(λ) given by [15, 18]

S(λ) :=
[

P(λ) C
B A − λE

]
. (5)

The eigenvalues of S(λ) are called invariant zeros of the LTI system Σ and the associated eigenvectors are
called invariant zero directions [15, 18]. The spectrum of S is the set of invariant zeros of the LTI system Σ,
see [1]. The invariant zeros of LTI systems play an important role in Linear Systems Theory [15, 18, 20].

Definition 1.1 (Linearization, [1]). Let G(λ) be an n × n rational matrix function (regular or singular) and let
G(λ) = N(λ)D(λ)−1 be a right coprime MFD of G(λ). Set r := deg(det(D(λ))), p := max(n, r) and m :=
deg(G(λ)). If m ≥ 1 then an (mn + r) × (mn + r) matrix pencil L(λ) of the form

L(λ) :=
[

X − λY C

B A − λE

]
(6)

is said to be a linearization of G(λ) provided that there are (mn + r)× (mn + r) unimodular matrix polynomialsU(λ)
and V(λ), and p × p unimodular matrix polynomials Z(λ) and W(λ) such that U(λ)diag(Is−(mn+r), L(λ))V(λ) =
diag(Is−n, N(λ)) and Z(λ)diag(Ip−r, A − λE)W(λ) = diag(Ip−n, D(λ)) for λ ∈ C, where A − λE is an r × r pencil
with E being nonsingular and s := max(mn + r, 2n).
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Thus the zeros and poles of G(λ) are the eigenvalues of L(λ) and A − λE, respectively.
In [11] they consider a class of GFPRs of matrix polynomial and describe the operation-free recovery

of eigenvectors and minimal bases of matrix polynomial from those GFPRs. Though they have derived
operataion-free recovery formulas for eigenvector and minimal bases but the explicit maps (forward maps)
are open problem which are important for the study of sensitivity and backward error analysis. Those
explicit maps are studied in this paper.

Next, note that one significant drawback of the first companion form is that, it usually does not reflect
any structure that may be present in the original rational matrix function G(λ). Recently, in [1, 6] it has been
studied a new class of linearizations generalizing the first companion form referred as Fiedler linearizations
of rational matrix. But the drawback is that all those Fiedler pencils do not preserve any structure that the
original rational matrix function does have. In this paper, we describe construction of a symmetric GFPR
when G(λ) is symmetric.

The main contributions of this paper are as follows. First, we introduce operation-free product of
Fiedler matrices to study generalized Fiedler pencils with repetitions (GFPR). Then we introduce GFPR of
a rational matrix G(λ) relative to a realization of G(λ) as given in (1) for computing eigenvalues and poles of
G(λ). In [3] it is shown that the eigenvectors of S(λ) and G(λ) can be easily recovered from those of the GF
pencils and the recovery is operation-free for the PGF pencils. Secondly, we obtain explicit formulas for the
eigenvectors of the generalized Fiedler linearizations of rational matrix in terms of the eigenvectors of G(λ).
Also, We determine explicit formula of eigenvectors of GFPRs and describe recovery of eigenvectors of G(λ)
and S(λ) from those of GFPR L(λ) without performing any arithmetic operations. Thus we show that a
GFPR of G(λ) allows an easy operation-free recovery of eigenvectors of G(λ) from those of the GFPR pencil.
Note that the explicit formula of eigenvectors of the linearizations will be useful for defining and comparing
condition numbers of the eigenvalues of the linearziations with the condition number of eigenvalues of
the rational matrix. Lastly, since structure eigenproblems often implies some symmetries in its spectrum,
which are meaningful in some sense in physical applications and that can be destroyed when we ignore
the structure. Also, if we consider structure preserving pencils then the storage and computational cost can
be reduced. Hence, Finally, we study linearizations that preserve the structure of the original problem. In
this paper, we discuss structure preserving, in particular, symmetric/self-adjoint linearizations which can
be constructed from GFPR.

The rest of the paper is organized as follows. Section 2 contains some basic definitions and results on
index tuples and Fiedler matrices which we need throughout this paper. Section 3 introduces operation-free
product of Fiedler matrices to study GFPR. Section 4 presents the Generalized Fiedler pencils for rational
matrix and eigenvector formula for GF pencils. Section 5 introduces the Generalized Fiedler Pencils with
Repetitions (GFPR) and study the eigenvector recovery property of rational matrix. Finally, in the same
section we describes the Symmetric/self-adjoint GFPR linearizations for rational matrix and for system
matrix.

Notation. We denote by C[λ] the polynomial ring over the complex field C. Further, we denote by Cm×n

and C[λ]m×n, respectively, the vector spaces of m × n matrices and matrix polynomials over C. An m × n
rational matrix function G(λ) is an m × n matrix whose entries are rational functions of the form p(λ)/q(λ),
where p(λ) and q(λ) are scalar polynomials in C[λ]. An n × n rational matrix function G(λ) is said to be
regular if rank(G(λ)) = n for some λ ∈ C. If G(λ) is regular then µ ∈ C is said to be an eigenvalue of G(λ) if
rank(G(µ)) < n. An n × n matrix polynomial U(λ) is said to be unimodular if det(U(λ)) is a nonzero constant
independent of λ. We denote the j-th column of the n × n identity matrix In by e j and the transpose of a
matrix A by AT. We denote the Kronecker product of matrices A and B by A ⊗ B. The right and the left null
spaces of an m × n matrix A are given byNr(A) := {x ∈ Cn : Ax = 0} andNl(A) := {y ∈ Cm : yTA = 0}.

2. Basic results

Definition 2.1. [9] An ordered tuple of indices consisting of consecutive integers is called a string and denoted by
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(t : p) for the string of integers from t to p, i.e.,

(t : p) :=

(t, t + 1, . . . , p), if t ≤ p
∅, if t > p.

Remark 2.2. In the above definition, if t1 > p and t2 > p, then (t1 : p) and (t2 : p) correspond to the empty index
tuple. To avoid this notation, we will adapt the notation (∞ : p) for any tuple of the form (t : p) having t > p where
applicable.

We use the boldface small letters, such as t,q, s, . . . for index tuples (that is, ordered tuples of indices). If
q = (i1, i2, . . . , is) is an index tuple, then the reverse of q, denoted by rev q, is defined by rev q := (is, is−1, . . . , i1).
Let q = (i1, i2, . . . , is) be an index tuple and d be an integer. Then we define

−q = (−i1,−i2, . . . ,−is) and d + q = (d + i1, d + i2, . . . , d + is).

Definition 2.3. [9] Let q = (i1, i2, . . . , is) be an index tuple containing indices from {0, 1, . . . ,m,−0,−1, . . . ,−m}.
Then i j is said to be a simple index of q if i j , ik for k = 1 : s and k , j. We say that q is a simple index tuple if each
index i j, j = 1 : s, is a simple index of q.

Definition 2.4. [3] Let d ≥ 1 be an integer and q = (i1, . . . , is) be a simple index tuple containing indices from
{0, 1, . . . , d} or from {−d,−d + 1, . . . ,−1}.

(a) We say that q has a consecution at k if k, k + 1 ∈ q and q is of the form q = (· · · , k, · · · , k + 1, · · · ). We say that
q has an inversion at k if k, k + 1 ∈ q and q is of the form q = (· · · , k + 1, · · · , k, · · · ).

(b) We say that q has ck (resp., ik) consecutions (resp., inversions) at k if q has consecutions (resp., inversions) at
k, k + 1, . . . , k + ck − 1 (resp., at k, k + 1, . . . , k + ik − 1) and it does not have a consecution (resp., inversion) at
k + ck (resp., k + ik).

(c) If 0 ∈ q then we refer to CIP(q) := (c0, i0) as the consecution-inversion pair of q at 0, where c0 (resp., i0) is
number of consecutions (resp., inversions) of q at 0.

Note that if CIP(q) = (c0, i0) then either CIP(q) = (0, 0) or CIP(q) = (c0, 0) with c0 > 0 or CIP(q) = (0, i0)
with i0 > 0.

Definition 2.5. [21] Let q = (i1, i2, . . . , is) be an index tuple. Then q is said to satisfy the Successor Infix Property
(SIP) if for every pair of indices ia, ib ∈ q with 1 ≤ a < b ≤ s, satisfying ia = ib, there exists at least one index ic = ia +1
such that a < c < b.

Definition 2.6. [21] Let d be a non-negative integer and q be an index tuple containing indices from {0, 1, . . . , d}.
Then q is said to be in column standard form if q = (ap : bp, ap−1 : bp−1, . . . , a2 : b2, a1 : b1), with 0 ≤ b1 < b2 < . . . <
bp−1 < bp ≤ d and 0 ≤ a j ≤ b j, for all j = 1, . . . , p. Let t be an index tuple containing indices from {−d,−d+1, . . . ,−1}.
Then t is said to be in column standard form if d + t is in column standard form.

Lemma 2.7. [9] Let q = (i1, . . . , is) be an index tuple containing indices from {0, 1, . . . , d} or from {−d,−d+1, . . . ,−1},
for some d ≥ 1, then q satisfies the SIP if and only if q is equivalent to a (unique) tuple in column standard form.

Definition 2.8. [9] Let q = (i1, . . . , is) be an index tuple containing indices from {0, 1, . . . , d} or from {−d,−d +
1, . . . ,−1}, for some d ≥ 1 and satisfying the SIP. The unique index tuple in column standard form equivalent to an
index tuple q satisfying the SIP is called the column standard form of q. We denote this tuple by cs f (q).
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2.1. Fiedler Matrices
Consider the system matrix

S(λ) =

[
P(λ) C

B (A − λE)

]
and the associated transfer function

G(λ) =

m∑
j=0

λ jA j + C(λE − A)−1B =: P(λ) + C(λE − A)−1B. (7)

Define (mn + r) × (mn + r) matricesM0, . . . ,M−m by

M0 :=
[

M0 −em ⊗ C
−eT

m ⊗ B −A

]
, M−m :=

[
M−m 0

0 −E

]
, (8)

M−i :=M−1
i , for i = 0, 1, . . . ,m − 1 andMm :=M−1

−m,

withM−1
i =

[
M−1

i 0
0 Ir

]
, i = 1 : m − 1, where

M0 :=
[

I(m−1)n
−A0

]
, M−m :=

[
Am

I(m−1)n

]
, (9)

M−i := M−1
i for i = 0, 1, . . . ,m − 1 and Mm := M−1

−m, (10)

where

Mi :=


I(m−i−1)n

−Ai In
In 0

I(i−1)n

 and M−1
i =


I(m−i−1)n

0 In
In Ai

I(i−1)n


for i = 1 : m − 1 are the Fiedler matrices of P(λ), see [14, 21]. We refer to the matricesM0,M1, . . . ,M−m as
the Fiedler matrices of S(λ) or G(λ).

Observe that M−m and M0 are invertible if and only if Am and A0 are invertible. It follows that MiM j =

M jMi if ||i| − | j|| > 1. It also follows thatMiM j =M jMi for
∣∣∣|i| − | j|∣∣∣ , 1 except for

∣∣∣ |i| − | j| ∣∣∣ = m.
Let q = (i1, . . . , is) be an index tuple containing indices from {0, 1, . . . , d} or from {−d,−d + 1, . . . ,−1}, for

some d ≥ 1, then Mq := Mi1Mi2 · · ·Mis . If q = φ then Mq = Inm+r [9]. Let q1 and q2 be two index tuples
containing indices from {0, 1, . . . , d} or from {−d,−d + 1, . . . ,−1}, for some d ≥ 1. We say that q1 is equivalent
to q2, and we will write q1 ∼ q2, ifMq1

=Mq2
. Note that ∼ is an equivalence relation. Observe that if Mq2

is obtained from Mq1
by applying the commutativity relations then q1 is equivalent to q2.

3. Operation-free products of Fiedler matrices

In this section we define operation-free product of Fiedler matrices of G(λ) to study the generalized
Fiedler pencils with repetitions (GFPR).

Definition 3.1. A productMq corresponding to the index tuple q = (i1, i2, . . . , im) is said to be operation-free if the
block entries (up to sign) ofMq consist of matrices from 0, In, Ir,C,B,A,E and A0,A1, . . . ,Am.

For example, when σ = (0, 1, . . . ,m − 1), the product Mσ = Mσ(0) · · ·Mσ(m−1) is operation-free. Thus a
Fiedler pencil associated with a bijection σ is also operation-free. So the question is: if we allow to repeat
the Fiedler matrices, will that product still be an operation-free product?

Lemma 3.2. The productMiMi, is not operation-free for i = 0,±1, . . . ,±(m − 1),−m.
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Proof. For i = 0,

M0M0 =

 I(m−1)n
−A0 −C
−B −A


 I(m−1)n

−A0 −C
−B −A

 =

 I(m−1)n
A2

0 + CB A0C + CA
BA0 + AB BC + A2


is not operation-free. For 1 ≤ i ≤ m − 1, MiMi =

[
MiMi

Ir

]
is not operation-free, since MiMi is not

operation-free, see [21]. Similarly, for −(m − 1) ≤ i ≤ −1, MiMi is not operation-free, since M−iM−i =

(MiMi)−1 =

[
(MiMi)−1

Ir

]
and (MiMi)−1 is not operation-free, see [21]. Again for i = −m,

M−mM−m =

 Am
I(m−1)n

−E


 Am

I(m−1)n
−E

 =

 A2
m

I(m−1)n

E2


is not operation-free.

Lemma 3.3. The productMiMi+1Mi is operation-free for i = 1 : m−2 butM0M1M0 is not operation-free. Further,
Mi+1MiMi+1 is not operation-free for i = 0 : m − 2.

Proof. For i = 0, we have MiMi+1Mi =M0M1M0 =


I(m−2)n

−A1 −A0 −C
−A0 CB CA
−B AB A2

 is not operation-free. For 1 ≤ i ≤ m − 2,

we have MiMi+1Mi =

[
MiMi+1Mi

Ir

]
. So MiMi+1Mi is operation-free, since MiMi+1Mi is operation-

free, see [21]. Note that M1M0M1 =


I(m−2)n

A2
1 − A0 −A1 −C
−A1 In 0
−B 0 −A

 is not operation-free. For 1 ≤ i ≤ m − 2, we

haveMi+1MiMi+1 =

[
Mi+1MiMi+1

Ir

]
is not operation-free, since Mi+1MiMi+1 is not operation-free, see

[21].

Corollary 3.4. The productMiMi+1Mi is operation-free for i = −2,−3, . . . ,−(m − 1) butM−mM−(m−1)M−m is not
operation-free. If E = Ir, thenM−mM−(m−1)M−m is operation-free. Further, Mi+1MiMi+1 is not operation-free for
i = −2,−3, . . . ,−(m − 1).

Proof. We haveM−mM−(m−1)M−m

=

 Am
I(m−1)n

−E




0 In
In Am−1

I(m−2)n
Ir


 Am

I(m−1)n
−E

 =


0 Am

Am Am−1
I(m−2)n

E2


is not operation-free. If E = Ir, then M−mM−(m−1)M−m is operation-free. The proof for Mi+1MiMi+1 is
similar.

Lemma 3.5. Let q = (i1, i2, . . . , is) be an index tuple of indices from {0, 1, . . . ,m−1} such thatMq is not operation-free.
Then for any two other index tuples τ and σ from {0, 1, . . . ,m − 1} the productMτMqMσ is not operation-free.

Proof. Proof directly follows from Lemma 4, [21].
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Lemma 3.6. The productM(i: j) is operation-free and is given by

M(i: j) =



I(m− j−1)n
−A j
−A j−1

.

.

. I( j−i+1)n
−Ai
In 0n×( j−i+1)n

I(i−1)n
Ir


=

[
M(i: j)

Ir

]
(11)

for i > 0, i ≤ j ≤ m − 1 and

M(0: j) =



I(m− j−1)n
−A j

.

.

. I jn
−A1
−A0 0n× jn −C
−B −A


=

[
M(0: j) −em ⊗ C
−eT

m− j ⊗ B −A

]
. (12)

Proof. We prove the result by induction on j. Suppose that i > 0. Then for j = i, we haveM(i:i) =Mi which
is operation free. So assume that (11) is true for j = s. We have to show that (11) is true for j = s + 1. Now

M(i:s+1) =M(i:s)Ms+1 =



I(m−s−1)n
−As In
−As−1 0 In

.

.

.
.
.
.

. . .
−Ai 0 0 · · · In
In 0 0 · · · 0 0

Ir




I(m−s−2)n

−A(s+1) In
In 0

Isn
Ir



=



I(m−s−2)n
−As+1 In
−As 0 In

.

.

.
.
.
.

. . .
−Ai 0 0 · · · In
In 0 0 · · · 0 0

Ir


=



I(m−s−2)n
−As+1
−As

.

.

. I(s−i+2)n
−Ai
In 0 0 · · · 0

I(i−1)n
Ir


,

which satisfies (11). Clearly this is operation-free. This proves the case for i > 0.
For the case i = 0 multiplyM0 with the case i > 0. So we haveM(0: j) =M0M(1: j), which is equal to


I(m− j−1)n

I jn
−A0 −C
−B −A





I(m− j−1)n
−A j In
−A j−1 0 In

.

.

.
.
.
.

. . .
−A1 0 0 · · · In

In 0 0 · · · 0 0
Ir


=



I(m− j−1)n
−A j

.

.

. I jn
−A1
−A0 0 . . . 0 −C
−B −A


is operation-free.

Remark 3.7. Similarly the productM(−i:− j), where 1 ≤ j ≤ i ≤ m is operation-free and is given by

M(−i:− j) =



I(m−i−1)n
0n×(i− j+1)n In

Ai
I(i− j+1)n Ai−1

.

.

.
A j

I( j−1)n
Ir


, j ≤ i < m,

M(−m:− j) =



0n×(m− j)n Am
Am−1

I(m− j)n

.

.

.
A j

I( j−1)n
−E


.
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The next theorem provides a canonical form of operation-free product, which helps us to construct
structure preserving linearizations of system matrix.

Theorem 3.8. Each product of the form

1∏
i=m−1

M(ci:i), for ci ∈ (1 : i) ∪ {∞}, (13)

is operation-free. The product in (13) is in column standard form.

Proof. We have
∏1

i=m−1M(ci:i) =
∏1

i=m−1

[
M(ci:i)

Ir

]
=

[ ∏1
i=m−1 M(ci:i)

Ir

]
. Since by Theorem 1, [21],∏1

i=m−1 M(ci:i) is operation-free for ci ∈ (1 : i) ∪ {∞}, hence the result follows.

Theorem 3.9. Let q be an index tuple of indices from {0, 1, . . . ,m − 1}.
Case I : Suppose that 0 < q. Then the following are equivalent.

(a) Mq is operation-free.

(b) q satisfies SIP.

(c) Mq can be written in the column standard form given in (13).

Case II : Suppose that 0 ∈ q is a simple index of q. Then the following are equivalent.

(a) Mq is operation-free.

(b) q satisfies SIP.

(c) Mq can be written in the column standard form
∏1

i=m−1M(ci:i), for ci ∈ (0 : i) ∪ {∞}.

Proof. Case I : If 0 < q thenMq =

[
Mq

Ir

]
. Consequently,Mq is operation-free⇔Mq is operation-free.

Hence the result follows from Theorem 2, [21].

Case II : Suppose that 0 ∈ q. Since 0 is a simple index of q, we haveMq =Mσ1M0Mσ2 for some index
tuples σ1 and σ2 from {1, . . . ,m − 1}. Now

Mσ1M0Mσ2 =

[
Mσ1

Ir

] [
M0 −em ⊗ C

−eT
m ⊗ B −A

] [
Mσ2

Ir

]

=

[
Mσ1 M0Mσ2 −Mσ1 (em ⊗ C)

(−eT
m ⊗ B)Mσ2 −A

] [
Mq −Mσ1 (em ⊗ C)

(−eT
m ⊗ B)Mσ2 −A

]
.

This shows thatMq is operation-free ⇔ Mq,Mσ1 (em ⊗ C), and (eT
m ⊗ B)Mσ2 are operation-free. Now Mq =

Mσ1 M0Mσ2 is operation free implies that Mσ1 and Mσ2 are operation-free. Hence σ1 and σ2 satisfies SIP.
Since σ1 and σ2 are tuples from {1, 2, . . . ,m − 1}, by Theorem 2, [21], Mσ1 and Mσ2 can be written in the form∏1

i=m−1 M(ci:i), for ci ∈ (1 : i) ∪ {∞}. Hence by Lemma 3.6, it follows that the block entries of Mσ1 (em ⊗ In) and
(eT

m ⊗ In)Mσ2 are either 0 or In. In fact, it is easy to see that Mσ1 (em ⊗ In) = ek ⊗ In and (eT
m ⊗ In)Mσ2 = eT

j ⊗ In for
some k and j. Hence Mσ1 (em ⊗ C) and (eT

m ⊗ B)Mσ2 are operation-free. This shows thatMq is operation-free
⇔Mq is operation-free. Hence the result follows from Theorem 2, [21].

Remark 3.10. The assumption that 0 is a simple index can not be relaxed in Theorem 3.9. For example,
∏0

i=3M(ci:i),
for ci ∈ (0 : i) ∪ {∞} may not be operation-free. Indeed, by Lemma 3.5, the product M0:3M0:2M0:1M0:0. is not
operation-free sinceM0:1M0:0 is not operation-free.
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Considering index tuple from the set {−m,−(m − 1), . . . ,−1} and using similar arguments as above, we
have the following result.

Theorem 3.11. Let q = (i1, i2, . . . , ip) be an index tuple from the set {−m,−(m − 1), . . . ,−1}.
Case I : If −m < q then the following are are equivalent.

(a) Mq is operation-free.

(b) q satisfies the SIP.

(c) Mq can be written in the column standard form
∏−(m−1)

i=−1 M(ci:i), for ci ∈ (−(m − 1) : i) ∪ {∞}.

Case II : If −m ∈ q is a simple index of q then the following are are equivalent.

(a) Mq is operation-free.

(b) q satisfies the SIP.

(c) Mq can be written in the column standard form
∏−(m−1)

i=−1 M(ci:i), for ci ∈ (−m : i) ∪ {∞}.

Proof. Case I : If −m < q thenMq =

[
Mq

Ir

]
. Consequently,Mq is operation-free⇔Mq is operation-free.

Hence the result follows from Theorem 3, [21].
Case II : Suppose that −m ∈ q. Since −m ∈ q is a simple index of q, then we haveMq = Mσ1M−mMσ2

for some index tuples σ1 and σ2 from {−(m − 1), . . . ,−1}. Now

Mσ1MmMσ2 =

[
Mσ1

Ir

] [
M−m

−E

] [
Mσ2

Ir

]
=

[
Mσ1 M−mMσ2

−E

]
.

This shows that Mq is operation-free ⇔ Mq is operation-free. Hence the result follows from Theorem 2,
[21].

Remark 3.12. If E = Ir, then the product
∏
−m
i=−1M(ci:i), for ci ∈ (−m : i) ∪ {∞} is operation-free, because E = Ir

implies thatM−mM(−m−1)M−m is operation-free.

Remark 3.13. The assumption that −m is a simple index cannot be relaxed in Theorem 3.11. For example,

−4∏
i=−1

M(ci:i), for ci ∈ (−4 : i) ∪ {∞}

may not be operation-free. Indeed, by Lemma 3.5, the productM−4:−1M−4:−2M−4:−3M−4:−4 is not operation-free as
M−4:−3M−4 is not operation-free.

4. Eigenvector Formula of Generalized Fiedler (GF) Pencils

Let q be a permutation of {0, 1, . . . ,m − 1}. Then the (mn + r) × (mn + r) matrix pencil Lq(λ) given by
Lq(λ) = λM−m −Mq is called the Fiedler pencil of the Rosenbrock system polynomial S(λ) associated with
q, see [1]. The pencil Lq(λ) is also called the Fiedler pencil of the transfer function G(λ) associated with q.

Now, we define the GF pencil of rational matrix G(λ).

Definition 4.1. Let S(λ) be the system matrix given in (5). Let {C0,C1} be a partition of {0, 1, . . . ,m} (C0 or C1 may
be empty set). Let σ and τ be permutations of C0 and −C1, respectively. Then the pencil Tω(λ) := λMτ −Mσ is
said to be a generalized Fiedler (GF) pencil of S(λ) associated with ω = (τ, σ). If 0 ∈ C0 and m ∈ C1, then the pencil
Tω(λ) is said to be a Proper Generalized Fiedler (PGF) pencil of S(λ). We also refer to Tω(λ) as the GF (PGF) of the
transfer function G(λ) associated with ω = (τ, σ).
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Note that if C0 = ∅, thenMσ = I(nm+r) and if C1 = ∅, thenMτ = I(nm+r). It is clear that any Fiedler pencil
Lσ(λ) of S(λ) is a special case of a GF pencil with C0 = {0, 1, . . . ,m − 1} and C1 = {m}.

It has been shown that GF and PGF pencils of S(λ) is a trimmed structured linearization of S(λ) and
that the GF and PGF pencils are also a linearization of G(λ) whenever the realization (1) of G(λ) is minimal,
[3]. Also, recovery of eigenvectors of S(λ) from GF pencils follows from Theorem 5.3 given in [3].

Next, consider the system matrix S(λ) and its associated transfer function G(λ). It is already established
the eigenvector formula for Fiedler pencil of S(λ) and its associated transfer function G(λ), see, [2]. Now,
we derive the eigenvector formula for PGF and GF pencil of S(λ) and G(λ).

Definition 4.2. Let P(λ) =
∑m

j=0 λ
jA j be a matrix polynomial of degree m. For 0 ≤ j ≤ m, define the polynomial

P j(λ) = Am− j + λAm− j+1 + · · · + λ jAm. Then the polynomial is called as the jth Horner shift of P(λ). Observe that

P0(λ) = Am,Pm(λ) = P(λ), and λP j(λ) = P j+1(λ) − Am− j−1, for 0 ≤ j ≤ m − 1.

Next, consider the block transpose of a block matrix.
Let H := (Hi j) be a block m × n matrix with p × q blocks Hi j. The block transpose of H, denoted by HB, is

the block n ×m matrix with p × q blocks defined by (HB)i j := H ji, see [14].
The following results give the eigenvector formula for Fiedler pencil and generalized Fiedler pencil of

P(λ), [9].

Theorem 4.3. [9] Let P(λ) be an matrix polynomial of degree m and P0, . . . ,Pm be the Horner shifts of P(λ). Let
σ be a permutation of {0, 1, . . . ,m − 1} with cs f (σ) = (bβ, . . . , b1), where bk = (tk−1 + 1 : tk), for k = 1, . . . , β. Let
Lσ(λ) = λMm −Mσ be the Fiedler pencil of P(λ) associated with a bijection σ. Then

Eσ(P) :=
[

B0 B1 . . . Bm−1

]B
(14)

where, if σ(i) ∈ bk, for some k = 1, . . . , β, then

Bi =

λk−1In, if i = m − tk − 1
λk−1Pi, otherwise.

(15)

Let Hσ(P) := Erev σ(PT). Then Eσ(P) : Nr(P(λ))→Nr(Lσ(λ)) and Hσ(P) : Nl(P(λ))→Nl(Lσ(λ)) are isomorphisms.
Moreover, if σ has c0 consecutions at 0, then the (m − c0)th block of Eσ(P) is equal to In, and if σ has i0 inversions at
0, then the (m − i0)th block of Hσ(P) is equal to In.

Theorem 4.4. [9] Let P(λ) be an matrix polynomial of degree m. Let Pi for i = 0, 1, . . . ,m, be the ith Horner
shift of matrix polynomial P. Let ω := (ω0, ω1) and Tω(λ) = λMω1 −Mω0 be a PGF pencil of P(λ). Let λ ∈ C
be an eigenvalue of P(λ). Assume that ω1 has c−m consecutions at −m, and csf(ω1) = (τ,−m : −m + c−m). Set
ξ := cs f (−revτ, ω0) = (bα, bα−1, . . . , b1), where bk = (tk−1 + 1 : tk), for k = 1, . . . , α. Define Eω0,ω1 (P) := Eξ(P), if
c−m = 0 and

Eω0,ω1 (P) :=
[
λα[P0 P1 . . . Pc−m−1] Bc−m Bc−m+1 . . . Bm−1

]B
, (16)

if c−m > 0, where Eξ(P) is as in Theorem 4.3 and if ξ(i) ∈ b j, for some j = 1, 2, . . . , α, then the block Bi+c−m is as in
(15). Then Eω0,ω1 (P) : Nr(P(λ))→Nr(Tω(λ)) is an isomorphism.

Further, set rev ω := (revω0, revω1) and define Hω0,ω1 (P) := Erevω0,revω1 (PT). Then Hω0,ω1 (P) : Nl(P(λ)) →
Nl(Tω(λ)) is an isomorphism. Furthermore, if ω0 has c0 consecutions at 0, then the (m − c0)th block of Eω0,ω1 (P) is
equal to In, and if ω0 has i0 inversions at 0, then the (m − i0)th block of Hω0,ω1 (P) is equal to In.

Theorem 4.5. [6] LetS(λ) and G(λ) be as in (5) and (7). Let λ ∈ C be an eigenvalue of G(λ) . Define f : Cn
→ Cn+r

and 1 : Cn
→ Cn+r by

f (x) :=
[

x
(λ0E − A)−1Bx

]
and 1(x) :=

[
x

(C(λ0E − A)−1)Tx

]
.

Then the maps f : Nr(G(λ0))→Nr(S(λ0)) and 1 : Nl(G(λ0))→Nl(S(λ0)) are isomorphisms.
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Theorem 4.6. [2, 6] LetLσ(λ) be the Fiedler linearization ofS(λ) associated with a bijection σ. Let λ ∈ C and Eσ(P),
and Hσ(P) be as in Theorem 4.3. Define Eσ(S) : Cn+r

→ Cnm+r andHσ(S) : Cn+r
→ Cnm+r by

Eσ(S) =

[
Eσ(P) 0

0 Ir

]
andHσ(S) =

[
Hσ(P) 0

0 Ir

]
.

Then Eσ(S) : Nr(S(λ))→Nr(Lσ(λ)) andHσ(S) : Nl(S(λ))→Nl(Lσ(λ)) are isomorphisms.

Remark 4.7. Since by Theorem 4.5, f : Nr(G(λ0))→Nr(S(λ0)) and 1 : Nl(G(λ0))→Nl(S(λ0)) are isomorphisms
and, by Theorem 4.6, Eσ(S) : Nr(S(λ0)) → Nr(L(λ0)) and Hσ(S) : Nl(S(λ0)) → Nl(L(λ0)) are isomorphisms, it
follows that Eσ(G) = Eσ(S) ◦ f : Nr(G(λ0)) → Nr(L(λ0)) andHσ(G) = Hσ(S) ◦ 1 : Nl(G(λ0)) → Nl(L(λ0)) are
isomorphisms.

Next, consider a PGF/GF pencilTω(λ) of the system matrixS(λ). We have to determine the isomorphism
between Nr(G(λ)) and Nr(Tω(λ)). So, by the remark (4.7), it is sufficient to determine the isomorphism
betweenNr(S(λ)) andNr(Tω(λ)).

Theorem 4.8 (Eigenvector formula for PGF pencil of system matrix). Let Pi for i = 0, 1, . . . ,m, be the ith
Horner shift of matrix polynomial P(λ). Let ω := (ω0, ω1) and Tω(λ) = λMω1 −Mω0 be a PGF pencil of S(λ). Let
λ ∈ C be a spectrum of S.

(a) Define Eω0,ω1 (S) :=
[

Eω0,ω1 (P) 0
0 Ir

]
, where Eω0,ω1 (P) is as in Theorem 4.4. Then Eω0,ω1 (S) : Nr(S(λ)) −→

Nr(Tω(λ)) is an isomorphism.

(b) Set rev ω := (revω0, revω1) and define Hω0,ω1 (S) := E(revω0,revω1)(ST) =

[
E(revω0,revω1)(PT)

Ir

]
. Then

Hω0,ω1 (S) : Nl(S(λ)) −→ Nl(Tω(λ)) is an isomorphism.

Proof. Suppose that ω1 and ω0 are in column standard form. Assume that ω1 has c−m consecutions at −m.
Then, there exists an index tuple τ such that

Tω(λ) = λMτM(−m:−m+c−m) −Mω0 . (17)

Case I : If c−m = 0, then Tω(λ) = λMτM−m −Mω0 and Lσ(λ) = M−rev τTω(λ) = λM−m −M(−rev τ,ω0) is a
Fiedler pencil associated with a bijection σ = (−rev τ, ω0). Hence Nr(Lσ(λ)) = Nr(Tω(λ)). Observe that the
index tuple (−revτ, ω0) is a permutation of {0, 1, . . . ,m−1}. Set ξ = cs f (σ) = cs f (−rev τ, ω0) = (bα,bα−1, . . . ,b1).

Then by Theorem 4.6, Eω0,ω1 (S) := Eξ(S) =

[
Eξ(P)

Ir

]
is an isomorphism fromNr(S(λ)) toNr(Tω(λ)).

Case II : Suppose that c−m , 0. Since c−m , 0, Lσ̂(λ) =M−rev τTω(λ)M(m−c−m:m−1)

= λM−rev τMτM(−m:−m+c−m)M(m−c−m:m−1) −M−rev τMω0M(m−c−m:m−1)

= λM(−m:−m+c−m)M(m−c−m:m−1) −M−rev τMω0M(m−c−m:m−1) = λM−m −M(−rev τ,ω0,m−c−m:m−1)

is a Fiedler pencil associated with a bijection σ̂ = (−rev τ, ω0,m − c−m : m − 1). So the map Nr(Lσ̂(λ)) →

Nr(Tω(λ)),
[

u
v

]
7→ M(m−c−m:m−1)

[
u
v

]
is an isomorphism. By Theorem 4.6, Eσ̂(S) =

[
Eσ̂(P)

Ir

]
is an

isomorphism from Nr(S(λ)) to Nr(Lσ̂(λ)), where Eσ̂(P) is as in Theorem 4.3. Consequently, the map

Nr(S(λ)) → Nr(Tω(λ)),
[

x
y

]
7→ M(m−c−m:m−1)Eσ̂(S)

[
x
y

]
is an isomorphism. Now our aim is to calculate

M(m−c−m:m−1)Eσ̂(S). Let σ = cs f (̂σ) = cs f (−rev τ, ω0,m − c−m : m − 1). Then

M(m−c−m:m−1)Eσ(S) =

[
M(m−c−m:m−1)

Ir

] [
Eσ(P)

Ir

]
=

[
M(m−c−m:m−1)Eσ(P)

Ir

]
.
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By Theorem 3.3, [9], we have M(m−c−m:m−1)Eσ(P) = Eω0,ω1 (P). Hence M(m−c−m:m−1)Eσ(S) = Eω0,ω1 (S). This
completes the proof of (a).

Next, note that Nl(S(λ)) = Nr(S(λ)T) and Nl(Tω(S)) = Nr(Tω(S)T) = Nr(Trevω(ST)). This shows that
Hω0,ω1 (S) := Erevω0,revω1 (ST) is an isomorphism fromNl(S(λ)) toNl(Tω(λ)).

The next result directly follows from Remark 4.7

Corollary 4.9 (Eigenvector formula for PGF pencil of G(λ)). Let Pi for i = 0, 1, . . . ,m, be the ith Horner shift
of matrix polynomial P. Let ω = (ω0, ω1) and Tω(λ) = λMω1 −Mω0 be a PGF pencil of G(λ). Let λ ∈ C be an
eigenvalue of G(λ).

(a) Define Eω0,ω1 (G) :=
[

Eω0,ω1 (P)
(λE − A)−1B

]
, where Eω(P) is as in Theorem 4.4. Then Eω0,ω1 (G) : Nr(G(λ)) −→

Nr(T(λ)) is an isomorphism.

(b) Set rev ω := (revω0, revω1) and define Hω0,ω1 (G) := E(revω0,revω1)(GT) :=
[

E(revω0,revω1)(PT)
(C(λE − A)−1)T

]
. Then

Hω0,ω1 (G) : Nl(G(λ)) −→ Nl(Tω(λ)) is an isomorphism.

Example 4.10. Consider the system matrix S(λ) with matrix polynomial P(λ) of degree m = 3 and the associated
transfer function G(λ). LetKω(λ) = λMω1 −Mω0 = λM−3M−2M−1 −M0 be the PGF pencil of G(λ). Here ω1 has
2 consecutions at −3, i.e., c−3 = 2. Now

M−3M−2M−1 =


0 0 A3
In 0 A2
0 In A1

−E

 , soKω(λ) =


−In 0 λA3
λIn −In λA2
0 λIn λA1 + A0 C

B A − λE

 .

Thus by the Corollary 4.9,


λA3

λ2A3 + λA2
In

(λE − A)−1B

 x ∈ Nr(K(λ)), where x ∈ Nr(G(λ)). �

The next result describes eigenvector formula for GF pencils of S(λ) for the case when M−1
0 does not

appear in the GF pencils. That is, m ∈ σ.

Theorem 4.11 (Eigenvector formula for GF pencil of S(λ)). Let Tω(λ) = λMt −Mσ be a GF pencil of S(λ)
such that 0,m ∈ σ. Let σ′ = σr {m}, ξ := cs f (−revt, σ′) = (bα, . . . , b1), where bα = (tk−1 + 1 : tk) for k = 1, 2, . . . , α.
Case I : Suppose that m − 1 is to the left of m in (−revt, σ).

(a) If m is to the right of 0 in σ then

Eσ,t(S) :=

 [
AmB0 B1 · · · Bm−1

]B
−E

 (18)

is an isomorphism from Nr(S(λ)) to Nr(Tω(λ)), where ξ(i) ∈ b j, for some j = 1, 2, . . . , α, and the block Bi’s
are as in Theorem 4.3.

(b) If m is to the left of 0 in σ and s is the largest index such that (m− s : m) ∈ σ then set τ0 = σr {m− s : m}. Then

Eσ,t(S) =

[
Eτ0,τ1 (P)

Ir

]
is an isomorphism from Nr(S(λ)) to Nr(Tω(λ)), where τ1 = (−rev(m − s : m), t)

and Eτ0,τ1 (P) is as in Theorem 4.4.

Case II : Suppose that m − 1 is to the right of m in (−revt, σ).
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(a) If m is to the left of 0 in σ, thenEσ,t(S) := Eξ(S), is an isomorphism fromNr(S(λ)) toNr(Tω(λ)),whereEξ(S)
is given in Theorem 4.6.

(b) If m is to the right of 0 in σ and h is the largest index such that (m,m − 1, . . . ,m − h) in σ then set σ′′ =
σr{m,m−1, . . . ,m−h}, σ4 = (−revt, σ′′), σ3 = (−(m−h),−(m−1),−m) =: (t1,−m) and ξ′ = cs f (−revt1, σ4).
Then

Eσ,t(S) :=M−(m−h) · · ·M−(m−1)M−mEξ′ (S)=



B1 0
B2

.

.

.
Bh

AmB0 + Am−1B1 + · · · + Am−hBh
Bh+2

.

.

.
Bm−1

0 −E


.

is an isomorphism from Nr(S(λ)) to Nr(Tω(λ)), where Eξ′ (S) is given in Theorem 4.6 and Bi, i = 1 : m − 1,
are given in Theorem 4.3.

Proof. Case I: If m − 1 is to the left of m in (−revt, σ), then (−revt, σ) is equivalent to either (−revt, σ′,m) or
(−revt,m, σ′), sinceM0 andMm do not commute, so there is a possibility for m to be either to the left or to
the right of 0.

(a) If m is right of 0 then (−rev t, σ) ∼ (−revt, σ′,m), so Tω(λ) = λMt −Mσ = λMt −Mσ′Mm and hence

Lτ(λ) :=M−revtTω(λ)M−m =M−revt(λMt −Mσ′Mm)M−m = λM−m −M−revtMσ′

is a Fiedler pencil associated with a bijection τ = (−revt, σ′). So v 7→ M−mv is an isomorphism from
Nr(Lτ(λ)) to Nr(Tω(λ)). By Theorem 4.6, we have Eτ(S) : Nr(S(λ)) → Nr(Lτ(λ)) is an isomorphism. Thus

for
[

x
y

]
∈ Nr(S(λ)) we have

[
x
y

]
7→ M−mEτ(S)

[
x
y

]
is an isomorphism from Nr(S(λ)) to Nr(Tω(λ)).

Since ξ = cs f (τ) = cs f (−rev t, σ′), we have

M−mEξ(S) =M−m

[
Eξ(P) 0

0 Ir

]
=

 Am

I(m−1)n

−E




B0 0
... 0

Bm−1 0
0 Ir

 =

 [
AmB0 B1 · · · Bm−1

]B
−E

 .
(b) Since m is left of 0 in σ, we have (−revt, σ) ∼ (−revt,m − s : m, τ0). Consequently, we have Tω(λ) =
λMt −Mσ = λMt −Mm−s:m−2Mm−1MmMτ0 . This shows that Lτ(λ) :=M−rev(m−s:m)Tω(λ)
=M−rev(m−s:m)

(
λMt −Mm−s:m−2Mm−1MmMτ0

)
= λM−rev(m−s:m)Mt−Mτ0 = λMτ1 −Mτ0 is a PGF pencil. Hence

Nr(Tω(λ)) = Nr(Lτ(λ)). By Theorem 4.8, we have Eσ,t(S) =

[
Eτ0,τ1 (P)

Ir

]
is an isomorphism from

Nr(S(λ)) toNr(Tω(λ)).
CaseII: (a) If m − 1 is to the right of m and m is to the left of 0 in (−revt, σ), then (−revt, σ) is equivalent
to (m,−revt, σ′). So Lτ(λ) = M−mM−revtTω(λ) = λM−m −M−revtMσ′ is a Fiedler pencil associated with a
bijection τ = (−revt, σ′). HenceNr(Lτ(λ)) = Nr(Tω(λ)). Since ξ = cs f (τ), by Theorem 4.6, Eσ,t(S) := Eξ(S) is
an isomorphism fromNr(S(λ)) toNr(Tω(λ)).
(b) If m − 1 is to the right of m in (−revt, σ) and m is to the right of 0 in σ, then (−revt, σ) ∼ (−revt, σ′′,m,m −
1, . . . ,m − h). So

Lτ(λ) =M−revtTω(λ)M−(m−h) · · ·M−(m−1)M−m = λM−(m−h) · · ·M−(m−1)M−m −M−revtMσ′′ = λMσ3 −Mσ4

is a PGF pencil. Hence
[

u
v

]
7→ M−(m−h) · · ·M−(m−1)M−mv is an isomorphism from Nr(Lτ) to Nr(Tω(λ)).

Since σ3 has always 0 consecutions at −m, i.e., c−m = 0, by Theorem 4.8, Eξ′ (S) =



B0
B1

.

.

.
Bm−1

0 Ir


is an isomorphism
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fromNr(S(λ)) toNr(Lτ(λ)), where Bi, i = 0 : m − 1 are as in Theorem 4.3. This shows that

Eσ,t(S) =M−(m−h) · · ·M−(m−1)M−mEξ′ (S)

is an isomorphism fromNr(S(λ)) toNr(Tω(λ)). Now

M−(m−1)M−m =


0 In

Am Am−1
I(m−2)n

−E

 andM−(m−h) · · ·M−(m−1)M−m =



0 In
0 0 In

0
.
.
. 0 In

Am Am−1 · · · Am−h
I(m−h−1)n

−E


.

Hence

Eσ,t(S) =



0 In
0 0 In

0
.
.
. 0 In

Am Am−1 · · · Am−h
I(m−h−1)n

−E





B0
B1

.

.

.
Bm−1

0 Ir


=



B1 0
B2

.

.

.
Bh

AmB0 + Am−1B1 + · · · + Am−hBh
Bh+2

.

.

.
Bm−1

0 −E



.

The next result directly follows from Remark 4.7.

Corollary 4.12 (Eigenvector formula for GF pencil of transfer function). LetTω(λ) = λMt−Mσ ba GF pen-
cil of a regular G(λ) given in (7). Let λ ∈ C be an eigenvalue of G(λ). Assume that 0,m ∈ σ. Let σ′ = σ r {m},
ξ = cs f (−revt, σ′).
Case I : Suppose that m − 1 is to the left of m in (−revt, σ).

(a) If m is to the right of 0 then

Eσ,t(G) :=



AmB0
B1

.

.

.
Bm−1

−E(λE − A)−1B


(19)

is an isomorphism from Nr(G(λ)) to Nr(Tω(λ)), where ξ(i) ∈ b j, for some j = 1, 2, . . . , α, and the block Bi is
as in Theorem 4.3.

(b) If m is to the left of 0 in σ and s is the largest index such that (m− s : m) ∈ σ then set τ0 = σr {m− s : m}. Then

Eσ,t(G) =

[
Eτ0,τ1 (P)

(λE − A)−1B

]
is an isomorphism from Nr(G(λ)) to Nr(Tω(λ)), where τ1 = (−rev(m − s : m), t)

and Eτ0,τ1 (P) is as in Theorem 4.4.

Case II : Suppose that m − 1 is to the right of m in (−revt, σ).

(a) If m is to the left of 0, then Eσ,t(G) := Eξ(G) is an isomorphism from Nr(G(λ)) to Nr(Tω(λ)), where Eξ(G) is
given in Remark 4.7.

(b) If m is to the right of 0 in σ and h is the largest index such that (m,m − 1, . . . ,m − h) in σ then set σ′′ =
σr{m,m−1, . . . ,m−h}, σ4 = (−revt, σ′′), σ3 = (−(m−h),−(m−1),−m) =: (t1,−m) and ξ′ = cs f (−revt1, σ4).
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Then

Eσ,t(G) :=M−(m−1)M−mEξ′ (S) =



B1
B2

.

.

.
Bh

AmB0 + Am−1B1 + · · · + Am−hBh
Bh+1

.

.

.
Bm−1

−E(λE − A)−1B


is an isomorphism from Nr(G(λ)) to Nr(Tω(λ)), where Eξ′ (G) is given in Remark 4.7 and Bi, i = 1 : m − 1,

are given in Theorem 4.3.

The following examples illustrate the result in Corollary 4.12.

Example 4.13. Consider a rational matrix function G(λ) = λ6A6 + . . .+λA1 +A0 +C(λE−A)−1B and the GF pencil
T(λ) = λMt −Mσ = λM−1M−5M−3 −M2M0M6M4. Now σ = (2, 0, 6, 4), t = (−1,−5,−3), −revt = (3, 5, 1), and
(−revt, σ) = (3, 5, 1, 2, 0, 6, 4). Note that 5 is to the left of 6 in (−revt, σ) and 6 is to the right of 0 in σ. This is the case
I(a) of Corollary 4.12. Hence by Corollary 4.12, we have σ′ = (2, 0, 4), ξ = cs f (−rev t, σ′) = (5, 3 : 4, 1 : 2, 0), and

Eσ,t(G) =

 [
A6λ3In λ2In λ2P2 λIn λP4 In

]B
−E(λE − A)−1B

 .
Thus Eσ,t(G)x is a right eigenvector of T(λ).

Now, consider the GF pencil Tω(λ) = λM−1M−5M−3 −M6M2M0M4 = λMt −Mσ. Then σ = (6, 2, 0, 4), t =
(−1,−5,−3), and −revt = (3, 5, 1). By Corollary 4.12, we have σ′ = (2, 0, 4) and (−revt, σ) = (3, 5, 1, 6, 2, 0, 4) ∼
(3, 5, 1, 6, 2, 0, 4). Note that this is the Case I(b) of Corollary 4.12. Thus τ1 = (−6,−1,−5,−3) and τ0 = (2, 0, 4).
Hence by corollary 4.9 we have c−m = 1, ξ = (3 : 4, 1 : 2, 0) and

Eσ,t(G) =

 [
λ3P0 λ2In λ2P2 λIn λP4 In

]B
(λE − A)−1B

 .
Thus Eσ,t(G)x is a right eigenvector of Tω(λ).

Finally, consider the GF pencil T(λ) = λM−1M−4M−3 −M2M6M0M5. Now σ = (2, 6, 0, 5), t = (−1,−4,−3),
and −rev t = (3, 4, 1). Thus σ′ = (2, 0, 5) and (−rev t, σ) = (3, 4, 1, 2, 6, 0, 5) ∼ (6, 3, 4, 1, 2, 0, 5). Note that this is the
case II(a) of Corollary 4.12. Hence ξ = cs f (−rev t, σ′) = (3 : 5, 1 : 2, 0) and by Corollary 4.12, we have

Eσ,t(G) =

 [
λ2In λ2P1 λ2P2 λIn λP4 In

]B
(λE − A)−1B

 .
Thus Eσ,t(G)x is a right eigenvector of T(λ).
�

5. Generalized Fiedler pencil with repetition

It is shown that a self-adjointS(λ) does not admit a self-adjoint GF pencil when m is even see, [3]. It turns
out that allowing Fiedler matrices to repeat in the productsMσ andMτ enables a pencil L(λ) = λMτ −Mσ

to have certain desired properties.

Example 5.1. Consider S(λ) with m = 3. Let L(λ) := λM−3M1 −M1M2M0M1. Then

L(λ) = λ


A3

−A1 In
In 0

−E

 −

−A2 −A1 In 0
−A1 −A0 0 −C

In 0 0 0
0 −B 0 −A

 .
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Note that L(λ) = (λM−3 −M1M2M0)M1 is not a GF pencil. Also note that in this pencil the Fiedler matrixM1 is
repeated and at the same time the pencil is operation-free. Further, L(λ) is symmetric when S(λ) is symmetric. �

So we are interested in finding the operation-free pencils which allow repetition of Fiedler matrices. We
define generalized Fiedler pencils with repetition (GFPR), which are operation-free and derive explicitly
the eigenvector formula for GFPR. Further, we define structure preserving GFPRs.

Definition 5.2 (GFPR). Let S(λ) be the system matrix. Let 0 ≤ h ≤ m − 1, and let σ and τ be permutations of
{0, 1, . . . , h} and {−m,−m+1, . . . ,−h−1}, respectively. Letσ1 andσ2 be index tuples with elements from {1, 2, . . . , h−1}
such that (σ1, σ, σ2) satisfies the SIP. Similarly, let τ1 and τ2 be index tuples with elements from {−m + 1, . . . ,−h− 2}
such that (τ1, τ, τ2) satisfies the SIP. Then the pencil L(λ) := λMτ1Mσ1MτMσ2Mτ2 −Mτ1Mσ1MσMσ2Mτ2 is called
a generalized Fiedler pencil with repetition (GFPR) of S(λ).

Remark 5.3. Note that in the Definition 5.2, 0 is simple index and soL(λ) can always be expressed asMτ1Mσ1 (λMτ−

Mσ)Mσ2Mτ2 , where λMτ −Mσ is a PGF pencil. Thus a GFPR is strictly equivalent to a PGF pencil. If τ1, τ2, σ1, σ2
are all the empty index tuples, thenMτ1 ,Mτ2 ,Mσ2 ,Mσ1 are all Inm+r andL(λ) = λMτ−Mσ is a PGF pencil and hence
a GF pencil. Note, however, that not all GF pencils are GFPR. For example, L(λ) = λM−1

2 M
−1
1 −M3M−1

6 M0M5 is
a GF pencil of S(λ) with m = 6, but not a GFPR.

We now show that a GFPR for S(λ) is a trimmed structured linearization of S(λ) and that the GFPR
pencil is also a linearization of G(λ) whenever the realization (1) of G(λ) is minimal.

Theorem 5.4. Let L(λ) = λMτ1Mσ1MτMσ2Mτ2 −Mτ1Mσ1MσMσ2Mτ2 be a GFPR of S(λ). Then L(λ) is a
linearization of S(λ). If G(λ) is minimal, then L(λ) is also a linearization of G(λ).

Proof. We have L(λ) = Mτ1Mσ1 (λMτ −Mσ)Mσ2Mτ2 . SinceMτi =

[
Mτi

Ir

]
,Mσi =

[
Mσi

Ir

]
, i = 1, 2,

the pencil L(λ) is strictly equivalent to a PGF pencil. Therefore every GFPR L(λ) of S(λ) is a linearization
of S(λ).

Example 5.5. Consider the system matrix S(λ) with m = 12. Consider σ = (6, 1 : 5, 0), σ2 = (1 : 4), τ =
(−7,−8,−11 : −9,−12), τ2 = (−11 : −10), σ1 = {∅}, τ1 = (−8,−9). Then L(λ) = λMτ1Mσ1MτMσ2Mτ2 −

Mτ1Mσ1MσMσ2Mτ2 is a GFPR of S(λ). �

Definition 5.6 (Block transpose [1]). LetA be an (mn + r) × (mn + r) system matrix given by

A :=
[

A ei ⊗ X
eT

j ⊗ Y Z

]
,

where A := [Ai j] is an m ×m block matrix with Ai j ∈ Cn×n, X ∈ Cn×r,Y ∈ Cr×n, Z ∈ Cr×r and ek is the k-th column
of Im. The block transpose ofA, denoted byAB, is defined by

A
B :=

[
AB e j ⊗ X

eT
i ⊗ Y Z

]
,

where AB is the block transpose of A.

Definition 5.7 (Block-symmetry). A block p × p matrix A with m × n blocks is said to be block-symmetric if
AB = A.

Since MBi = Mi for i = 0 : m, by Definition 5.6, we have (Mi)B = Mi for i = 0 : m. Thus the Fiedler
matrices are block symmetric.

Lemma 5.8. [21] Let q1 and q2 be two index tuples from the set {0, 1, . . . ,m − 1}. Let Mq1
and Mq2

be two
products of Fiedler matrices associated with the matrix polynomial P(λ) such that Mq1

Mq2
is operation-free. Then

(Mq1
Mq2

)B = (Mq2
)B(Mq1

)B. Further, the result also holds for indices from {−1,−2, . . . −m}.
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We have the following result for Fiedler matrices associated with S(λ).

Lemma 5.9. Let q1 and q2 be two index tuples from the set {0, 1, 2, . . . ,m − 1}. LetMq1
andMq2

be two products
of Fiedler matrices associated with the system matrix S(λ) such thatMq1

Mq2
is operation-free. Then (Mq1

Mq2
)B =

(Mq2
)B(Mq1

)B. Further, the result also holds for indices from {−1,−2, . . . −m}.

Proof. Case I : Suppose that 0 < q1 ∪ q2. Then we have

Mq1
Mq2

=

[
Mq1

Ir

] [
Mq2

Ir

]
=

[
Mq1

Mq2

Ir

]
.

Thus [
Mq1

Mq2

Ir

]B
=

[
(Mq1

Mq2
)B

Ir

]
=

[
MB

q2

Ir

] [
MB

q1

Ir

]
= (Mq2

)B(Mq1
)B.

Case II : Suppose that 0 ∈ q1 ∪ q2. If 0 ∈ q1 ∩ q2 then Mq1
Mq2

is not operation-free. Thus either
0 ∈ q1 or 0 ∈ q2. Without loss of generality assume that 0 ∈ q1. Then Mq1

= MpM0Mp1 for some index

tuples p and p1. Now Mq1
Mq2

= MpM0Mp1Mq2
= MpM0Ms =

[
MpM0Ms −Mp(em ⊗ C)
−(eT

m ⊗ B)Ms −A

]
, where

Ms = Mp1Mq2
. Since Mq1

Mq2
is operation-free, we have Mq1

Mq2
is operation-free. Hence Mq1

and Mq2

are operation-free. Thus Mp is operation-free. Consequently, from the proof of Lemma 3.9, we have
Mp(em ⊗ In) = ek ⊗ In, (eT

m ⊗ In)Mp1 = eT
j ⊗ In and (eT

m ⊗ In)Ms = eT
h ⊗ In for some k, j and h. Hence we have

Mq1
Mq2

=

[
MpM0Ms −ek ⊗ C
−eT

h ⊗ B −A

]
. This shows that (Mq1

Mq2
)B =

[
(MpM0Ms)B −eh ⊗ C
−eT

k ⊗ B −A

]
. Now

(Mq2
)B(Mq1

)B =

[
MBq2

Ir

]
(MpM0Mp1 )B =

[
MBq2

Ir

] ([
MpM0Mp1 −Mp(em ⊗ C)
−(eT

m ⊗ B)Mp1 −A

])B

=

[
MBq2

Ir

] ([
MpM0Mp1 −ek ⊗ C
−(eT

j ⊗ B) −A

])B
=

[
MBq2

Ir

] [
(MpM0Mp1 )B −(e j ⊗ C)
−eT

k ⊗ B −A

]
=

[
MBq2

(MpM0Mp1 )B −MBq2
(e j ⊗ C)

−eT
k ⊗ B −A

]
.

Since (eT
m ⊗ In)Ms = eT

h ⊗ In and (eT
m ⊗ In)Mp1 = eT

j ⊗ In, we have (eT
j ⊗ In)Mq2

= eT
h ⊗ In. This shows that

MBq2
(e j ⊗ In) = eh ⊗ In. Hence by Lemma 5.8, we have (Mq2

)B(Mq1
)B =[

(MpM0Mp1 Mq2
)B −MBq2

(e j ⊗ C)
−eT

k ⊗ B −A

]
=

[
(MpM0Ms)B −eh ⊗ C
−eT

k ⊗ B −A

]
= (Mq1

Mq2
)B.

Consider the first companion form C1(λ) of S(λ) given by

C1(λ) = λMm −Mm−1Mm−2 · · ·M1M0 =

[
C1(λ) −e1 ⊗ C
−eT

m ⊗ B −A

]
,

where C1(λ) is the first companion form of P(λ) given in (3). Note that C1(λ) is operation-free. Hence by
Lemma 5.9, we have

C1(λ)B = λMm −M0M1 · · ·Mm−2Mm−1 =

[
C2(λ) −em ⊗ C
−eT

1 ⊗ B −A

]
= C2(λ)

is the second companion form of S(λ), where C2(λ) is the second companion form of P(λ) given in [5].
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Let q1 be the index tuple containing indices from {0, 1, . . . ,m − 1}. Let Mq1
be the product of Fiedler

matrices such thatMq1
is operation-free. SinceMBi =Mi then by Lemma 5.9, we haveMrev q1

=MBq1
is also

operation-free. Further,Mq1
is operation-free and block symmetric if and only ifMq1

= MBq1
= Mrev q1

⇔

q1 ∼ rev q1. For example, consider q1 = (0, 2, 3, 2). Then

Mq1
=M0M2M3M2 =



In
−A3 −A2 In
−A2 In 0

In 0 0
−A0 −C
−B −A


=M2M3M2M0.

SinceMq1
is operation-free and (Mi)B =Mi, we have (Mq1

)B =MB2M
B
3M

B
2M

B
0 =M2M3M2M0 =Mrev q1

=
Mq1

, that is, rev q1 ∼ q1. ThusMq1
is block symmetric.

The following examples illustrate symmetric GFPR of S(λ) when S(λ) is symmetric.

Example 5.10. Suppose that S(λ) is symmetric with m = 3. Consider σ = (1 : 2), τ = ∅, σ2 = 1, τ2 = ∅, σ1 =
∅, τ1 = ∅. Then L(λ) = λM−3M1 −M1M2M0M1 in Example 5.1, is symmetric, since S is symmetric. Note that
L(λ) is block symmetric, since rev (1, 2, 0, 1) ∼ (1, 2, 0, 1) and rev (−3, 1) ∼ (−3, 1). �

Example 5.11. Suppose that S(λ) is symmetric with m = 5. Consider σ = (1 : 2), τ = (−4 : −3), σ1 = ∅, τ1 =
∅, σ2 = 1, τ2 = −4. Then L(λ) = λM−4M−3M−5M1M−4 −M1M2M0M1M−4 is operation-free symmetric pencil,
since S is symmetric. Note that L(λ) is block symmetric, since

rev (−4,−3,−5, 1,−4) ∼ (−4,−3,−5, 1,−4) and rev (1, 2, 0, 1,−4) ∼ (1, 2, 0, 1,−4).

�

The next example illustrates a symmetric pencil of a symmetric S(λ), which is not a GFPR.

Example 5.12. Suppose that S(λ) is symmetric with m = 4. Then L(λ) = λM−3M−2M4M−2M−3 −M1M0M1
is symmetric, since (M−3M−2M4M−2M−3)T = (M−3M−2M4M−2M−3), (M1M0M1)T = M1M0M1, and S is
symmetric. Note that L(λ) does not satisfy SIP. Hence L(λ) is not operation-free, but symmetric. Therefore, we have
more pencils with repetition of Fiedler matrices which is not operation-free but have symmetric structure. �

Next, we recall some definitions given in [9] for recovery of eigenvectors from GFPR and the eigenvector
formula of GFPR.

Definition 5.13 (Type 1 indices relative to a simple index tuple [9]). Let h be a non-negative integer and σ be
a permutation of {0, 1, . . . , h}. Let s be an index in {0, 1, . . . , h − 1}. Then s is said to be a right index of type 1
relative to σ if there is a string (td−1 + 1 : td) in cs f (σ) such that s = td−1 + 1 < td.

Definition 5.14 (Associated simple tuple [9]). Let h be a non-negative integer and σ be a permutation of
{0, 1, . . . , h}. Let cs f (σ) = (bα+1, bα, . . . , b1), where bi = (ti−1 + 1 : ti), i = 1, . . . , α + 1, are the strings of cs f (σ). Set
s(σ) := cs f (σ) Then we say that s(σ) is the simple tuple associated with σ. If s is an index of type 1 with respect to
σ, say s = td−1 + 1 < td, then the simple tuple associated with (σ, s) is the simple tuple:

s(σ, s) := (bα+1, bα, . . . , bd+1, b̃d, b̃d−1, bd−2, . . . , b1),

where b̃d = (td−1 + 2 : td), b̃d−1 = (td−2 + 1 : td−1 + 1) if s , 0

and s(σ, 0) := (bα+1, bα, . . . , b̃1, b̃0), where b̃1 = (1 : t1), b̃0 = (0).

Definition 5.15 (Index tuple of type 1 [9]). Let h be a non-negative integer and σ be a permutation of {0, 1, . . . , h}.
Let σ2 and σ1 be tuples with indices from {0, 1, . . . , h − 1}, possibly with repetitions. We say that σ2 = (s1, . . . , sr),
where si is the ith index of σ2, is an index tuple of type 1 relative to σ if, for i = 1, . . . , r, si is a right index of type 1
with respect to s(σ, (s1, . . . , si−1)), where s(σ, (s1, . . . , si−1)) := s(s(σ, (s1, . . . , si−2)), si−1) for i > 2.
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5.1. Eigenvector formula for GFPR
We derive eigenvector formula for GFPR, when the tuples are of type 1.

Lemma 5.16. Let 0 ≤ h ≤ m − 3, and let σ and τ be permutations of {0, 1, . . . , h} and {−m,−m + 1, . . . ,−h − 1}
respectively. Assume that σ1, σ2 are index tuples with elements from {1, 2, . . . , h− 1}, and τ1, τ2 are index tuples with
elements from {−m + 1,−m + 2 . . . ,−h − 2}. ThenMτ2 commutes withMσ andMσ2 , andMτ commutes withMσ2 .

Proof. Since the distance between each pair of indices in τ2 and σ is greater than 1, by commutativity relation
Mτ2 commute withMσ. Similarly, the other cases follow.

Lemma 5.17. Let σ, τ, σ1, σ2, τ1, τ2 be as in Lemma 5.16 such that (σ1, σ, σ2) and (τ1, τ, τ2) satisfy the SIP. Suppose
that τ2 and σ2 are type 1 tuples relative to τ and σ, respectively. Let s(σ, σ2) and s(τ, τ2) be the simple tuple associated
with (σ, σ2) and (τ, τ2). Then (σ, σ2) ∼ (σ2, s(σ, σ2)) and (τ, τ2) ∼ (τ2, s(τ, τ2)).

Proof. First we prove (σ, σ2) ∼ (σ2, s(σ, σ2)) by induction on the number of indices of σ2, (other one follow
similarly applying induction on τ2). Assume that σ2 = (r1, r2, . . . , rp), where ri denotes the ith index in σ2,
and σ = (bα,bα−1, . . . ,b1), where bi = (ti−1 +1, ti), for i = 1, 2, . . . , α. Since σ2 is of type 1 relative to σ, we have
r1 = td−1 + 1 < td for some 1 ≤ d ≤ α. So (σ, r1) ∼ (td−1 + 1,bα, . . . ,bd+1, td−1 + 2 : td,bd−1, td−1 + 1, . . . ,b1)) =
(r1, s(σ, r1)), if d > 1. We mention that σ2 does not contain 0. Hence d , 1. Applying induction on indices of
σ2 we have (σ, σ2) ∼ (σ2, s(σ, σ2)). Similarly applying induction τ2 we get (τ, τ2) ∼ (τ2, s(τ, τ2)).

Example 5.18. Consider m = 12. Let σ = (6, 1 : 5, 0) = (b3, b2, b1), σ2 = (1 : 4) = (r1, r2, r3, r4) such that
σ2 is of type 1 relative to σ. By Lemma 5.17, here α = 3, d = 2, and r1 = td−1 + 1 = 1. So (σ, r1) = (6, 1 :
5, 0, 1) ∼ (1, 6, 2 : 5, 0, 1) = (1, b3, 2 : 5, b1, 1), and s(σ, r1) = (6, 1 : 5, 0, 1) = (1, 6, 2 : 5, 0, 1) = (6, 2 : 5, 0, 1), and
(r1, s(σ, r1)) = (1, 6, 2 : 5, 0, 1). Therefore (σ, r1) = (r1, s(σ, r1)). Again (σ, r1, r2) = (6, 1 : 5, 0, 1, 2) ∼ (1, 2, 6, 3 :
5, 0, 1, 2) = (1, 2, b3, 3 : 5, b1, 1, 2), and s(σ, (r1, r2)) = (6, 1 : 5, 0)(1, 2) = (1, 6, 2 : 5, 0, 1)(2) = (6, 2 : 5, 0, 1)(2) =
(6, 3 : 5, 0, 1, 2), and ((r1, r2), s(σ, (r1, r2))) = (1, 2, 6, 3 : 5, 0, 1, 2). Therefore (σ, r1, r2) = ((r1, r2)s(σ, (r1, r2))).
Similarly we get (σ, σ2) ∼ (σ2, s(σ, σ2)). �

The following result gives eigenvector formula for GFPR and eigenvector recovery from GFPR.

Theorem 5.19 (Eigenvector formula of GFPR). Let σ, τ, σ1, σ2, τ1, τ2 satisfy the conditions in Lemma 5.16 and
Lemma 5.17. Let L(λ) = λMτ1Mσ1MτMσ2Mτ2 −Mτ1Mσ1MσMσ2Mτ2 be a GFPR of S(λ). Let λ ∈ C be an eigenvalue
of S(λ).

(a) Setω0 = s(σ, σ2),ω1 = s(τ, τ2) andω = (ω0, ω1). DefineEL(S) := Eω0,ω1 (S), whereEω0,ω1 (S) is as in Theorem
4.8. Then EL(S) : Nr(S(λ))→ Nr(L(λ)) is an isomorphism. Further, assume that CIP(ω0) = (c0, i0). Define

FL(S) := Fω0,ω1 (S), where Fω0,ω1 (S) :=
[

(eT
(m−c0) ⊗ In)

Ir

]
. Then FL(S) : Nr(L(λ)) → Nr(S(λ)) is an

isomorphism.

(b) Assume that rev τ1 and rev σ1 are type 1 tuples relative to rev τ and rev σ, respectively. Also suppose that
s(revσ, revσ1), s(revτ, revτ1) are the simple tuples associated with (revσ, revσ1) and (revτ, revτ1) respectively.
Set ξ1 = s(revτ, revτ1), ξ0 = s(revσ, revσ1) and ξ = (ξ0, ξ1). Define HL(S) := Eξ0,ξ1 (ST), where Eξ0,ξ1 (ST)
is as in Theorem 4.8. Then HL(S) : Nl(S(λ)) → Nl(L(λ)) is an isomorphism. Further, assume that

CIP(ξ0) = (c0, i0). Define KL(S) := Kξ0,ξ1 (ST), where Kξ0,ξ1 (ST) :=
[

(eT
(m−c0) ⊗ In)

Ir

]
. Then KL(S) :

Nl(L(λ))→Nl(S(λ)) is an isomorphism.

Proof. Given that L(λ) = λMτ1Mσ1MτMσ2Mτ2 −Mτ1Mσ1MσMσ2Mτ2 is a GFPR of S(λ). By Lemma 5.16,
Mτ2 commutes withMσ andMσ2 , andMτ commutes withMσ2 . Hence by Lemma 5.17, we have

L(λ) = λMτ1Mσ1Mτ2Mσ2Ms(τ,τ2) −Mτ1Mσ1Mτ2Mσ2Ms(σ,σ2)

=Mτ1Mσ1Mτ2Mσ2 (λMs(τ,τ2) −Ms(σ,σ2)) =Mτ1Mσ1Mτ2Mσ2Kω(λ),
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where Kω(λ) = λMs(τ,τ2) −Ms(σ,σ2) = λMω1 −Mω0 is a PGF pencil. This shows that Nr(L(λ)) = Nr(Kω(λ)).
Hence by Theorem 4.8, EL(S) := Eω0,ω1 (S) is an isomorphism from Nl(S(λ)) to Nl(L(λ)). Since Kω(λ) is a
PGF pencil and ω0 has c0 consecutions at 0, then by Theorem 5.2, given in [3] FL(S) : Nr(L(λ))→Nr(S(λ))
is an isomorphism.

Next, note thatNl(S(λ)) = Nr(S(λ)T) andNl(L(λ)) = Nr(L(λ)T). Now

L(λ)T = (λMτ1Mσ1MτMσ2Mτ2 )T
− (Mτ1Mσ1MσMσ2Mτ2 )T

= λMT
τ2
MT

σ2
MT

τM
T
σ1
MT

τ1
−MT

τ2
MT

σ2
MT

σM
T
σ1
MT

τ1

= λM̂rev τ2M̂rev σ2M̂rev τM̂rev σ1M̂rev τ1 − M̂rev τ2M̂rev σ2M̂rev σM̂rev σ1M̂rev τ1 ,

where M̂ j = M j(ST) is the Fiedler matrices associated with ST(λ). Note that by Lemma 5.16, we have
Mτ1Mσ = MσMτ1 . Taking transpose we have M̂rev σM̂rev τ1 = M̂rev τ1M̂rev σ. Similarly, by Lemma 5.16,
M̂rev τ1 commutes M̂rev σ1 , and M̂rev τ commutes with M̂rev σ1 . Since rev τ1 and rev σ1 are type 1 tuples
relative to rev τ and rev σ, respectively, and s(revσ, revσ1) and s(revτ, revτ1) are the simple tuples associated
with (revσ, revσ1) and (revτ, revτ1), respectively, by Lemma 5.17, we have (rev σ, rev σ1) ∼ (rev σ1, ξ0) and
(rev τ, rev τ1) ∼ (rev τ1, ξ1). Therefore

L(λ)T = λM̂rev τ2M̂rev σ2M̂rev τ1M̂rev σ1M̂ξ1 − M̂rev τ2M̂rev σ2M̂rev τ1M̂rev σ1M̂ξ0

= M̂rev τ2M̂rev σ2M̂rev τ1M̂rev σ1 (λM̂ξ1 − M̂ξ0 ) = M̂rev τ2M̂rev σ2M̂rev τ1M̂rev σ1

(
λMξ1 (ST) −Mξ0 (ST)

)
= M̂rev τ2M̂rev σ2M̂rev τ1M̂rev σ1Hξ(ST(λ)),

where Hξ(ST(λ)) = λMξ1 (ST) − Mξ0 (ST) is a PGF pencil. This shows that Nl(L(λ)) = Nr(L(λ)T) =
Nr(Hξ(ST(λ))). By part (a) it follows thatHL(S) := Eξ0,ξ1 (ST) is an isomorphism fromNl(S(λ)) toNl(L(λ)).
SinceHξ(ST(λ)) is a PGF pencil and ξ0 has c0 consecutions at 0, then by Theorem 5.2, given in [3], we have
KL(S) : Nl(L(λ))→Nl(S(λ)) is an isomorphism.

Example 5.20. Consider the system matrix S(λ) with m = 12 and the associated transfer function G(λ). Consider
the GFPR L(λ) = λMτ1Mσ1MτMσ2Mτ2 −Mτ1Mσ1MσMσ2Mτ2 . Choose σ and σ2 as in Example 5.18 and consider
τ = (−7,−8,−11 : −9,−12), τ2 = (−11 : −10), σ1 = {∅}, τ1 = (−8,−9). Now (σ, σ2) = (6, 1 : 5, 0 : 4) and
ω0 = s(σ, σ2) = (6, 5, 0 : 4), and (τ, τ2) = (−7,−8,−11 : −9,−12 : −10), ω1 = s(τ, τ2) = (−7,−8,−9,−12 : −10).
So Kω(λ) = λMs(τ,τ2) −Ms(σ,σ2) is a PGF pencil. By Theorem 4.8, we have c−m = 2 and cs f (s(τ, τ2)) = (s1,−m :
−m + c−m) = (−7,−8,−9,−12 : −10), where s1 = (−7,−8,−9). So ξ = (9, 8, 7, 6, 5, 0 : 4). Hence [

λ6P0 λ6P1 λ5In λ4In λ3In λ2In λIn In P8 P9 P10 P11

]B
(λE − A)−1B

 x ∈ Nr(L(λ)),

where x ∈ Nr(G(λ)).
Now (revσ, revσ1) = (0, 5, 4, 3, 2, 1, 6) ∼ (5 : 6, 4, 3, 2, 0 : 1) and ξ0 = s(revσ, revσ1) = (5 : 6, 4, 3, 2, 0 : 1),

(revτ, revτ1) = (−12,−9,−10,−11,−8,−7,−9,−8) ∼ (−9 : −7,−10,−12 : −11,−9 : −8), and ξ1 = s(revτ, revτ1) =
(−7,−10,−12 : −11,−9,−8) ∼ (−7,−10 : −8,−12 : −11). So Hξ(ST(λ)) = λMs(revτ,revτ1)(ST) −Ms(revσ,revσ1)(ST)
is a PGF pencil, and by Theorem 4.8, we have c−m = 1, and cs f (s(revτ, revτ1)) = (τ1,−m : −m + c−m), where
τ1 = (−7,−10 : −8). So ξ = cs f (−rev τ1, s(rev σ, revσ1)) = cs f (8, 9, 10, 7, 5 : 6, 4, 3, 2, 0 : 1) = (8 : 10, 7, 5 :
6, 4, 3, 2, 0 : 1). Hence [

λ7PT
0 λ6In λ6PT

2 λ6PT
3 λ5In λ4In λ4PT

6 λ3In λ2In λIn In PT
11

]B
(C(λE − A)−1)T

 y,

is a left eigenvector of L(λ), where y ∈ Nl(G(λ)). �
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5.2. Symmetric Linearizations
Let

S(λ) =

[
P(λ) C

B A − λE

]
be the system matrix and G(λ) = P(λ) + C(λE−A)−1B be the associated transfer function of S(λ). We define
adjoint of S(λ) by

S
∗(λ) =

[
P∗(λ) B∗

C∗ A∗ − λE∗

]
, (20)

where P∗(λ) =
m∑

i=0
λiA∗i is the adjoint of the matrix polynomial P(λ) =

m∑
i=0
λiAi. The adjoint of the associated

transfer function G(λ) is given by G∗(λ) = P∗(λ) + B∗(λE∗ − A∗)−1C∗. A transfer function G(λ) is said to be
self-adjoint if G∗(λ) = G(λ). Note that S∗(λ) = S(λ) ⇔ G∗(λ) = G(λ). Similarly, if S(λ) is symmetric, then
AT

i = Ai,C = BT,A = AT and E = ET.One simple observation is that if S(λ) is symmetric thenMT
i =Mi and

M∗i =Mi for i = 0 : m.

Remark 5.21. Suppose thatS(λ) is symmetric (Hermitian) of degree m > 1. Then the GF/PGF pencilL(λ) = λX+Y
is symmetric iff XT = X and YT = Y. Thus from the definition of GF and PGF pencils it is clear that XT = X and
YT = Y only when each Fiedler matrices are commutes with each other. That is, the distance between any two
indices is greater than one. So, the symmetric (Hermitian) structure preserving PGF/GF pencil must be of this
form L(λ) = λMmM−1

m−2 · · ·M
−1
3 M

−1
1 −M0M2 · · ·Mm−3Mm−1 if m is odd, see [3], and unlike matrix polynomial

L(λ) = λM−1
m−1M

−1
m−3 · · ·M

−1
3 M

−1
1 −M0M2 · · ·Mm−2M−1

m if m is even, is not symmetric, sinceM0 andMm never
commute. Hence for rational matrix function G(λ) only one class of symmetric/ Hermitian PGF pencils exist.

Suppose that S(λ) is symmetric. Let L(λ) be a GFPR of S(λ) and

L(λ) := λX + Y = λMi1Mi2 · · ·Mir −M j1M j2 · · ·M jk .

Then L(λ) should be symmetric if XT = X and YT = Y. That is (Mi1Mi2 · · ·Mir )
T = Mi1Mi2 · · ·Mir and

(M j1M j2 · · ·M jk )
T = M j1M j2 · · ·M jk . Since MT

i = Mi for symmetric S(λ) we have (Mi1Mi2 · · ·Mir )
T =

MT
ir
MT

ir−1
· · ·MT

i1
=MirMir−1 · · ·Mi1 . So all we need for L(λ) is symmetric for S(λ) symmetric is that

MirMir−1 · · ·Mi1 =Mi1Mi2 · · ·Mir andM jkM jk−1 · · ·M j1 =M j1M j2 · · ·M jk

i.e., rev(i1, i2, . . . , ir) ∼ (i1, i2, . . . , ir) and rev( j1, j2, . . . , jk) ∼ ( j1, j2, . . . , jk).

Lemma 5.22. Let q be a tuple satisfying SIP with indices from either {0, 1, . . . ,m − 1} or {−m, . . . ,−1}. ThenMq is
symmetric for any symmetric S(λ) of degree m if and only ifMq is block-symmetric for any S(λ) of degree m.

Definition 5.23. Let q be an index tuple with indices from either {0, 1, . . . ,m− 1} or {−m, . . . ,−1}. Then we say that
i, j from q commute if ||i| − | j|| > 1.

Definition 5.24. An index tuple q of nonnegative (resp. negative) indices is symmetric if q ∼ rev(q).

Lemma 5.25. Let t1 and t2 be two tuples with the same indices from either {0, 1, . . . ,m−1} or {−m, . . . ,−1}.Assume
that t1 and t2 satisfy the SIP. Then,

(a) If t1 is equivalent to t2 thenMt1 =Mt2 for any system matrix S(λ)

(b) If Mt1 = Mt2 for some system matrix S(λ) with A0 nonsingular and Ai , −In t1 for i = 0 : m, then t1 is
equivalent to t2.

Lemma 5.26. Let t be a tuple satisfying the SIP with indices from either {0, 1, . . . ,m − 1} or {−m, . . . ,−1}. Then for
any symmetric S(λ),Mt(S) is symmetric if and only if t is symmetric.
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Proof. Assume that t is symmetric andS(λ) is symmetric. Let t = (i1, i2, . . . , ir). ThenMt(S) =Mi1Mi2 . . .Mir
NowMT

t (S) =MT
ir
MT

ir−1
. . .MT

i1
=MirMir−1 . . .Mi1 =Mrev(t)(S) =Mt(S). SoMt(S) is symmetric.

Conversely, assume thatMt(S) is symmetric. ThenMt(S) = MT
t (S) = Mrev(t)(S), since S(λ) is symmetric.

Thus t ∼ rev(t). Hence proved.

Theorem 5.27. LetS(λ) be a symmetric/self-adjoint system matrix. If m is odd andσ = (1, 2), τ = (−4,−6, . . . ,−(m−
3),−(m − 1),−3,−5, . . . ,−(m − 2)), σ2 = (1), τ2 = (−4,−6, . . . ,−(m − 3),−(m − 1)), σ1 = φ, τ1 = φ then

L(λ) = λMτ1Mσ1MτM−mMσ2Mτ2 −Mτ1Mσ1MσM0Mσ2Mτ2

is a symmetric/self-adjoint operation free GFPR pencil of S(λ). Hence L(λ) is symmetric/self-adjoint linearization of
S(λ). In particular, if G(λ) is minimal then L(λ) is a symmetric/self-adjoint linearization of G(λ).

Proof. By commutativity relations we have rev(τ1, σ1, τ,−m, σ2, τ2) ∼ (τ1, σ1, τ,−m, σ2, τ2) and
rev(τ1, σ1, σ, 0, σ2, τ2) ∼ (τ1, σ1, σ, 0, σ2, τ2), since

rev(−4,−6, . . . ,−(m − 3),−(m − 1),−3,−5, . . . ,−(m − 2),−m, 1,−4,−6, . . . ,−(m − 3),−(m − 1))

∼ (−(m − 1),−(m − 3), . . . ,−6,−4, 1,−m,−(m − 2), . . . ,−5,−3,−(m − 1),−(m − 3), . . . ,−6,−4)

∼ (−6,−4, . . . ,−(m − 3),−(m − 1),−m,−(m − 2), . . . ,−5,−3, 1,−(m − 1),−(m − 3), . . . ,−6,−4)

∼ (−4,−6, . . . ,−(m − 3),−(m − 1),−3,−5, . . . ,−(m − 2),−m, 1,−4,−6, . . . ,−(m − 3),−(m − 1)).

and

rev(1, 2, 0, 1,−4,−6, . . . ,−(m − 3),−(m − 1)) ∼ (−(m − 1),−(m − 3), . . . ,−6,−4, 1, 0, 2, 1)

∼ (−4,−6, . . . ,−(m − 3),−(m − 1), 1, 2, 0, 1) ∼ (1, 2, 0, 1,−4,−6, . . . ,−(m − 3),−(m − 1)).

Now, since S(λ) is symmetric, so L(λ) is symmetric. Note that L(λ) is strictly equivalent to a PGF pencil,
since L(λ) can be written as L(λ) =Mτ1Mσ1 (λMτM−m −MσM0)Mσ2Mτ2 . Hence linearizations of S(λ). It is
also easy to show that L(λ) is operation free.

Corollary 5.28. Let S(λ) be the system matrix of degree m is odd. Consider the pencilL(λ) defined in Theorem 5.27.
Then L(λ) is block-symmetric for S(λ).

Example 5.29. Suppose that S(λ) is symmetric system matrix with m = 5 and

L(λ) = λM−4M−3M−5M1M−4 −M1M2M0M1M−4

= λ



0 0 In
0 A5 A4
In A4 A3

−A1 In
In 0

−E


−



0 In
In A4

−A2 −A1 In 0
−A1 −A0 0 −C

In 0 0 0
0 −B 0 −A


.

Then by the Theorem 5.27 we have L(λ) is symmetric and operation free. Note that L(λ) is block-symmetric.

Theorem 5.30. LetS(λ) be symmetric/self-adjoint system matrix. If m is odd and σ = (2, . . . ,m−1, 3, 5, ,m−2), τ =
(−1), σ2 = φ, τ2 = φ, σ1 = (3, 5, . . . , (m − 2)), τ1 = φ then

L(λ) = λMτ1Mσ1MτM−mMσ2Mτ2 −Mτ1Mσ1MσM0Mσ2Mτ2

is symmetric/self-adjoint operation free GFPR pencil of S(λ). Hence L(λ) is symmetric/self-adjoint linearization of
S(λ). In particular, if G(λ) is minimal then L(λ) is a symmetric/self-adjoint linearization of G(λ).
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Proof. By commutativity relations we have rev(τ1, σ1, τ,−m, σ2, τ2) ∼ (τ1, σ1, τ,−m, σ2, τ2) and
rev(τ1, σ1, σ, 0, σ2, τ2) ∼ (τ1, σ1, σ, 0, σ2, τ2), since rev(3, 5, . . . , (m − 2),−1,−m) ∼ (−m,−1, (m − 2), . . . , 5, 3) ∼
(3, 5, . . . , (m − 2),−1,−m), and

rev(3, 5, . . . , (m − 2), 2, . . . , (m − 1), 3, 5, . . . , (m − 2), 0) ∼ (0, (m − 2), . . . , 5, 3, (m − 1), . . . , 2, (m − 2), . . . , 5, 3)

∼ (3, 5, . . . , (m − 2), 2, . . . , (m − 1), 3, 5, . . . , (m − 2), 0).

Now, since S(λ) is symmetric, so L(λ) is symmetric. Note that L(λ) is strictly equivalent to a PGF pencil.
Hence linearizations of S(λ). It is also easy to show that L(λ) is operation free.

Corollary 5.31. Let S(λ) be the system matrix of degree m is odd. Consider the pencilL(λ) defined in Theorem 5.30.
Then L(λ) is block-symmetric for S(λ).

Example 5.32. Suppose that S(λ) is symmetric system matrix of degree m = 7 and

L(λ) = λM3M5M−7M−1 −M3M5M0M2M4M6M3M5

= λ



A7
−A5 In

In 0
−A3 In

In 0
0 In
In A1

−E


−



−A6 −A5 In 0 0 0 0
−A5 −A4 0 −A3 In 0 0

In 0 0 0 0 0 0
0 −A3 0 −A2 0 In 0
0 In 0 0 0 0 0
0 0 0 In 0 0 0
0 0 0 0 0 0 −A0 −C

−B −A


.

By the Theorem 5.30 we have L(λ) is symmetric and operation free. Note that L(λ) is block-symmetric.

Remark 5.33. The eigenvector formula and eigenvector recovery property of symmetric system matrix follows directly
from Theorem 6.5.

6. Conclusions and future work

We have introduced operation-free generalized Fiedler pencil with repetition(GFPR) for rational matrix
functions G(λ) and shown that GFPR pencils are linearizations of G(λ). We have obtained the explicit
formulas for the eigenvectors of the GF linearizations in terms of the eigenvectors of G(λ). Also, we
have discussed that the eigenvectors of S(λ) and G(λ) can be recovered from those of the GFPR pencils
without performing any arithmetic operations. Finally, we have introduced Symmetric/Hermitian pencils
for Symmetric/Hermitian G(λ) using GFPR pencils and shown that these pencils are linearizations of G(λ). It
would be interesting to consider multi-linear algebra, i.e., tensor eigenvalue problems and tensor functions
and study its spectral properties, sensitivity analysis and linearizations. In [10, 13] and [7, 17] it has been
studied spectral properties and perturbation analysis of generalized tensor eigenvalue problems and tensor
functions, respectively. I would like to generalize these ideas to study spectral analysis, sensitivity analysis
and linearizations of tensor polynomial eigenvalue problems in details.
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[8] M.I.Bueno, F.M.Dopico, J.Pérez, R.Saavedra and B.Zykoski, A simplified approach to Fiedler-like pencils via block minimal bases

pencils,Linear Algebra Appl. (547)2018, 45–104.
[9] M. I. Bueno and F. De Terán, Eigenvectors and minimal bases for some families of Fiedler-like linearizations, Linear and

Multilinear Algebra (62)2014, 39–62.
[10] K. C. Chang, K. J. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Communications in Mathematical

Sciences 6 (2008), 507–520.
[11] R. K. Das and R. Alam, Automatic recovery of eigenvectors and minimal bases of matrix polynomials from generalized Fiedler

pencils with repetition, Linear Algebra Appl. 569 (2019) 78–112.
[12] R. K. Das and R. Alam, Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal

bases, Linear Algebra Appl. 569 (2019) 335–368.
[13] W. Ding and Y. Wei, Generalized tensor eigenvalue problems, SIAM Journal on Matrix Analysis and Applications 36 (2015),

1073–1099.
[14] F. De Terán, F. M. Dopico, and D. S. Mackey, Fiedler companion linearizations and the recovery of minimal indices, SIAM J.

Matrix Anal. Appl. 31(2010), 2181–2204.
[15] T. Kailath, Linear systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1980.
[16] V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods, GAMM Mitt. Ges.

Angew. Math. Mech., 27(2004), 121–152.
[17] Y. Miao, L. Qi, and Y. Wei. Generalized tensor function via the tensor singular value decomposition based on the T-product.

Linear Algebra Appl. 590 (2020),258–303.
[18] H. H. Rosenbrock, State-space and multivariable theory, John Wiley & Sons, Inc., New York, 1970.
[19] Y. Su and Z. Bai, Solving rational eigenvalue problems via linearization, SIAM J. Matrix Anal. Appl. 32(2011), 201–216.
[20] A. I. G. Vardulakis, Linear multivariable control, John Wiley & Sons Ltd., 1991.
[21] S. Vologiannidis and E. N. Antoniou, A permuted factors approach for the linearization of polynomial matrices, Math. Control

Signals Systems 22(4), (2011), 317–342.
[22] H. Voss, A rational spectral problem in fluid-solid vibration, Electron. Trans. Numer. Anal. 16(2003), 93–105.
[23] H. Voss, Iterative projection methods for computing relevant energy states of a quantum dot, J. Comput. Phys. 217(2006), 824–833.


