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Generalized Fiedler Pencils with Repetition
for Rational Matrix Functions
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Abstract. We introduce generalized Fiedler pencil with repetition(GFPR) for an n X n rational matrix
function G(A) relative to a realization of G(A). We show that a GFPR is a linearization of G(A) when the
realization of G(A) is minimal and describe recovery of eigenvectors of G(A) from those of the GFPRs. In fact,
we show that a GFPR allows operation-free recovery of eigenvectors of G(A). We describe construction of a
symmetric GFPR when G(A) is symmetric. We also construct GFPR for the Rosenbrock system matrix S(A)
associated with an linear time-invariant (LTI) state-space system and show that the GFPR are Rosenbrock
linearizations of S(A). We also describe recovery of eigenvectors of S(A) from those of the GFPR for S(A).
Finally, We analyze operation-free Symmetric/self-adjoint structure Fiedler pencils of system matrix S(A)
and rational matrix G(A). We show that structure pencils are linearizations of G(A).

1. Introduction

Consider an n X n rational matrix G(A), that is, the entries of G(A) are of the form p(A)/g(A), where p(A)
and g(A) are scalar polynomials. Zeros (eigenvalues) and poles (defined later in this section) of rational
matrix play an important role in many applications such as in acoustic emissions of high speed trains,
calculations of quantum dots, free vibration of plates with elastically attached masses, vibrations of fluid-
solid structures see [16, 19, 22, 23], Linear Systems Theory [15, 18], and references therein. Recently, by
considering realization [15] of G(A), new classes of Fiedler-like pencils of G(A) such as Fiedler Pencil (FP),
Generalized Fiedler (GF) Pencils have been introduced in [1, 3] to compute zeros, poles and eigenvectors
of G(A).

Consider a minimal realization of G(A) of the form

G(A) = Z MA;+ C(AE - A)"'B =: P(A) + C(AE - A)"'B, (1)
=0

where A, E, C, B are constant matrices of appropriate dimensions. Considering a realization of G(A) given
in (1), it is shown in [19] that the eigenvalues and the eigenvectors of G(A) can be computed by solving the
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generalized eigenvalue problem for the pencil

Am Am—l Am—2 T AO C
I, I, 0 - 0
Ci(A) =21 + : ; 2)
I, -1, 0
| —E B |A

where the void entries represent zero entries. The pencil C(A) referred to as a companion linearization of G(A)
in [19], where

Aw 0 - 0 Am-1 Am—a -+ Ao
o L, 0 - 0
aw=a| O ©
o SRR
0 . 0 1 0 - I, 0

of the matrix polynomial P(1) = Y7y AA;.

For computing zeros (eigenvalues) and poles of rational matrix, linearizations of rational matrix have
been introduced recently in [1, 6] via matrix-fraction descriptions (MFD) of rational matrix. Let G(A) =
N(A)D(A)! be a right coprime MFD of G(A), where N(A) and D(A) are matrix polynomials with D(1) being
regular. Then the zero structure of G(A) is the same as the eigenstructure of N(A) and the pole structure of G(A)
is the same as the eigenstructure of D(A), see [15]. Also G(A) can be uniquely written as G(A) = P(A) + Q(A),
where P(A) is a matrix polynomial and Q(A) is strictly proper [15]. We define deg(G) := deg(P), the degree
of the polynomial part of G(A).

A realization of G(A) of the form (1) is associated with a linear time-invariant (LTI) system X in state-
space-form (SSF) given by [18, 20]

5. Ex(t) = Ax(t) + Bu(t) @)
" () = Cx(t) + P(4)u)

for which G(A) := P(A) + C(AE — A)™'B is the transfer function, where x(t) is the state vector and u(t) is the

control vector of the system. The Rosenbrock system polynomial (also referred to as the Rosenbrock system

matrix) associated with the LTI system X in (4) is an (12 + #) X (1 + r) matrix polynomial S(A) given by [15, 18]

P(A) C ] )

S(A)‘:| B |A-AE

The eigenvalues of S(A) are called invariant zeros of the LTI system X and the associated eigenvectors are
called invariant zero directions [15, 18]. The spectrum of S is the set of invariant zeros of the LTI system L,
see [1]. The invariant zeros of LTI systems play an important role in Linear Systems Theory [15, 18, 20].

Definition 1.1 (Linearization, [1]). Let G(A) be an n X n rational matrix function (regular or singular) and let
G(A) = N(A)D(A)™! be a right coprime MFD of G(A). Set r := deg(det(D(A))), p := max(n,r) and m :=
deg(G(A)). If m > 1 then an (mn + r) X (mn + r) matrix pencil IL(A) of the form

X-AY| C
B [A-IE ©)

L(A) :=

is said to be a linearization of G(A) provided that there are (mn + r) X (mn + r) unimodular matrix polynomials U(A)
and V(A), and p X p unimodular matrix polynomials Z(A) and W(A) such that U(A)diag(Is—gun+r, LA)V(A) =
diag(ls—, N(A)) and Z(A)diag(I,-,, A — AE)W(A) = diag(l,-,, D(A)) for A € C, where A — AE is an r X r pencil
with E being nonsingular and s := max(mn + r,2n).
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Thus the zeros and poles of G(A) are the eigenvalues of L(1) and A — AE, respectively.

In [11] they consider a class of GFPRs of matrix polynomial and describe the operation-free recovery
of eigenvectors and minimal bases of matrix polynomial from those GFPRs. Though they have derived
operataion-free recovery formulas for eigenvector and minimal bases but the explicit maps (forward maps)
are open problem which are important for the study of sensitivity and backward error analysis. Those
explicit maps are studied in this paper.

Next, note that one significant drawback of the first companion form is that, it usually does not reflect
any structure that may be present in the original rational matrix function G(A). Recently, in [1, 6] it has been
studied a new class of linearizations generalizing the first companion form referred as Fiedler linearizations
of rational matrix. But the drawback is that all those Fiedler pencils do not preserve any structure that the
original rational matrix function does have. In this paper, we describe construction of a symmetric GFPR
when G(A) is symmetric.

The main contributions of this paper are as follows. First, we introduce operation-free product of
Fiedler matrices to study generalized Fiedler pencils with repetitions (GFPR). Then we introduce GFPR of
a rational matrix G(A) relative to a realization of G(A) as given in (1) for computing eigenvalues and poles of
G(A). In [3] it is shown that the eigenvectors of S(A) and G(A) can be easily recovered from those of the GF
pencils and the recovery is operation-free for the PGF pencils. Secondly, we obtain explicit formulas for the
eigenvectors of the generalized Fiedler linearizations of rational matrix in terms of the eigenvectors of G(A).
Also, We determine explicit formula of eigenvectors of GFPRs and describe recovery of eigenvectors of G(A)
and S(A) from those of GFPR IL(A) without performing any arithmetic operations. Thus we show that a
GFPR of G(A) allows an easy operation-free recovery of eigenvectors of G(A) from those of the GFPR pencil.
Note that the explicit formula of eigenvectors of the linearizations will be useful for defining and comparing
condition numbers of the eigenvalues of the linearziations with the condition number of eigenvalues of
the rational matrix. Lastly, since structure eigenproblems often implies some symmetries in its spectrum,
which are meaningful in some sense in physical applications and that can be destroyed when we ignore
the structure. Also, if we consider structure preserving pencils then the storage and computational cost can
be reduced. Hence, Finally, we study linearizations that preserve the structure of the original problem. In
this paper, we discuss structure preserving, in particular, symmetric/self-adjoint linearizations which can
be constructed from GFPR.

The rest of the paper is organized as follows. Section 2 contains some basic definitions and results on
index tuples and Fiedler matrices which we need throughout this paper. Section 3 introduces operation-free
product of Fiedler matrices to study GFPR. Section 4 presents the Generalized Fiedler pencils for rational
matrix and eigenvector formula for GF pencils. Section 5 introduces the Generalized Fiedler Pencils with
Repetitions (GFPR) and study the eigenvector recovery property of rational matrix. Finally, in the same
section we describes the Symmetric/self-adjoint GFPR linearizations for rational matrix and for system
matrix.

Notation. We denote by C[A] the polynomial ring over the complex field C. Further, we denote by C"*"
and C[A]™", respectively, the vector spaces of m X n matrices and matrix polynomials over C. An m X n
rational matrix function G(A) is an m X n matrix whose entries are rational functions of the form p(1)/q(A),
where p(A) and g(A) are scalar polynomials in C[A]. An n X n rational matrix function G(A) is said to be
regular if rank(G(A)) = n for some A € C. If G(A) is regular then u € C is said to be an eigenvalue of G(A) if
rank(G(u)) < n. An n X n matrix polynomial U(A) is said to be unimodular if det(U(A)) is a nonzero constant
independent of A. We denote the j-th column of the n X n identity matrix I, by ¢; and the transpose of a
matrix A by AT. We denote the Kronecker product of matrices A and B by A ® B. The right and the left null
spaces of an m X n matrix A are given by N,(A) := {x € C" : Ax = 0} and Nj(A) := {y € C" : yTA = 0}.

2. Basic results

Definition 2.1. [9] An ordered tuple of indices consisting of consecutive integers is called a string and denoted by
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(t : p) for the string of integers from t to p, i.e.,

tLt+1,...,p), ift<
(t:p)::{((b P Gisp
, ift >p.
Remark 2.2. In the above definition, if t1 > p and t, > p, then (t1 : p) and (t, : p) correspond to the empty index
tuple. To avoid this notation, we will adapt the notation (oo : p) for any tuple of the form (t : p) having t > p where
applicable.

We use the boldface small letters, such as t, q, s, . . . for index tuples (that is, ordered tuples of indices). If
q = (i1, 12, ..., i) is an index tuple, then the reverse of q, denoted by rev q, is defined by rev q := (i, is-1, . . . , 7).
Let q = (i1,i2,...,1s) be an index tuple and d be an integer. Then we define

—q = (—i1,—p...,—i)and d+ q = (d +i1,d + 1y, ..., d +is).

Definition 2.3. [9] Let q = (i1, 12, .. .,1s) be an index tuple containing indices from {0,1,...,m,=0,-1,..., —m}.
Then i; is said to be a simple index of q if i; # i fork = 1:sand k # j. We say that q is a simple index tuple if each
index i, j =1:s,isasimple index of q.

Definition 2.4. [3] Let d > 1 be an integer and q = (ix,...,is) be a simple index tuple containing indices from
{0,1,....dYor from{-d,—-d +1,...,-1}.

(a) We say that q has a consecution at k ifk,k + 1 € q and q is of the formq = (--- ,k,--- ,k+1,---). We say that
q has an inversion at k if k,k + 1 € g and q is of the formgq = (--- ,k+1,--- ,k,---).

(b) We say that q has cx (resp., i) consecutions (resp., inversions) at k if q has consecutions (resp., inversions) at
kk+1,...,k+cc—1(resp.,atk,k+1,..., k+ir—1)and it does not have a consecution (resp., inversion) at
k +ci (resp., k + iy).

(c) If 0 € q then we refer to CIP(q) := (co, o) as the consecution-inversion pair of q at 0, where cy (resp., io) is
number of consecutions (resp., inversions) of q at 0.

Note that if CIP(q) = (co, ip) then either CIP(q) = (0,0) or CIP(q) = (co,0) with ¢y > 0 or CIP(q) = (0, ip)
with io > 0.

Definition 2.5. [21] Let q = (i1, 1y, ..., is) be an index tuple. Then q is said to satisfy the Successor Infix Property
(SIP) if for every pair of indices iy, iy € qwith 1 < a < b <'s, satisfying i, = iy, there exists at least one index i, = i +1
such thata < c < b.

Definition 2.6. [21] Let d be a non-negative integer and q be an index tuple containing indices from {0,1,...,d}.
Then q is said to be in column standard form if g = (a, : by, ap—1 : bp-1,...,a2 : by,a1 1 by), With0 < by <bp <...<
by1 <by, <dand0 < a; < bj forallj=1,...,p. Let t bean index tuple containing indices from {~d, -d+1,...,-1}.
Then t is said to be in column standard form if d + t is in column standard form.

Lemma 2.7. [9]Letq = (i1, ..., 1) bean index tuple containing indices from {0, 1, ..., d} or from {—d, —d+1, ..., -1},
for some d > 1, then q satisfies the SIP if and only if q is equivalent to a (unique) tuple in column standard form.

Definition 2.8. [9] Let q = (i1, ...,1s) be an index tuple containing indices from {0,1,...,d} or from {—d,—d +
1,...,-1}, for some d > 1 and satisfying the SIP. The unique index tuple in column standard form equivalent to an
index tuple q satisfying the SIP is called the column standard form of q. We denote this tuple by csf(q).
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2.1. Fiedler Matrices
Consider the system matrix

| P(Y) \ C
SV =175 T@-1p)
and the associated transfer function
m
G(A) = Z MA;+ C(AE = A)"'B =: P(A) + C(AE - A)"'B. (7)

j=0

Define (mn + r) X (mn + r) matrices My, ..., M_,, by

'_ My \ -, ®C | M., | O
M=—res[ -2 ] "“"[ 0 —E]’ ®)
M_; =M, fori=0,1,...,m - 1and M,, := M7},
-1
with M1 = M 10 ,i=1:m -1, where
i 0 I
I(m—l)n Am
My = , M_, = , 9
e N AT ©)
M_;:=M;' fori=0,1,...,m—1and M,, := M_},, (10)
where
Tn—icyn Lon-i-1yn
M; = _I:li 16' and Mi_1 = I?, II&
Lty L1y

fori =1 :m—1 are the Fiedler matrices of P(A), see [14, 21]. We refer to the matrices My, My, ...,IM_,, as
the Fiedler matrices of S(A) or G(A).

Observe that M_,, and M are invertible if and only if A, and Ag are invertible. It follows that M;M; =
M;M; if [li] - [jll > 1. It also follows that M;M; = IM;M; for [[i| - |jl| # 1 except for |[i| — |jl| = m.

Let q = (i1, ...,is) be an index tuple containing indices from {0,1,...,d} or from {-d,—-d + 1, ..., -1}, for
some d > 1, then My := M; M, ---M;. If @ = ¢ then Mg = Ly, [9]. Let q; and q, be two index tuples
containing indices from {0, 1, ...,d} or from {-d,—d + 1,..., -1}, for some d > 1. We say that q, is equivalent
to q,, and we will write q; ~ q,, if Mg, = Mg,. Note that ~ is an equivalence relation. Observe that if Mg,
is obtained from Mg, by applying the commutativity relations then q, is equivalent to q,.

3. Operation-free products of Fiedler matrices

In this section we define operation-free product of Fiedler matrices of G(A) to study the generalized
Fiedler pencils with repetitions (GFPR).

Definition 3.1. A product M, corresponding to the index tuple q = (i1, 12, ..., im) is said to be operation-free if the
block entries (up to sign) of M, consist of matrices from 0,1,,1,,C,B, A, E and Ao, Ay, ..., An.

For example, when ¢ = (0,1,...,m — 1), the product M, = Mg() - - - My(-1) is operation-free. Thus a
Fiedler pencil associated with a bijection ¢ is also operation-free. So the question is: if we allow to repeat
the Fiedler matrices, will that product still be an operation-free product?

Lemma 3.2. The product M;M;, is not operation-free for i = 0,+1,...,+(m — 1), —m.
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Proof. Fori=0,

I(m—l)n
-Ap | -C
B [-A

A2+CB | A)C+CA
BAg+AB | BC+A?

Ton—1yn
MM, = —Ao
-B | -A

is not operation-free. For 1 <i < m -1, M;lM; = [ ke T ] is not operation-free, since M;M; is not
r

IA

operation-free, see [21]. Similarly, for —(m — 1)
Y AR
MM = [ (VM)

i < -1, M;M; is not operation-free, since M_;IM_; =

i ] and (M;M;)™! is not operation-free, see [21]. Again fori = —m,
.

e

Lemma 3.3. The product M;M;,1IM; is operation-free for i = 1 : m —2 but MoIM;IMy is not operation-free. Further,
M; 1M1 is not operation-free fori =0 :m — 2.

An Ap

I(m—l)n

A

M_,M_,, = I(m—l)n I(m—l)n

| -E | -E

is not operation-free. [

I(m—Z)n
Proof. Fori =0, we have MiM;1M; = MyM; M, = :ﬁ; z;‘;“ Eg is not operation-free. For1 <i <m -2,
B AB | A7

we have M;M;.1M; =

[ MiMis M; I } So M;M;;1M; is operation-free, since M;M;.1M; is operation-
f

I(m—Z)n
free, see [21]. Note that MMM, = Ai;‘f“ _1‘41 _OC is not operation-free. For 1 <i < m —2, we
—B 0 |4
have M; .1 IM;M; = [ Gt At ‘ i ] is not operation-free, since M;;1M;M;.1 is not operation-free, see
r
[21]. O

Corollary 3.4. The product M;M; 1 M; is operation-free for i = =2,-3,...,—(m — 1) but M_,, M_(,,—1)M_y, is not
operation-free. If E = I,, then M_,,M_(,,-1)M_,, is operation-free. Further, M;1IM;IM;.1 is not operation-free for
i=-2,-3,...,—(m—-1).

Proof. We have M_,,M_(,,—1)M_,,

0 I,

Am ] In Am—l

Am
I(m—l)n

Ton—1yn

I(m—Z)n I(m—Z)n

R

| -E | -E

EZ

is not operation-free. If E = I, then M_,M_(,,-1)M_,, is operation-free. The proof for M1 IM;M;,; is
similar. [

Lemma 3.5. Letq = (iy, 12, ..., is) bean index tuple of indices from {0, 1, . . ., m—1} such that M, is not operation-free.
Then for any two other index tuples T and o from {0,1, ..., m — 1} the product MMM, is not operation-free.

Proof. Proof directly follows from Lemma 4, [21]. O
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Lemma 3.6. The product ;) is operation-free and is given by

I(m—j—l)n

_A/
~Aj

M. )
Mg = Ij-iv1yn = [—L*—(‘ T ]

_A;
I Onx(j=i+1n

Li-1yn

I,
fori>0,i<j<m-1 and

Lim—j=1)n

—A;

: I Moy | —en®C
. ji = ol —_

—A " _Lm—/ ®B ‘ A

—Ag Onx jn -C

-B —-A

M) =

3535

1

(12)

Proof. We prove the result by induction on j. Suppose that i > 0. Then for j = i, we have IM;;; = IM; which
is operation free. So assume that (11) is true for j = s. We have to show that (11) is true for j = s + 1. Now

I(m—s—l)n
—As I,
—A. 1 8 I I(mfsfz)n
. ! —Aery  In
Mis+1) = M Msi1 = In 0 ;
A |0 0 Sy
I, o o0 --- 010 r
I
I —s—=2)n
I(m—s—Z)n {m—s
—A,
A [T A
—4Llg 0 In °
= . . c. = . I(s—i+2)n
. . . —A:
—A; 0o 0 - I !
I 0 0 0
I, o o0 -~ 010 T
I T
¥

which satisfies (11). Clearly this is operation-free. This proves the case for i > 0.

For the case i = 0 multiply My with the case i > 0. So we have Mq.j, = MoIM1.j), which is equal to

Tgn—jo1
(m—j-1)n _A] T I(m_]_l)y, —
Lin—j-1yn -Ajq | 0 I i
ji : = .
-Ao -C : - A I]”
B | A -A1 |0 0 I, —1
I, |0 0 00 __’%O 0 _g
lr

is operation-free. [J

Remark 3.7. Similarly the product M., where 1 < j < i < m is operation-free and is given by

I(zn—i—l)n
Opx(i=j+1)n I
AI
Lizj+1yn Aiq
Mi-p = :
Aj
L-1n
I
Onx(m—j)n An
Am—l
M(,m;,,') = I(mfj)n :
4
L1y
—-E

j<i<m,
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The next theorem provides a canonical form of operation-free product, which helps us to construct
structure preserving linearizations of system matrix.

Theorem 3.8. Each product of the form

1

1
[T M, forcie (1:i) U o), (13)
=m-1

is operation-free. The product in (13) is in column standard form.

1 1 M | 1, M | -
Proof. We have [Ti_,.1 My = Ilicpn i ¥ = i=m i ‘ | Since by Theorem 1, [21],
r r
[1}-,1 M4 is operation-free for ¢; € (1 : i) U {oo}, hence the result follows. [

Theorem 3.9. Let q be an index tuple of indices from {0,1,...,m —1}.
Case I : Suppose that 0 ¢ q. Then the following are equivalent.

(a) M, is operation-free.
(b) q satisfies SIP.
(c) M, can be written in the column standard form given in (13).
Case II : Suppose that 0 € q is a simple index of q. Then the following are equivalent.
(a) M, is operation-free.
(b) q satisfies SIP.
(c) M, can be written in the column standard form H}zm_l Mgy, for ¢; € (0 : i) U {oo).

Mg
I
Hence the result follows from Theorem 2, [21].

Proof. Casel:1f0 ¢ q then Mg = . Consequently, M, is operation-free <& M, is operation-free.

Case II : Suppose that 0 € q. Since 0 is a simple index of q, we have Mg = M,;, MgIM,, for some index
tuples o1 and o0 from {1, ...,m — 1}. Now

[ M, | Mo | -ex®C [ Mo, |
M“MM@‘[ i H T ®B| -A H e ]
| M,,MoM,, | ~My, (e ®C) My | =My, (e ® C)
- (_eﬁ ® B)M,, ‘ -A (—651 ® B)Ms, ‘ —A .

This shows that Mg is operation-free & Mg, My, (e, ® C), and (el ® B)M,, are operation-free. Now Mg =
M, MoM,, is operation free implies that M,, and M,, are operation-free. Hence o1 and o, satisfies SIP.
Since o7 and o, are tuples from {1,2,...,m — 1}, by Theorem 2, [21], M,, and M,, can be written in the form
H}:m_l M), for ¢; € (1 : i) U {oo}. Hence by Lemma 3.6, it follows that the block entries of M, (e, ® I,;) and
(el, ® I,)M,, are either 0 or I,,. In fact, it is easy to see that M, (e, ® I,) = ex ® I, and (e}, ® I, )M,,, = e]T ®1, for

some k and j. Hence My, (e, ® C) and (e, ® B)M,, are operation-free. This shows that M is operation-free
© Mg is operation-free. Hence the result follows from Theorem 2, [21]. O

Remark 3.10. The assumption that 0 is a simple index can not be relaxed in Theorem 3.9. For example, [13 M.,
for ¢; € (0 : i) U {co} may not be operation-free. Indeed, by Lemma 3.5, the product IM3Mo2Mo1Mo.. is not
operation-free since IMo1 M. is not operation-free.
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Considering index tuple from the set {—m, —(m — 1),...,—1} and using similar arguments as above, we
have the following result.

Theorem 3.11. Let q = (i1, iz, ..., 1) be an index tuple from the set {—-m,—(m —1),...,-1}.
Case I : If —m ¢ q then the following are are equivalent.

(a) M, is operation-free.

(b) q satisfies the SIP.

(c) M, can be written in the column standard form H;:(Tl_l) My, for c; € (=(m — 1) 1 i) U {oo).
Case I : If —m € q is a simple index of q then the following are are equivalent.

(a) M, is operation-free.

(b) q satisfies the SIP.

(c) M, can be written in the column standard form ]_[;:(’_"1_1) Mc,:iy, for c; € (=m : 1) U {oo}.

Mq

Proof. Casel :1f —m ¢ qthen My = . Consequently, M, is operation-free & Mg is operation-free.

I
Hence the result follows from Theorem 3, [21].

Case II : Suppose that —m € q. Since —m € q is a simple index of q, then we have Mg = M; M_,,IM,,
for some index tuples o1 and o, from {—(m - 1),...,-1}. Now

M, M_ M, My M_,M,
o, [ [ ][

This shows that M, is operation-free & Mg is operation-free. Hence the result follows from Theorem 2,
[21]. O

Remark 3.12. If E = I,, then the product T];2%y M., for ¢; € (—=m : i) U {co} is operation-free, because E = I,
implies that M_,,M(_,—1)M_,, is operation-free.

Remark 3.13. The assumption that —m is a simple index cannot be relaxed in Theorem 3.11. For example,

-4
[T Moo, for ci € (=4 :0) U {oo)

i=—1

may not be operation-free. Indeed, by Lemma 3.5, the product M_s._1M_s.2M_4._3IM_4._4 is not operation-free as
M_4._3M_y is not operation-free.

4. Eigenvector Formula of Generalized Fiedler (GF) Pencils

Let q be a permutation of {0,1,...,m — 1}. Then the (mn + r) X (mn + r) matrix pencil Lq(A) given by
Lq(A) = AM_;,; — Mg is called the Fiedler pencil of the Rosenbrock system polynomial S(A) associated with
q, see [1]. The pencil Lq(A) is also called the Fiedler pencil of the transfer function G(A) associated with q.

Now, we define the GF pencil of rational matrix G(A).

Definition 4.1. Let S(A) be the system matrix given in (5). Let {Co, C1} be a partition of (0,1, ..., m} (Co or C1 may
be empty set). Let o and T be permutations of Cy and —Cy, respectively. Then the pencil Ty (A) := AM; — M, is
said to be a generalized Fiedler (GF) pencil of S(A) associated with w = (t,0). If 0 € Co and m € Cy, then the pencil
T(A) is said to be a Proper Generalized Fiedler (PGF) pencil of S(A). We also refer to T, (A) as the GF (PGF) of the
transfer function G(A) associated with w = (1, 0).
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Note that if Cy = 0, then M, = Iy and if C; = 0, then M = Iy It is clear that any Fiedler pencil
IL;(A) of S(A) is a special case of a GF pencil with Cy = {0,1,...,m — 1} and C; = {m}.

It has been shown that GF and PGF pencils of S(A) is a trimmed structured linearization of S(A) and
that the GF and PGF pencils are also a linearization of G(1) whenever the realization (1) of G(A) is minimal,
[3]. Also, recovery of eigenvectors of S(A) from GF pencils follows from Theorem 5.3 given in [3].

Next, consider the system matrix S(A) and its associated transfer function G(A). It is already established
the eigenvector formula for Fiedler pencil of S(A) and its associated transfer function G(A), see, [2]. Now,
we derive the eigenvector formula for PGF and GF pencil of S(1) and G(7).

Definition 4.2. Let P(A) = 17, M A be a matrix polynomial of degree m. For 0 < j < m, define the polynomial
Pi(A) = Apj + AAy—js1 + -+ + MA,,. Then the polynomial is called as the jth Horner shift of P(A). Observe that

Po(A) = Aw, Pu(A) = P(A), and AP{(A) = Pjs1(A) = Ap_jr, for0< j<m—1.

Next, consider the block transpose of a block matrix.

Let H := (H;) be a block m X n matrix with p X q blocks H;;. The block transpose of H, denoted by H?, is
the block n X m matrix with p X g blocks defined by (Hg)ij := Hj;, see [14].

The following results give the eigenvector formula for Fiedler pencil and generalized Fiedler pencil of
P(A), [9]-

Theorem 4.3. [9] Let P(A) be an matrix polynomial of degree m and Py, ..., Py, be the Horner shifts of P(A). Let

o be a permutation of {0,1,...,m — 1} with csf(o) = (bg,...,b1), where by = (tx_1 +1 : i), fork =1,...,B. Let
Ls(A) = AM,,, — M, be the Fiedler pencil of P(A) associated with a bijection . Then

B
Eo(P):=[ BoBi ... Buy | (14)
where, if o(i) € by, for somek =1,...,p, then

AL, ifi=m—t—1
B; = . 15
{A’HP,-, otherwise. (15)
Let Hy(P) := Eye05(PT). Then E,(P) : N;(P(A)) = Ny(Ls(A)) and Hy(P) : Ni(P(A)) = Ni(Ly(A)) are isomorphisms.
Moreover, if o has cy consecutions at 0, then the (m — co)th block of E;(P) is equal to 1, and if ¢ has iy inversions at
0, then the (m — ig)th block of H,(P) is equal to I,.

Theorem 4.4. [9] Let P(A) be an matrix polynomial of degree m. Let P; for i = 0,1,...,m, be the ith Horner
shift of matrix polynomial P. Let @ := (wo, w1) and Ty (A) = AM,, — My, be a PGF pencil of P(A). Let A € C
be an eigenvalue of P(A). Assume that wy has c_,, consecutions at —m, and csflw1) = (t,—m : —m + c_y,). Set
& = csf(—revt, wg) = (ba, ba-1,...,b1), where by = (k-1 + 1 : t), for k = 1,...,a. Define E, o, (P) := Ez(P), if
Cc_pm =0and

B
Ewpan(P):=| AP Py ... Pe,al Be, Beyw oo Bua |, (16)

if c.m > 0, where E¢(P) is as in Theorem 4.3 and if £(i) € bj, for some j = 1,2,...,a, then the block Bjy._, is as in
(15). Then Eyw, (P) : Nx(P(A)) = NH(T,(A)) is an isomorphism.

Further, set rev w = (rev wy, rev w1) and define Hy, w,(P) := Erevwy,revw (PT). Then Heypon(P) : Ni(P(A)) —
Ni(T,(A)) is an isomorphism. Furthermore, if wo has co consecutions at 0, then the (m — co)th block of E e, (P) is
equal to I, and if wg has iy inversions at 0, then the (m — ig)th block of Hy, «, (P) is equal to I,.

Theorem 4.5. [6] Let S(A) and G(A) be as in (5) and (7). Let A € C be an eigenvalue of G(A) . Define f : C* — C™*"
and g : C" — C"*" by

X X
f() ::[ (AoE — A)1Bx ] and g(x) ::[ (C(AOE — A) YTy

Then the maps f : N:(G(Ag)) = N(S(Ao)) and g : Ni(G(Ao)) = Ni(S(Ag)) are isomorphisms.
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Theorem 4.6. [2, 6] Let IL;(A) be the Fiedler linearization of S(A) associated with a bijection o. Let A € C and E;(P),
and H,(P) be as in Theorem 4.3. Define E;(S) : C**" — C"™*" and Hy(S) : C**" — C"*" by

E,(S) =[ E“O(P ) ? ] and H,(S) :[ H”ép ) ? ]

Then Es(S) : N:(S(A)) = N, (ILs(A)) and Hy(S) : Mi(S(A)) = Ni(ILs(A)) are isomorphisms.

Remark 4.7. Since by Theorem 4.5, f : N.(G(Ag)) = N:(S(Ao)) and g : Ni(G(Ag)) = Ni(S(Ap)) are isomorphisms
and, by Theorem 4.6, E;(S) : N:(S(A)) = Ny(IL(Ag)) and H(S) : Ni(S(Ao)) — Ni(IL(Ao)) are isomorphisms, it
follows that E;(G) = Ex(S) o f : N (G(Ag)) = N(IL(Ag)) and Hy(G) = Hy(S) o g : Ni(G(Ag)) = Ni(IL(Ag)) are
isomorphisms.

Next, consider a PGF/GF pencil T,,(A) of the system matrix S(A). We have to determine the isomorphism
between N,(G(A)) and N,(T,(A)). So, by the remark (4.7), it is sufficient to determine the isomorphism
between N,(S(1)) and N, (T (A)).

Theorem 4.8 (Eigenvector formula for PGF pencil of system matrix). Let P; for i = 0,1,...,m, be the ith
Horner shift of matrix polynomial P(A). Let w = (wo, w1) and T, (A) = AM,, — My, be a PGF pencil of S(A). Let
A € C be a spectrum of S.

(a) Define Eoy0,(S) := [ Eun(P)| 0

N (T, (A)) is an isomorphism.

], where E, w, (P) is as in Theorem 4.4. Then E, o, (S) : N:(S(A)) —

K

E(revwg,revwl)(PT) ‘

‘I . Then
r

(b) Set rev w = (revwy, rev wi) and define Hey, o, (S) := ]E(mwo,rewl)(ST) =
Hep w0, (S) : Ni(S(A)) — Ni(T,(A)) is an isomorphism.

Proof. Suppose that w1 and wy are in column standard form. Assume that w; has c_,, consecutions at —m.
Then, there exists an index tuple 7 such that

Tw(/\) = A]MTM(—nli—m+C_,,1) - Mmg- (17)

CaseI:If c_,y = 0, then T (A) = AM:M_,, — M, and L;(A) = M_p: Teo(A) = AM_yy = IM(Zrev 1,0 1 @
Fiedler pencil associated with a bijection ¢ = (—rev 7, wp). Hence N,(IL;(1)) = N;(T,(A)). Observe that the
index tuple (—revt, wp) is a permutation of {0, 1, ..., m—1}. Set & = csf(0) = csf(—rev T, wp) = (ba, ba-1, ..., b1).

Then by Theorem 4.6, E,, o, (S) := E:(S) = E<(P) T is an isomorphism from N,(S(A)) to N,(T(A)).
T
Case II : Suppose that c_,, # 0. Since c_;; # 0, L5(A) = M_1e0 ¢ T, (A)M—c_,:m-1)
= /\M—rev TMTM(—m:—m+c_,,,)M(m—c_m:m—l) - M—rev TMmOM(m—c_,,,:m—l)

= AM(—m:—m+C,m)M(m—cfmzm—l) - M—rev TMa)DM(m—C,,,,:m—l) = AM—m - M(—rev T,w0,M—C—pm—1)
is a Fiedler pencil associated with a bijection 0 = (-rev T, wg, m — c—y : m —1). So the map N,(Lz(1)) —
E5(P)
I,
isomorphism from N,(S(A)) to N;(IL;(1)), where E5(P) is as in Theorem 4.3. Consequently, the map

N (T, (A)), [ Z ] - ]M(mcm,ml)[ Z ] is an isomorphism. By Theorem 4.6, Ex(S) = ] is an
N(S(A) = N(T,(A)), ; — ]M(m_cm:m_l)IEg(S)[ ;C ] is an isomorphism. Now our aim is to calculate
Mon—c_,.m-1)Ez(S). Let 0 = ¢sf(0) = csf(—rev T, wy, m — c_yy : m —1). Then

Mp—c_. -m— E,(P M .m-—1Es(P
M(mc_m:ml)]Eo(S):[ (m—c_p:m—1) T ][ ( )Ir ]:[ (m—c_p:m=1) ( )Ir ]
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By Theorem 3.3, [9], we have M(u—c_,.m-1)Es(P) = Ewyo0 (P). Hence Mun—c_,.m-1)Es(S) = Eyyw, (S). This
completes the proof of (a).

Next, note that NV(S(1)) = N,(S(V)T) and N(T,(S)) = Ni(To(S)") = Ni(Tre00(ST)). This shows that
Hap,0,(S) := Erepwp reveo, (ST) is an isomorphism from N;(S(A)) to Ni(T,(A)). O

The next result directly follows from Remark 4.7

Corollary 4.9 (Eigenvector formula for PGF pencil of G(1)). Let P; fori =0,1,...,m, be the ith Horner shift
of matrix polynomial P. Let w = (wp, w1) and T,(A) = AM,, — M,,, be a PGF pencil of G(A). Let A € C be an
eigenvalue of G(A).

. Ew()r(ul P
(a) Deﬁne Euwg,an (G) = (AE - A()—)lB

N, (T(A)) is an isomorphism.

], where E.(P) is as in Theorem 4.4. Then E, «,(G) : N:(G(A1)) —

E (rev wo,rev wy) (P T)

(C(AE_A),‘I)T . Then

(b) Set rev w := (revwy,revwy) and define Hy, o, (G) := lE(rew,O,,ewl)(GT) = [
Heyw, (G) : Ni(G(A)) — Ni(T,(A)) is an isomorphism.
Example 4.10. Consider the system matrix S(A) with matrix polynomial P(A) of degree m = 3 and the associated

transfer function G(A). Let K, (A) = AM,,, — M,,, = AM_3IM_,M_; — M, be the PGF pencil of G(A). Here w has
2 consecutions at -3, i.e., c_.3 = 2. Now

0 0 As -, O AA;
L oo o4 I Y S SV
M_sMoMo=| g 4 psoKo) =\ 0T an A+ A, | C
—E B |A-AE
AA;3
2
Thus by the Corollary 4.9, A A3I+ A x € N,(K(A)), where x € N,(G(A)). m
n
(AE-A)"'B

The next result describes eigenvector formula for GF pencils of S(A) for the case when Mgl does not
appear in the GF pencils. Thatis, m € o.

Theorem 4.11 (Eigenvector formula for GF pencil of S(1)). Let T,(A) = AM¢ — M, be a GF pencil of S(A)
such that 0,m € 0. Let ¢’ = o \ {m}, & := csf(—revt,0’) = (by, ..., b1), where b, = (1 + 1 : t) fork =1,2,...,a.
Case I : Suppose that m — 1 is to the left of m in (—revt, o).

(a) If mis to the right of 0 in ¢ then

Eox(S) ::[ [[AuBo B - By | } - ] (18)

is an isomorphism from N,(S(A)) to Ny(T,,(A)), where &(i) € bj, for some j = 1,2,...,a, and the block B;'s
are as in Theorem 4.3.

(b) If mis to the left of 0 in 0 and s is the largest index such that (m —s : m) € o then set 19 = o \{m —s : m}. Then
Eqt(S) = Eryr, (P) i is an isomorphism from N,(S(A)) to Ny(T(A)), where Ty = (—rev(m — s : m), t)
and E, -, (P) is as in Theorem 4.4.

Case II : Suppose that m — 1 is to the right of m in (-revt, o).
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(a) If mis totheleft of 0 in o, then E;+(S) := E¢(S), is an isomorphism from N .(S(A)) to Nw(T,(A)), where E:(S)
is given in Theorem 4.6.

(b) If m is to the right of O in ¢ and h is the largest index such that (m,m —1,...,m — h) in o then set ¢"" =
oN{m,m—-1,...,m—h}, 04 = (-revt,c”), 03 = (—(m—h),—(m—1), —m) =: (t1, —m)and &' = csf(—revty, 04).

Then
Bl 0 7
By

B,
Est(S) := M_gy - M_u-1) My B/ (8)= | AnBo+ Au-1Br+ -+ ApyBy

B2

Biu-1
0 -E

is an isomorphism from N(S(A)) to N(T (7)), where Es (S) is given in Theorem 4.6 and B;,i =1:m -1,
are given in Theorem 4.3.

Proof. Case I: If m — 1 is to the left of m in (—revt, 0), then (—revt, 0) is equivalent to either (—revt, 0’, m) or
(=revt,m,0”), since My and IM,, do not commute, so there is a possibility for m to be either to the left or to
the right of 0.

(a) If m is right of 0 then (-revt, o) ~ (—revt, o', m), so T (A) = AM; — M, = AM¢ — MM, and hence

]LT(A) = M—revtTa)(/\)M—m = M_ oot (AM; — Mo’Mm)M—m = AM_;; — Mot My

is a Fiedler pencil associated with a bijection © = (—revt,0”). So v — M_,v is an isomorphism from
N(L:(A)) to Ni(T,(A)). By Theorem 4.6, we have E.(S) : N,(S(1)) = N,(L;(1)) is an isomorphism. Thus

for [ ; ] € N,(S(1)) we have ; ] - ]M_m]ET(S)[ ; ] is an isomorphism from N,(S(A)) to N,(Ty(A)).

Since & = ¢sf(t) = csf(—revt, 0’), we have

AWI

Mfm]Eg(S) =M_, [ E«f(P) 0 :| _

0 I,

(b) Since m is left of 0 in g, we have (—revt,0) ~ (—revt,m —s : m, 7). Consequently, we have T, (1) =
AM¢ — M, = AM; — My—em-2Mp-1M,, My, This shows that IL;(A) := M_ eopm—s:m) Te(A)
= M_reom—sim) (AMg = My—sn—2Mpy-1 MMy, ) = AM_repm—som) Mg — My, = AMy, —IMy, is a PGF pencil. Hence

N:(Ty(A)) = Ny(L(A)). By Theorem 4.8, we have E;(S) = [ Ero (P) i ] is an isomorphism from

N(S(1)) to Ni(To(A)).

Casell: (a) If m — 1 is to the right of m and m is to the left of 0 in (—revt, 0), then (—revt, 0) is equivalent
to (m,—revt,0’). So L(A) = M_,M_;et Ty(A) = AM_,, — M_,etM, is a Fiedler pencil associated with a
bijection 7 = (—revt, ¢’). Hence N;(IL(A)) = N,(T,(A)). Since & = csf(7), by Theorem 4.6, [E;¢(S) := E:(S) is
an isomorphism from N,(S(A)) to N,(T(A)).

(b) If m — 1 is to the right of m in (—revt, o) and m is to the right of 0 in ¢, then (-revt, o) ~ (—revt,0”’,m,m —
1,...,m—h). So

H—‘T(/\) = M—revtT((J(A)M—(m—h) T M—(mfl)M—m = AM—(m—h) e M—(mfl)M—m - M_ My = /\Mag - Mo4

is a PGF pencil. Hence [ Z ] = M_gu—py - - IM_gu—1yM_;,v is an isomorphism from N,(IL;) to N,(T(A)).

By
By

Since o3 has always 0 consecutions at —m, i.e., c_,, = 0, by Theorem 4.8, E./(S) = is an isomorphism

B
I
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from N;(S(A)) to N;(IL;(A)), where B;,i = 0 : m — 1 are as in Theorem 4.3. This shows that
Eot(S) = M_n-n) - M-y M-, E¢/(S)

is an isomorphism from N,(S(1)) to N,(T,(1)). Now

0 Iy
0 0 I,
0 I, n
A A X
MMy = | 7 T and M_gpy -+ MoguyMoy = | 0 : 0 L
(m=2)n A A
—E m m-1 m—h
I(m—h—l)n
-E
Hence

By 0

B,

0 I .

0 0 I, :

By,

]Eo,t(S) = 0 . 0 I, = AnBo + Ap—1B1 + -+ AyyBy
Am Am-1 e Am-h B+
I(m—h—l)n
_E .
Biu-1
0 -E
0

The next result directly follows from Remark 4.7.

Corollary 4.12 (Eigenvector formula for GF pencil of transfer function). Let T, (1) = AIM;—M, ba GF pen-
cil of a regular G(A) given in (7). Let A € C be an eigenvalue of G(A). Assume that 0,m € o. Let ¢’ = o \ {m},
& = csf(—revt, o’).

Case I : Suppose that m — 1 is to the left of m in (—revt, o).

(a) If mis to the right of O then

AmBU
By

Eos(G) = ; 19)

B-1
—E(AE - A)"'B

is an isomorphism from N,(G(A)) to N(T, (7)), where &(i) € by, for some j = 1,2,...,a, and the block B; is
as in Theorem 4.3.

(b) If mis to the left of 0 in ¢ and s is the largest index such that (m—s : m) € o then set 1o = 0 \{m —s : m}. Then
Eyt(G) = ( A?(’_’Tiq(f_)l B ] is an isomorphism from N,(G(A)) to Ny(T, (7)), where t1 = (—rev(m —s : m), t)

and Er, ., (P) is as in Theorem 4.4.
Case II : Suppose that m — 1 is to the right of m in (-revt, o).

(a) If mis to the left of O, then [E;+(G) := E&(G) is an isomorphism from N.(G(A)) to N (T (7)), where Eg(G) is
given in Remark 4.7.

(b) If m is to the right of O in ¢ and h is the largest index such that (m,m —1,...,m — h) in ¢ then set ¢"" =
oN{m,m—-1,...,m—h}, 04 = (—revt,¢"”), 03 = (—=(m—h),—(m—1), —m) =: (t1, —m)and &’ = csf(—revty, 04).
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Then

]Eo,t(G) = M,(,,,,l)M,,,,]Ey (S) = AmBo + Ap-1B1 + -+ + Am—hBh
Bt

Bn-1
“E(AE-A) B

is an isomorphism from N(G(A)) to N;(T,(A)), where Eg (G) is given in Remark 4.7 and B;,i=1:m -1,
are given in Theorem 4.3.

The following examples illustrate the result in Corollary 4.12.

Example 4.13. Consider a rational matrix function G(A) = A°Ag+...+ AA; + Ao+ C(AE — A)~'B and the GF pencil
T(A) = AM; — M, = AM_1IM_sM_3 - MyM¢M¢My. Now o = (2,0,6,4),t = (-1,-5,-3), —revt = (3,5, 1), and
(=revt,0) = (3,5,1,2,0,6,4). Note that 5 is to the left of 6 in (—revt, o) and 6 is to the right of 0 in 0. This is the case
I(a) of Corollary 4.12. Hence by Corollary 4.12, we have ¢’ = (2,0,4), £ = csf(-revt,’) = (5,3:4,1:2,0), and

B
| 44’L, AL, P, AL, APy 1, | }

EarG) = { —E(AE - A)"'B

Thus E; +(G)x is a right eigenvector of T(A).

Now, consider the GF pencil Ty,(1) = AM_1M_s5M_3 — McIMaMoMy = AM; —M,. Then o = (6,2,0,4),t =
(-1,-5,-3), and —revt = (3,5,1). By Corollary 4.12, we have ¢’ = (2,0,4) and (-revt, o) = (3,5,1,6,2,0,4) ~
(3,5,1,6,2,0,4). Note that this is the Case I(b) of Corollary 4.12. Thus t1 = (=6,—1,-5,-3) and 79 = (2,0,4).
Hence by corollary 4.9 we have c_,, =1, £ =(3:4,1:2,0) and

3 2 2 B
]Eat(G):[ [ %Py 221, AP, AL, AP, I, | ]
’ (AE-A)"'B
Thus Eg+(G)x is a right eigenvector of T, (A).
Finally, consider the GF pencil T(A) = AM_1IM_sM_3 — MyMcIMoMs. Now o = (2,6,0,5),t = (-1,-4,-3),
and —revt = (3,4,1). Thus o’ = (2,0,5) and (-revt, o) = (3,4,1,2,6,0,5) ~ (6,3,4,1,2,0,5). Note that this is the

case I1(a) of Corollary 4.12. Hence & = csf(—revt,o’) = (3:5,1:2,0) and by Corollary 4.12, we have

B
| A2, APy AP, AL, AP, I, | ]

FotlG) = [ (AE - A)'B

Thus IE; +(G)x is a right eigenvector of T(A).
]

5. Generalized Fiedler pencil with repetition

Itis shown that a self-adjoint S(A) does not admit a self-adjoint GF pencil when m is even see, [3]. It turns
out that allowing Fiedler matrices to repeat in the products IM,; and IM; enables a pencil IL(A) = AM; — M,
to have certain desired properties.

Example 5.1. Consider S(A) with m = 3. Let IL(A) := AM_3M; — M1IMIMoM;. Then

As “A, A, I | 0O
_ -Ar I A, -Ay 0] -C
L) =4 I, 0 1, o olo

-E 0 -B 0]-A
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Note that IL(A) = (AM_3 — M1 M,IM)M; is not a GF pencil. Also note that in this pencil the Fiedler matrix M is
repeated and at the same time the pencil is operation-free. Further, IL(A) is symmetric when S(A) is symmetric.

So we are interested in finding the operation-free pencils which allow repetition of Fiedler matrices. We
define generalized Fiedler pencils with repetition (GFPR), which are operation-free and derive explicitly
the eigenvector formula for GFPR. Further, we define structure preserving GFPRs.

Definition 5.2 (GFPR). Let S(A) be the system matrix. Let 0 < h < m —1, and let o and T be permutations of
{0,1,..., hyand {-m,—m+1, ..., —h—1}, respectively. Let 01 and o, be index tuples with elements from {1,2, ..., h—1}
such that (01, 0, 0) satisfies the SIP. Similarly, let T1 and T, be index tuples with elements from {-m+1,...,—h -2}
such that (11, T, 1) satisfies the SIP. Then the pencil IL(A) := AM{, My, MMy, M, — M, M, M;M,, M., is called
a generalized Fiedler pencil with repetition (GFPR) of S(A).

Remark 5.3. Notethat in the Definition 5.2, 0 is simple index and so IL(A) can always be expressed as M, M, (AIM -
M;)Mg, M., where AM; — M, is a PGF pencil. Thus a GFPR is strictly equivalent to a PGF pencil. If t1, 12,01, 02
are all the empty index tuples, then M.,, Mz,, My,, M, are all Iy and IL(A) = AM,—IM,; is a PGF pencil and hence
a GF pencil. Note, however, that not all GF pencils are GFPR. For example, IL(A) = AM;'M;! — M3sM;'MoMs is
a GF pencil of S(A) with m = 6, but not a GFPR.

We now show that a GFPR for S(A) is a trimmed structured linearization of S(A) and that the GFPR
pencil is also a linearization of G(1) whenever the realization (1) of G(A) is minimal.

Theorem 5.4. Let L(A) = AM,M; M. M,;,M,, — M, M, M;M,;,M,, be a GFPR of S(A). Then IL(A) is a
linearization of S(A). If G(A) is minimal, then IL(A) is also a linearization of G(A).

Proof. We have IL(A) = My, M,, (AM,; — M;)M,,M,,. Since M,, = M, | M,, = i
the pencil IL(A) is strictly equivalent to a PGF pencil. Therefore every GFPR IL(A) of S(A) is a linearization
of S(A). O

Mo | | i=1,2,

Example 5.5. Consider the system matrix S(A) with m = 12. Consider ¢ = (6,1 : 5,0), 0o = (1 : 4),7 =
(-7,-8,-11 : -9,-12),75 = (11 : -10),01 = {0}, 71 = (-8,-9). Then L(A) = AM M, M. M,;,M,, —
M, My, M;M,, My, is a GFPR of S(A). m

Definition 5.6 (Block transpose [1]). Let A be an (mn + r) X (mn + r) system matrix given by

. A e ®X
A= TeY| Z

where A := [A;j] is an m X m block matrix with A;; € C™", X € C™,Y € C™", Z € C™" and e is the k-th column
of Iy. The block transpose of A, denoted by AP, is defined by

A% |e®X
B ._ i
A ’_[eiT®Y Z ]’

where A% is the block transpose of A.

Definition 5.7 (Block-symmetry). A block p X p matrix A with m X n blocks is said to be block-symmetric if
AB = A

Since MiB = M; for i = 0 : m, by Definition 5.6, we have (M;)® = M; for i = 0 : m. Thus the Fiedler
matrices are block symmetric.

Lemma 5.8. [21] Let q, and q, be two index tuples from the set {0,1,...,m —1}. Let M, and M,, be two
products of Fiedler matrices associated with the matrix polynomial P(A) such that My My, is operation-free. Then
(Mg, My,)% = (My,)%(M,,)®. Further, the result also holds for indices from {~1,-2,... — m}.
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We have the following result for Fiedler matrices associated with S(A).

Lemma 5.9. Let q, and q, be two index tuples from the set {0,1,2,...,m — 1}. Let M, and M, be two products
of Fiedler matrices associated with the system matrix S(A) such that My M, is operation-free. Then (Mg M, )® =
(M,,)B(M, )B. Further, the result also holds for indices from {=1,=2,... —m}.

Proof. Case I : Suppose that 0 ¢ q; U q,. Then we have

M M My M
Mqquzz[ CHl [y][ CIzly:|:|: 9 Clzly}_

Thus

BB B M3 M3
[ MCUMCIZ } T ] :[ (M‘hM‘h) ‘ T ]:[ 9@ T ][ 4 T ]: (qu)B(Mql)]B'
Case II : Suppose that 0 € q; U q,. If 0 € q; N q, then My Mg, is not operation-free. Thus either
0 € q, or 0 € q,. Without loss of generality assume that 0 € q;. Then Mg, = M,MM,, for some index
MyMoM, | ~M,(en ®C)
—(ey, ® B)M | -A
Ms = My, Mg,. Since My My, is operation-free, we have My M, is operation-free. Hence My, and Mg,
are operation-free. Thus M, is operation-free. Consequently, from the proof of Lemma 3.9, we have
My(en ®Iy) = e ® I, (e, @ I,)M,, = e}r ®I, and (e}, ® I,)Ms = e; ® I, for some k, j and h. Hence we have

tuples p and p1. Now My Mg, = MMM, My, = M,MM; = [ , where

[ MyMoM | —ex®C , 5 _ | M,MoM)® | —e,®C
My, My, = [ _ez B ‘ —A . This shows that (Mg, M,,)" = _ez B ‘ ~A . Now
M2 M2 | M,MoM,, | ~My(en®0) |\
B B _ B _ 9@ ptV204Vip, p\Em
(Mg,)" (Mg, ) —[ I ](Mp]l\/[o]l\/[m) —[ ‘ I, —(e%@B)Mpl ‘ _A

[ mB M,MoM,, | —ex&C |\* [ M2 | (M,MoM,,)® | —(¢;®C)
= T —(e}T®B) ‘ -A - 'L —-f®B | -A

_ Mg (M,MoM,,)? | =Mg (¢; ® C)
—e ®B | —A :

Since (e, ® I,)Ms = e] ® I, and (e}, ® [,)M,, = ejT ® I,,, we have (ejT ® I,)Mg, = e] ®I,. This shows that
Mg (ej®1,) = e, ® I,. Hence by Lemma 5.8, we have (Mg,)"*(Mg,)® =

(MyMoMy,Mq,)® | -Mg (;®C) | _[ (MMoMs)® | —e,® C
—-f®B | -A

— B
—ef®B | -A ] = (Mg, Mg,)"

O

Consider the first companion form C;(A) of S(A) given by

Ci(d) | —e1®C
cl(A):AM,,,_M,,I_le_Z...MlMO:[ (M) | —e ]

-l ®B| -A

where C;(A) is the first companion form of P(A) given in (3). Note that C;(A) is operation-free. Hence by
Lemma 5.9, we have

C A “Cm ® C
C1(A)® = AM,, — MgM; -+ - M, oM, = [ —e%(®)B E_A ] =Co(A)
1

is the second companion form of S(A), where C;(A) is the second companion form of P(A) given in [5].
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Let q; be the index tuple containing indices from {0,1,...,m — 1}. Let Mg, be the product of Fiedler
matrices such that Mg ) is operation-free. Since ]MiB = M; then by Lemma 5.9, we have M, 4 L= Mlgl is also
operation-free. Further, M, is operation-free and block symmetric if and only if Mg, = ]I\/[]‘];‘1 = Myewq, ©
q; ~ rev q,. For example, consider q;, = (0,2,3,2). Then

I
-As -A; I,
M, = MyM,M;M, = A2 I 0 = M,M;M,M,
q, — 4vipivi2ivizlivly = In 0 0 = Lvip Vi3 livip Iivlg.
~Ap | -C
B | -A

Since My, is operation-free and (IM;)® = M;, we have (Mg )® = MPMPMPMP = MoM3MMg = Myepq, =
My,, that is, rev q; ~ q;. Thus My, is block symmetric.
The following examples illustrate symmetric GFPR of S(A) when S(A) is symmetric.

Example 5.10. Suppose that S(A) is symmetric with m = 3. Consider 6 = (1 : 2),7 = 0,0, = 1,72 = 0,01 =
0,71 = 0. Then L(A) = AM_3sM; — M1MyMoM; in Example 5.1, is symmetric, since S is symmetric. Note that
IL(A) is block symmetric, since rev (1,2,0,1) ~ (1,2,0,1) and rev (=3,1) ~ (-3,1). m

Example 5.11. Suppose that S(A) is symmetric with m = 5. Consider 0 = (1 :2),7 = (-4 : =3),01 = 0,711 =
0,00 = 1,7 = —=4. Then IL(A) = AM_4M_sM_sM1M_4 — IM; MMM M_4 is operation-free symmetric pencil,
since S is symmetric. Note that IL(A) is block symmetric, since

rev(—4,-3,-5,1,-4) ~ (-4,-3,-5,1,-4) and rev (1,2,0,1,-4) ~ (1,2,0,1,-4).

The next example illustrates a symmetric pencil of a symmetric S(A), which is not a GFPR.

Example 5.12. Suppose that S(A) is symmetric with m = 4. Then IL(A) = AM_s;M_,MyM_,M_3 — M;IMyIM;
is symmetric, since (M73M72M4M72M73)T = (M,3M72M4M72M73), (MlMoMl)T = MlMoMl, and S is
symmetric. Note that IL(A) does not satisfy SIP. Hence IL(A) is not operation-free, but symmetric. Therefore, we have
more pencils with repetition of Fiedler matrices which is not operation-free but have symmetric structure. m

Next, we recall some definitions given in [9] for recovery of eigenvectors from GFPR and the eigenvector
formula of GFPR.

Definition 5.13 (Type 1 indices relative to a simple index tuple [9]). Let h be a non-negative integer and o be
a permutation of {0,1,...,h}. Let s be an index in {0,1,...,h — 1}. Then s is said to be a right index of type 1
relative to o if there is a string (tz—1 + 1 : t) in csf(0) such that s = t;_1 + 1 < t4.

Definition 5.14 (Associated simple tuple [9]). Let h be a non-negative integer and ¢ be a permutation of
{0,1,...,h}. Let csf(0) = (ba+1,ba, ..., b1), whereb; = (i +1:t;),i =1,...,a+ 1, are the strings of csf(o). Set
5(0) := csf(0) Then we say that s(o) is the simple tuple associated with o. If s is an index of type 1 with respect to
o,say s = ty_1 + 1 < ty, then the simple tuple associated with (o, s) is the simple tuple:

5(01 S) = (ba+1/ ba/ ceey bd+1/ Bd/ Ed—l/ bd—Z/ vy bl)/
where f?d =(ti1 +2: ty), Bd—l =(g2+1:t41+1)ifs#0

and s(0,0) := (ba+1,b“,...,l~;1,l~70), where by = 1:t), by = (0).

Definition 5.15 (Index tuple of type 1 [9]). Let h be a non-negative integer and o be a permutation of {0,1, ..., h}.
Let 0, and o1 be tuples with indices from {0,1, ..., h — 1}, possibly with repetitions. We say that o, = (s1,...,5:),
where s; is the ith index of 0y, is an index tuple of type 1 relative to o if, for i = 1,...,r, s; is a right index of type 1
with respect to s(o, (s1, . ., 5i-1)), where s(o, (s1, ..., si-1)) := s(s(0, (s1, . - ., Si=2)), Si-1) for i > 2.
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5.1. Eigenvector formula for GFPR
We derive eigenvector formula for GFPR, when the tuples are of type 1.

Lemma 5.16. Let 0 < h < m — 3, and let 0 and t be permutations of {0,1,... h} and {-m,-m +1,...,-h -1}
respectively. Assume that 01, 0, are index tuples with elements from {1,2,...,h—1}, and t1, T are index tuples with
elements from {(—-m +1,-m +2...,—h — 2}. Then M., commutes with M, and M,,, and IM, commutes with IMy,.

Proof. Since the distance between each pair of indices in 7; and o is greater than 1, by commutativity relation
M, commute with IM;. Similarly, the other cases follow. [

Lemma 5.17. Let 0,7,01,02, 71, T2 be as in Lemma 5.16 such that (o1, 0, 02) and (11, T, T2) satisfy the SIP. Suppose
that T, and o, are type 1 tuples relative to T and o, respectively. Let s(o, 02) and s(t, T2) be the simple tuple associated
with (0,02) and (1, 12). Then (0, 02) ~ (02, 5(0,02)) and (t, 12) ~ (T2, 5(7, 72)).

Proof. First we prove (g, 02) ~ (02, 5(0, 02)) by induction on the number of indices of o;, (other one follow
similarly applying induction on 12). Assume that o, = (r1,72,...,7), where r; denotes the ith index in o,
and o = (by, ba-1,...,b1), whereb; = (t;-1+1,t;), fori = 1,2,...,a. Since 0, is of type 1 relative to o, we have
1 =t + 1< ta for some 1 < d < a. So ((7,1’1) ~ (td—l + 1,ba,...,bd+1,td_1 +2: tdrbd—ll tiq + 1,...,b1)) =
(r1,8(o, 1)), if d > 1. We mention that 0, does not contain 0. Hence d # 1. Applying induction on indices of
o, we have (0, 02) ~ (02, 5(0, 02)). Similarly applying induction 7, we get (7, 72) ~ (72, 5(7, 72)). O

Example 5.18. Consider m = 12. Let 0 = (6,1 : 5,0) = (b3, by,b1),00 = (1 : 4) = (r1,72,73,1a) such that
oy is of type 1 relative to 0. By Lemma 5.17, here « = 3,d = 2, andry =t +1 = 1. So (o,11) = (6,1 :
5,0,1) ~ (1,6,2:5,0,1) = (1,b3,2 : 5,b1,1), and s(o,11) = (6,1:5,0,1) = (1,6,2:5,0,1) = (6,2 : 5,0,1), and
(r1,5(0,11)) = (1,6,2 : 5,0,1). Therefore (0,1r1) = (r1,5(0,11)). Again (o,71,12) = (6,1 :5,0,1,2) ~ (1,2,6,3 :
5,0,1,2) = (1,2,b3,3 : 5,b1,1,2), and s(o, (r1,712)) = (6,1 : 5,0)(1,2) = (1,6,2 : 5,0,1)(2) = (6,2 : 5,0,1)(2) =
(6,3 : 50,1,2), and ((r1,12),5(0,(r1,72))) = (1,2,6,3 : 5,0,1,2). Therefore (0,r1,12) = ((r1,72)3(0, (r1,72))).
Similarly we get (0, 02) ~ (02,5(0, 02)). W

The following result gives eigenvector formula for GFPR and eigenvector recovery from GFPR.

Theorem 5.19 (Eigenvector formula of GFPR). Let 0,71, 01,02, 11, T2 satisfy the conditions in Lemma 5.16 and
Lemma 5.17. Let L(A) = AM, My, M, My, M., — My, M, M;M,,M,, be a GFPR of S(A). Let A € C be an eigenvalue
of S(A).

(a) Set wy = 3(0,02), w1 = 5(t, T2) and w = (wo, w1). Define Ey (S) := Eqyy,0,(S), where E, o, (S) is as in Theorem
4.8. Then Er(S) : N(S(A)) = N, (IL(A)) is an isomorphism. Further, assume that CIP(wo) = (co, ip). Define

T I
FL(S) := Fopw, (S), where Fy, o, (S) := ey ® ) 7 ] Then Fr(S) : N,(IL(A)) — N,(S(A)) is an

isomorphism.

(b) Assume that rev 11 and rev o1 are type 1 tuples relative to rev T and rev o, respectively. Also suppose that
s(revo, revay), s(revt, revty) are the simple tuples associated with (revo, revoy) and (revt, revty) respectively.
Set &1 = s(revt, revty), & = s(reva, revor) and & = (&g, &1). Define Hi(S) := Eg, &, (ST), where Eg, ¢, (ST)

is as in Theorem 4.8. Then Hp(S) : M(S(A)) — N(IL(A)) is an isomorphism. Further, assume that
T
Iy
CIP(EQ) = (C(), 10) Deﬁne IKIL(S) = ]K(gofgl(ST), where ]Kéo,gl(ST) = [ (e(m_CO) ® ) ‘ . Then IKIL(S) .

Ni(IL(A)) = Ni(S(A)) is an isomorphism.

|1
Proof. Given that IL(A) = AM;, M, M:M;, M, — M, M;, M;M,;,M;, is a GFPR of S(A). By Lemma 5.16,
M, commutes with IM,; and IM,;,, and M, commutes with IM,,,. Hence by Lemma 5.17, we have

IL(/\) = AMH Mm MTZMUZMS(’I,Tz) - MT] MU] MTZMUZMS(U,(J‘z)
= MflMolMTZMUZ (/\MS(’T,Tz) - Ms(o,az)) = MT1M01MT2MUZ(](Q)(/\)/



N. Behera / Filomat 34:11 (2020), 3529-3552 3548

where K, (1) = AMg(1,1,) = Me,0,) = AMy,, — My, is a PGF pencil. This shows that N,(IL(1)) = N:(K,(A)).
Hence by Theorem 4.8, Er(S) := [E, », (S) is an isomorphism from N;(S(A)) to Ni(IL(A)). Since K, (A) is a
PGF pencil and wy has ¢y consecutions at 0, then by Theorem 5.2, given in [3] Fy(S) : N,(IL(1)) = N,(S(1))
is an isomorphism.

Next, note that N;(S(1)) = N,(S(A)T) and NV(IL(A)) = N,(IL(A)T). Now

IL(/\)T = (A]Mn MmMTMGzMrz)T - (Man MJIMOzMTz)T
= AM! M! MTM] M] - M] M M M M7

= /\Mrev T Mrev 173 Mrev TMVEU o1 Mrev T Mrev T2 Mrev 02 Mrev oMrev 01 Mrev T/

where Mj = ]M]-(ST) is the Fiedler matrices associated with ST(1). Note that by Lemma 5.16, we have
M, M, = M;M,,. Taking transpose we have MeosMrevr; = Myevr,Myevo. Similarly, by Lemma 5.16,
Myepr, commutes Myepq,, and Mypr commutes with M,e,5,. Since rev 71 and rev o; are type 1 tuples
relative to rev 7 and rev o, respectively, and s(revo, revo1) and s(revt, revt;) are the simple tuples associated

with (revo, revo1) and (revt, revt;), respectively, by Lemma 5.17, we have (revo,revor) ~ (revoi, &) and
(revt, rev 1) ~ (revt1,&1). Therefore

H—'(/\)T = /\Mrev [ Mrev 173 Mrev T Mrev o1 Mél - Mrev T Mrev 173 Mrev o] Mrev o1 Méo

— —

= ]l/\\/[rev T Mrev 02 Nn)v T Nrev o1 (Aﬂ/\\/[& - ]l/\\/[&) ) = M?’EU T Mrev 02 Mrev T ﬂ/\\/[rev o1 (AM& (ST) - Méo (ST))
= ]l’\\/[rev Ty ]l’\\/Irev 02 Mr@v T ]l/\\/lrev o1 7{6 (ST(A))/

where H:(ST(A)) = AMg, (ST) — M, (ST) is a PGF pencil. This shows that AV(IL(1)) = N,(L(A)T) =
N, (H:(ST(A))). By part (a) it follows that Hy(S) := Eg, ¢, (ST) is an isomorphism from N;(S(1)) to Ni(IL(A)).
Since H:(ST(1)) is a PGF pencil and & has ¢y consecutions at 0, then by Theorem 5.2, given in [3], we have
KL(S) : M(IL(A)) = Ni(S(A)) is an isomorphism. [

Example 5.20. Consider the system matrix S(A) with m = 12 and the associated transfer function G(A). Consider
the GFPR IL(A) = AM,M;, M M,;,M,, — M, M;, MM, M,,. Choose ¢ and o, as in Example 5.18 and consider
T =(-7,-8-11 : =9,-12), 1, = (-11 : -10),01 = {0}, 711 = (-8,-9). Now (c,02) = (6,1 : 5,0 : 4) and
wo = s(0,02) = (6,5,0: 4), and (7,72) = (-7,-8,-11: =9,-12 : -10), w1 = (7, 72) = (-7,-8,-9,-12 : —10).
S0 Ko(A) = AMyr,1,) — Myo,0,) is @ PGF pencil. By Theorem 4.8, we have c_,, = 2 and csf(s(t, 72)) = (s1,—m :
—-m+c_y) = (-7,-8,-9,-12 : =10), where s, = (-7,-8,-9). So & = (9,8,7,6,5,0 : 4). Hence

[ AP APy AL, AL, A°T, A%L, AL, I, Ps Py Py Py ]B
i x € Ni(L(A)),
(AE-A)"'B
where x € N(G(A)).

Now (revo,revsr) = (0,5,4,3,2,1,6) ~ (5 :6,4,3,2,0 : 1) and & = s(revo,revay) = (5 : 6,4,3,2,0 : 1),
(revt, revty) = (-12,-9,-10,-11,-8,-7,-9,-8) ~ (-9 : =7,-10,-12 : —=11,-9 : =8), and &, = s(revt, revt,) =
(=7,-10,-12 : =11,-9,-8) ~ (=7,-10: =8,-12 : =11). So H:(ST(A)) = AMs(revr revr:)(ST) = Me(revo revon) (ST)
is a PGF pencil, and by Theorem 4.8, we have c_,, = 1, and csf(s(revt, revty)) = (t1,—m : —m + c_,,), where
1 = (=7,-10 : =8). So & = csf(—revty, s(revo, revor)) = ¢sf(8,9,10,7,5 : 6,4,3,2,0 : 1) = (8 : 10,7,5 :
6,4,3,2,0: 1). Hence

B
[ 7PT ASL, APT ASPT A°L, A*L, A*PT AL, AL, AL, I, P |

(CAE - A) )T s

is a left eigenvector of IL(A), where y € Ni(G(A)). m
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5.2. Symmetric Linearizations

Let

be the system matrix and G(A) = P(A) + C(AE — A)™' B be the associated transfer function of S(1). We define
adjoint of S(A) by

S'(A) =

PP | B ] (20)

C [A-AFE

where P*(A) = Z AA: is the adjoint of the matrix polynomial P(1) = Z AlA;. The adjoint of the associated

transfer functlon G()) is given by G*(A) = P*(A) + B (AE* — A")~'C". A transfer function G(A) is said to be
self-adjoint if G*(A) = G(A). Note that $*(1) = S(A) & G'(A) = G(A). Similarly, if S(1) is symmetric, then
Al = A;,C=B",A=AT and E = E". One simple observation is that if S(1) is symmetric then M] = M; and
IM* M; fori=0:m.

Remark 5.21. Suppose that S(A) is symmetric (Hermitian) of degree m > 1. Then the GF/PGF pencil (1) = AX+Y
is symmetric iff X* = X and YT =Y. Thus from the definition of GF and PGF penals it is clear that XT = X and
YT = Y only when each Fiedler matrices are commutes with each other. That is, the distance between any two
indices is greater than one. So, the symmetric (Hermitian) structure preserving PGF/GF pencil must be of this
form IL(A) = AM,M; L, - M3 M = MoM; - - - My _3M,y—1 if m is odd, see [3], and unlike matrix polynomial
L(A) =AM ML MTM = MM - - - My, M, if mis even, is not symmetric, since Mo and M, never
commute. Hence for rational matrix function G(A) only one class of symmetric/ Hermitian PGF pencils exist.

Suppose that S(A) is symmetric. Let IL(1) be a GFPR of S(A) and
]L(/\) =AX+Y = /\MilMiZ v Ml‘, - M]'lez . 'Mjk'

Then ]L(/\) should be symmetric if XT = X and YT = Y. That is (M;; M, ---M; )" = M;;M,, ---M;, and
(M; M --]Mjk)T = M; M, ---M;,. Since M] = M; for symmetric S(A) we have (M; M, ---M;)" =
ll\/[zll\/[l ]MZ =M; M, , ---Mj. So all we need for IL(A) is symmetric for S(A) symmetric is that

r—1

M; M;

TR M M M M and]M M]k1' 'M]'l =M]‘1Mj2"'ﬂ\/[]'k
i'e'/ Tev(il, in ey 11‘) ~ (ilr i2/ ey Z?’) and rev(jl, jZ/ ey ]k) ~ (jl/ j2/ ey ]k)

Lemma 5.22. Let q be a tuple satisfying SIP with indices from either {0,1,...,m — 1} or {-m, ..., —=1}. Then M, is
symmetric for any symmetric S(A) of degree m if and only if M, is block-symmetric for any S(A) of degree m.

Definition 5.23. Let q be an index tuple with indices from either {0,1,...,m—1} or {-m, ..., —1}. Then we say that
i, j from q commute if ||i| — |jl| > 1.

Definition 5.24. An index tuple q of nonnegative (resp. negative) indices is symmetric if q ~ rev(q).

Lemma 5.25. Let t; and t, be two tuples with the same indices from either {0,1,...,m—1} or {-m, ..., —1}. Assume
that t, and t, satisfy the SIP. Then,

(a) If t1 is equivalent to t, then M, = My, for any system matrix S(A)

(b) If My, = My, for some system matrix S(A) with Ay nonsingular and A; # =1, t1 for i = 0 : m, then t; is
equivalent to t,.

Lemma 5.26. Let t be a tuple satisfying the SIP with indices from either {0,1,...,m — 1} or {-m,...,—1}. Then for
any symmetric S(A), M(S) is symmetric if and only if t is symmetric.
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Proof. Assume that t is symmetric and S(A) is symmetric. Lett = (i1, iy, ..., 7). Then M¢(S) = M;;M,, ... M;,
Now M{(8) = M{M[ ... M[' = M;M; ;... Mj; = Mrun(S) = M(S). So M(S) is symmetric.

Conversely, assume that IM;(S) is symmetric. Then IM(S) = ]MtT(S) = Myeu(y)(S), since S(A) is symmetric.
Thus t ~ rev(t). Hence proved. [J

Theorem 5.27. Let S(A) be a symmetric/self-adjoint system matrix. Ifmisoddando = (1,2),t = (4,6, ..., —(m—
3),—-(m-1),-3,-5,...,-(m—=2)),00=(1), 12 =(—4,-6,...,—(m—=3),—(m —1)),01 = ¢, 71 = ¢ then

L(A) = AM; M; M. M_,,M;,M,, — M, M; M;MoM,;, M.,

is a symmetric/self-adjoint operation free GFPR pencil of S(A). Hence IL(A) is symmetric/self-adjoint linearization of
S(A). In particular, if G(A) is minimal then IL(A) is a symmetric/self-adjoint linearization of G(A).

Proof. By commutativity relations we have rev(ty, 01,7, -1, 02, T2) ~ (71,01, T, =1, 02, T2) and
rev(t1,01,0,0,02,T2) ~ (11,01,0,0,02, T2), since

rev(—4,—-6,...,—-(m—-3),-(m-1),-3,-5,...,-(m—-2),-m,1,-4,-6,...,—(m - 3),—(m — 1))
~(-m-1),-(m-3),...,-6,-4,1,-m,—-(m-2),...,-5,-3,-(m—-1),—(m—=23),...,—-6,—4)
~(-6,-4,...,~(m-3),-(m-1),-m,-(m-2),...,-5,-3,1,-(m - 1),—(m = 3),...,-6,—4)
~(-4,-6,...,~(m-3),-(m-1),-3,-5,...,—-(m—-2),-m,1,-4,-6,...,—(m — 3),—(m — 1)).

and

rev(1,2,0,1,-4,-6,...,—-(m-3),-(m-1)) ~ (-(m -1),-(m -3),...,-6,-4,1,0,2,1)
~(-4,-6,...,-(m-3),-(m-1),1,2,0,1) ~(1,2,0,1,-4,—-6,...,—(m — 3),—(m — 1)).

Now, since S(A) is symmetric, so IL(A) is symmetric. Note that IL(A) is strictly equivalent to a PGF pencil,

since IL(A) can be written as IL(A) = M, M, (AMM_,, - M;My)M,,,M.,. Hence linearizations of S(A). Itis
also easy to show that IL(A) is operation free. [J

Corollary 5.28. Let S(A) be the system matrix of degree m is odd. Consider the pencil IL(A) defined in Theorem 5.27.
Then IL(A) is block-symmetric for S(A).

Example 5.29. Suppose that S(A) is symmetric system matrix with m = 5 and

L(A) = AM_M_3M_sM;M_; — M MMM M _y4

0 0 I, 0 I,
0 As A4 I, As

A A _ “A, -A; Lo

~A; I, —A1 -Ay 0|-C

I, O I, 0 0]o0

“E 0 -B 0]-A

Then by the Theorem 5.27 we have IL(A) is symmetric and operation free. Note that IL(A) is block-symmetric.

Theorem 5.30. Let S(A) be symmetric/self-adjoint system matrix. If misoddando = (2,...,m=1,3,5,,m=2), 1 =
(_1)/ Oz = (P/ T = (P/ o1 = (375/"-/(”1 _2))/ 1= (P then

]L(/\) = AMT] MU} MTM—mMO‘ZM’Iz - MT1MU1MO‘MOMUZMT2

is symmetric/self-adjoint operation free GFPR pencil of S(A). Hence IL(A) is symmetric/self-adjoint linearization of
S(A). In particular, if G(A) is minimal then IL(A) is a symmetric/self-adjoint linearization of G(A).
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Proof. By commutativity relations we have rev(ty, 01, T, —m, 02, T2) ~ (t1, 01, T, =M, 02, T2) and
rev(ty,01,0,0,02,72) ~ (11,01,0,0,02,72), since rev(3,5,...,(m — 2),-1,-m) ~ (-m,-1,(m - 2),...,5,3) ~
(3,5,...,(m—-2),-1,—m),and

rev(3,5,...,(m—-2),2,...,(m-1),3,5,...,(m-2),0) ~0,(m-2),...,5,3,(m-1),...,2,(m-2),...,5,3)
~(3,5,...,(m-2),2,...,m-1),3,5,...,(m—2),0).

Now, since S(A) is symmetric, so IL(A) is symmetric. Note that IL(A) is strictly equivalent to a PGF pencil.
Hence linearizations of S(A). It is also easy to show that IL(A) is operation free. [J

Corollary 5.31. Let S(A) be the system matrix of degree m is odd. Consider the pencil IL(A) defined in Theorem 5.30.
Then IL(A) is block-symmetric for S(A).

Example 5.32. Suppose that S(A) is symmetric system matrix of degree m = 7 and

L(A) = AMsMsM_7yM_; — M3MsMoIM>M4IMgIM3IM5

A; —As -As I, 0 0 0
—As I, “As -Ay 0 -A; I, 0 0
L, 0 I, 0 0 0 0 0 0
- —A; I, 0 -A; 0 -4, 0 I, 0
= I, O 0 I, 0 0 0 0 0
0 I 0 0o o0 I, 0 0 0

I A 0 0 0 0 0 0 =-4A|-C

[ —E B | A

By the Theorem 5.30 we have IL(A) is symmetric and operation free. Note that IL(A) is block-symmetric.

Remark 5.33. The eigenvector formula and eigenvector recovery property of symmetric system matrix follows directly
from Theorem 6.5.

6. Conclusions and future work

We have introduced operation-free generalized Fiedler pencil with repetition(GFPR) for rational matrix
functions G(A) and shown that GFPR pencils are linearizations of G(A). We have obtained the explicit
formulas for the eigenvectors of the GF linearizations in terms of the eigenvectors of G(A). Also, we
have discussed that the eigenvectors of S(A) and G(A) can be recovered from those of the GFPR pencils
without performing any arithmetic operations. Finally, we have introduced Symmetric/Hermitian pencils
for Symmetric/Hermitian G(A) using GFPR pencils and shown that these pencils are linearizations of G(A). It
would be interesting to consider multi-linear algebra, i.e., tensor eigenvalue problems and tensor functions
and study its spectral properties, sensitivity analysis and linearizations. In [10, 13] and [7, 17] it has been
studied spectral properties and perturbation analysis of generalized tensor eigenvalue problems and tensor
functions, respectively. I would like to generalize these ideas to study spectral analysis, sensitivity analysis
and linearizations of tensor polynomial eigenvalue problems in details.
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