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Abstract. In this paper, we discuss the Schur convexity, the Schur geometric convexity and Schur harmonic
convexity of the mixed mean of n variables involving three parameters. As an application, we have
established some inequalities of the Ky Fan type related to the mixed mean of n variables, and the lower
bound inequality of Gini mean for n variables is given.

1. Introduction

Throughout the paper we assume that the set of #n-dimensional row vector on the real number field by
R".

R} ={x=(x, - ,x)eR":x%,>0,i=1,--- ,n}.

In particular, R! and R! denoted by R and R, respectively.
In 2009, Kuang [1] defined the mixed mean of two variables with three parameters as follows:

AR, ¥P) + WG, y) |7 "
w1 + Wy

Ky (wy, wa, p) =

where A(a, b) = % is arithmetic mean, G(a,b) = Vab is geometric mean, p # 0, wy, wp > 0, wy +w, # 0.
In recent years, the research on Schur convexity of all kinds of means with two variables is moer and
more active and fruiful(see references[5]-[8],[10]-[30]).

Fu et al.(see[8]) studied the Schur convexity, Schur geometric convexity and Schur harmonic convexity
of Ky (w1, wa, p).

Obviously, for x = (x1,- -+, x,) € R}, Ko(wy, wy, p) can be generalized as follows:

w1 + Wy

Ky (w1, wa, p) =
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where A, (x?) = % Y xf, G.(x") = (IT, xf )5 is arithmetic mean and geometric mean of x” = (x’lj, )
Wang et al.(see[9]) studied the Schur convexity, Schur geometric convexity and Schur harmonic convex-
ity of K, (w1, wy, p).
Related geometric mean and harmonic mean, we define following the mixed mean of n variables
involving three parameters.

Definition 1.1.

1
wiHy () +w2 G (xF) \ p .
( Wit ) 0wy, wy < +oo;
Wi (x, w1, w2, ) = § (H,(x))? , wy = +oo; )

(Gala?)7, W, = +o0.

r
Where H,(x") = ﬁ, Gu(@) =T x/, p#0, w1 20, wp 20, w1 +wy #0,x € RY.
In this paper, Schur convexity, Schur geometric convexity, Schur harmonic convexity of W, (x, w1, w,, p) are
discussed. As applications some interesting inequalities are obtained.

Our main results are as follows:

Theorem 1.2. Letp # 0,wy > 0,w, > 0,w; + wy # 0.

() Ifp = =1, then Wy (x, w1, w2, p) is Schur-concave with x € R}.
(@) Ifp = 0, then W, (x, w1, wa, p) is Schur-geomertrically concave with x € RY}.
Ifp <0, then Wy, (x, w1, wy, p) is Schur-geomertrically convex with x € R}.
(iii) If p <1, then Wy, (x, w1, wy, p) is Schur-harmonically convex with x € IR},.

Theorem 1.3. The function W, (x, w1, ws, p) is decreasing with wy € [0, +00), Wy (x, w1, wy, p) is increasing with
wy € [O, +OO).

Theorem 1.4. Let x = (x1,-++ ,x,) € R}, 0 < wy < wy.

(i) Ifp < -1, then % is Schur-concave with x € RY,.
(o015,

(if) Ifp <0, then % is Schur-geomertrically concave with x € RY.
n\X,W1,Wy,

Ifp > 0, then % is Schur-geomertrically convex with x € R™.
n 7 Laad X/

(iit) Ifp > 1, then % is Schur -harmonically convex with x € R'.
n\As Laadr X/

Theorem 1.5. If0 <x; < 3(i=1,---,n), then % is increasing with w;.

2. Definitions and Lemmas

We introduce some definitions and lemmas, which will be used in the proofs of the main results in
subsequent sections.

Definition 2.1 ([2, 3]). Letx = (x1,--- ,x,)andy = (y1,--- , yu) € RY,
(i) xis said to be majorized by y (in symbols x < y) if Yy X < Yoq ypfork=1,--- ,n=land Y\ x; = Y14 v,
where x[1] > - - - = X[, are rearrangements of x and y in a descending order.
(i) Q C R" is called a convex set if (ax1 + By1, ..., ax, + Py,) € Q for any x and y € Q, where a and f € [0, 1]
witha+p =1
(iii) Let Q € Ry, , : Q — Ris said to be a Schur convex function on Q implies p(x) < @(y). is said to be a Schur
concave function on Q if —@ is Schur convex function.

Definition 2.2 ([4, 5]). Letx = (x1,...,x,) and y = (y1,...,Yn) € R}
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(i) A set Q c R% is called a geometrically convex set z'f(x“yf, . .,x;jy‘f,) € Q for any x and y € Q, where a and

Bel0,1]witha+p=1. '

(if) Let Q C RY, @: QO — R, is said to be a Schur geometrically convex function on Q if (logx1,...,logx,) <
(logy1,...,logy,) on Q implies @ (x) < @ (y). @ is said to be a Schur geometrically concave function on )
if and only if —@ is Schur geometrically convex function.

Definition 2.3 ([5, 6]). Let Q C R}.
(i) A set Q) is said to be a harmonically convex set if Wy_w € Q for every x,y € Q and A € [0,1], where
xy =Y xiyand L = (xl—l, , Xl—n)
(i) A function ¢ : Q — IR, is said to be a Schur harmonically convex function on Q if % < i implies p(x) < @(y).

A function ¢ is said to be a Schur harmonically concave function on Q if and only if — is a Schur harmonically
convex function.

Lemma 2.4 ([2, 3]). Let Q C R" is convex set, and has a nonempty interior set Q° . Let ¢ : Q — R is continuous
on Q and differentiable in Q. Then ¢ is the Schur — convex(Schur — concave) function, if and only if it is symmetric
on Q and if

dp do .
(x1 — x2) (8_x1 - E) >0 (or <0, respectively)

holds for any x = (x1,+ -+ ,x,) € Q.

Lemma 2.5 ([4, 5]). Let Q C R" be a symmetric geometrically convex set with a nonempty interior Q°. Let
@ : Q > Ry be continuous on Q and differentiable on Q°. Then ¢ is a Schur geometrically convex (Schur
geometrically concave) function if and only if ¢ is symmetric on Q) and

d
(x1 — x0) (xl—(P - Xz—(p) >0 (or <0, respectively)
1 2

holds for any x = (x1,- -+, x,) € Q°.

Lemma 2.6 ([6, 7]). Let Q C R" be a symmetric harmonically convex set with a nonempty interior Q°. Let
¢ : Q > R, be continuous on Q and differentiable on Q°. Then ¢ is a Schur harmonically convex (Schur
harmonically concave) function if and only if @ is symmetric on Q and

dp  ,dp

—_— 2_ —_— —
(X1 XZ) (x1 &xl % 8x2

) >0 (or <0, respectively)

holds for any x = (x1,+ -+ ,x,) € Q.

Lemma 2.7. [3] Let x = (x1,X2,- -+, X,) € R and G,(x) = [T, xll Then
(@)

log G (x),log G (x),- - - ,1log Gn(x) | < (logx1,logx2,- - - ,log x;,). 4)

n

(i) If Yo, xi = s, then

(s—x1 S — X S — Xy,
n-1"n-1" "n-1

) < G, ®
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(iii) If0 <r <s, then

v 'a S S
( nL s )<( nL )
n r’ s Nyn r n s’ /N s |
Yia X; Yia X; Yim X; Yim1 X
(iv) Let Y.\, x; = s. For any ¢ > 0, we have

(c+x1 c+xn)<(x1 xn)
nc+s’  ‘nc+s ! )

s’ s
3. Proofs of Main results

Proof. [Proof of Theorem 1.2] Write

w1H, (X)) + 0 G, (x)
w1 + Wo ’

w(wy, wa, p) =

3666

It is clear that W, (x, w1, w, p) is symmetric with (x1,--- , x,) € R%, without loss generality, we may assume

that x; > x, > 0. We have

oH, p e 1 OHy _p e 1
o1 = n[Hn(x )] x’lH—ll o = n[Hn(x )] xZH.
dG, p w1 dG, _p n 1
ox; nG"(X )xl' oxy nG"(X )xz'

And then
oW, 1

_[w(w w ]%_1 1 w BHn BGn
ox; p 1 W2 p w +w \ L ox

1 1 1_q 1 1
== P))2 — Py
p— [w(w1, w,, p)]? [wl(Hn(x ) 7 + w0, Gy(x )x1],
oW, 1

_1 1 19 PYV\2 1
% - nori o [w(wy, wy, p)]? [wl(Hn(x ) 1

+ wZGn(xp)l] 7
2 Y2

W, 1 1
oxy nwi+w;

[w(wlerP)]%_l wl(Hn(xp))le_p + ZUan(X”)]/
1

oW, 1 1 1 1
n_ 21 2 1 )
e I |t 4Gt )),

aw, 1 1 1 1
29WWn -1 2
== H,(x" P
X o nwitw, [w(w1, wo, p)]7 ™ | w1 (Hu(xF)) lej_l + wr Gy (X )21
ow, 1 1 1 1
2 no_ - -1 PW2_— P
x5 T nwit [w(w1, wo, p)]7 ™ | w1 (Hu (X)) P wrG(xP)x2 |.

X
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Therefore
(@)
oW, JIW,
PR | 1
=(x1 xz)n —— [w(wy, w2, p)]
1 1 1 1
PY)2 _ Py —
X [wl(Hn(x ) ( ?H xgﬂ ) + WaGy(x )(xl X )] .

If p > -1, then A; < 0. By Lemma 2.4, it follows that W,,(x, w1, w, p) is Schur-concave with x € R}.

(if)

oW, oW,
A= (x —xﬁ(aqxln - X2 8x2n)

— (k1 =)L

1_ 1 1
oL e, e GO - )

1 2

If p > 0, then A, < 0. By Lemma 2.5, it follows that W,(x, w1, w», p) is Schur-geometrically concave with
x = (x1,..x,) € RL. If p < 0, then A, > 0. By Lemma 2.5, it follows that W, (x, w1, wy, p) is Schur-geometrically
convex with x € RY.

(i)

oW, oW,
(e _ 20Wn 2 0WWy
Az :=(x1 xz)(x1 o x5 g )

1 1_
=(x1 — x2)1;w1 T [w(ws, wa, p)]7 ™
11
X |wiHaOPN (5 = —7) + w2Ga ()1 = x2) |-
O A

If p <1, then A3 > 0. By Lemma 2.6, it follows that W,(x, w1, w,,p) is Schur harmonically convex with
x € R}.
The proof of Theorem 1.2 is complete. [

Proof. [Proof of Theorem 1.3] Because

IW,

;Z/le T (W : wo)2 [HnO) (w1 + 2) = (w1 Ha () + w026 (x))]
= mwz[Hn(xp) - Gn(xp)] S O/

a&]:uv: ~ (wn : w,)? [Gu () (w1 + wy) — (w1H,(X) + w2 Gy (xX"))]
- mwl[Gn(xp) — H,(x")] = 0.

So that, W, (x, wy, wy, p) is decreasing with w; on [0, +00),W,,(x, w1, wy, p) is increasing with w, on [0, +00).
The proof of Theorem 1.3 is complete. [
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Proof. [Proof of Theorem 1.3] Write

W (X) _ Wn(xr w1, W2, p)
" Wa(x, w1, w, p)’

wi1H, (XP) + wyG,(xP)

wn(X) - w1y + Wy
X wiH, (xP) + w;Gn(x”)
W) = w1 + W )
2
We have
oW, 1

ox1 W ~(x, w1, 2,p) p

—gme@mﬁ*

1
WZ(X/ w1y, w 2! P) n

o [len(xp) + w5 G, ()

wq +w*

L w00t

Y, (x)) 7

w w

(b, ()2 s + 22G, () &

1
w1 + Wy

“WHWWW+W@W&

{ (wa (X))~

ZU1+ZUZ

Lwr, (x)) 77

w1 (Hn(xp))z xp1+‘1 + wZGn(xp)% ‘
1

w1+ wW»

}ﬁmwﬁ%mwﬁl

w1 (H,(xP))* -5 7 + W, G (X ) WL () + 102G (67
) [ \ \ }
w1 + w w1 + W2
LI Y e L [wn(H, ()2

W&w,ﬁw

(w1 + w})(wl +ws)

X G5 = )y + i )G )02 ~ ) ]
x

1

L lw,m)i

W (X w1, ZIP) n

X (1, — 2)(Hy () —

p+1
oW, 1
: L)
X W 2(x, w1, 2,p) n

1

= )y~

and then

w1
(w1 + w3) (w1 + wy)

L (x) 7! H,(¢)Go(x")

1
x—l),
" -1 w1 p p
@) g OG0
1
xz )/

3668
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(i)

oW, W,
1 1 1_ -1
(01 = 22) @) @ 0) T S
2

- Wl%(xl w1, w;_l P)
X Hy ()G () (@) = w2) [Ha () (7 = D) 4 (a1 = o),
so, if wy < wy and p < -1, then Ay < 0. By Lemma 2.4, it follows that Wn(x) = W is Schur concave
n(X, 1,10247)

with x € RY.
(if)
W, _ IW,
As =(x1 = xz)(xla_xl - xza—xz)
() (a0 w0 0) T
n (w1 + wy)(wy + ws)

~W2(x, wi, wh, p)
X H2(¢) Gl (@) — w2) ()" = 2,7,
Pl 2D) 6 Sehur geometrically

Wi (x,w1,w3,p)
W, (x,w1,wo,p) .
Wlot1,028) 5 Sehur

so,ifw; < w;and p <0, then As < 0. By Lemma 2.5, it follows that V_\/n(x) =
Wi (x,w1,105,p)

concave with x € R}. If p > 0, then As > 0. By Lemma 2.5, it follows that Wn(x) =

geometrically convex with x € R’

(i)

W, W,
B =(x1 = x2) (x% ox1 5 o )
1 _ 1 19, _14 w1
(xl xz)n(wn(X))” (wn(x)) ’ (w1 + w;)(uh + wz)

- W%(X, w1, w;/ P)
X Hy ()G () (@) — w2) [Ha ()P = 55 70) 4 (1 = 1)),
so,ifwy <w;yandp > 1, then Ag > 0. By Lemma 2.6, it follows that Wn(x) = %ﬂ is Schur harmonically

convex with x € R}.

The proof of Theorem 1.4 is complete. [
Proof. [Proof of Theorem 1.5] Let
W(x, wi, wy, p)
W, p =
W(1 = x, w1, w3, p)
_[ Wi HA () + 0:GuX) r
w1 Hy (1 = %)) +waGu (1 =xP) | *

then

MWy,p 1 w1H, (x*) + 0, G, (xP) !
ow; _ELMHAO—XWH%WGAO—XVJ
w1[Gu () Ha (1 = x)P) = Hu(¢")Ga((1 = x)")]
[w1Hu((1 = x)P) + waGu((L = x)")2
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Because 0 < x; < 1, by Wang-Wang inequality([1]):

H,(x) < Gu(x)
Hy,(1-x) = Gu(1-%)’

we have
H,x)G,(1-x)-G,(x)H,(1-x) <0.
and then _9‘;";:22,1 > 0. So that, Wy, 1 = —szll(fiu ;:’12021)1)
The proof of Theorem 1.5 is complete. [

is increasing with wj.

4. Applications

Theorem 4.1. The inequalities

[HG, -+ 21 < W, w1, 0, p) < [GG, -+, )17 = Gy() ®)
hold.
Proof. Note that

Wa(x,0,03,p) =[G, -+, A)IF, Wa(x, +00,wa, p) = [H(,, -+, )],
by Theorem 1.3, we have

[HGE, - 21 < Walx, w1, 5, p) < GG, -+, KT

The proof is complete. [

Remark 4.2. Let p = 1, we get sharpening of H — G inequality:

Hy(x) < Wi(x, w1, wa, 1) < Gu(x). )
Theorem 4.3. Letx; >0,i=1,2,--- ,n,and Y,;_y x; = s. If p < =1, 0 < w, < wy, then Ky-Fan type inequality:

Wau(x, wyi, ws, p) - Wi(x, wy, wj, p)

10
Wn(s - x/w1/w2/p) h Wl’l(s - xlwll w;/p) ( )

holds.

Proof. From Lemma 2.7, we have

(s—x1 S—xp S — X,
n-1"n-1" "n-1

by Theorem 1.4(i), it is follows that

) < (x1/x2/' o /xn)/

Wn(x/ w1, W2, p) < Wn (ﬁ’wl’wz’ p) _ WH(S — X, W1, Wy, p)

W, 1,0, P) = W, (25, 0r, ) TS %00, 0 )

Walx wi wa,p) Wa(x, w1, ws, p)
Wa(s = x,wi,wa, p) = Wa(s —x,wy, w5, p)’

The proof is complete. [



D. Wang et al. / Filomat 34:11 (2020), 3663-3674

3671
Remark 4.4. By Theorem 4.3 we know M;(w,) = Wl w2p)

T Gx o np) is decreasing with wy. Notice that W, (x,w1,0,p) =
[Hn(xp)]%, Wi(x, wy, +00,p) = [Gn(xp)]% = Gu(x). So that, forx; >0,i=1,2,--- ,nand Y.} 1 x; = 1,ifp < -1 and

w1 > 0,0 < wy < +0o, then inequalities:
Gul®) _ Walwwiwap) _ [Ha@))
Gu(1=2) = Wa(l = x,w1,W2,P) ™ [H,((1 - x))]’
holds.

Let p = —1. We get the sharpening of Ky Fen’s inequality:

Gn(x) < W,,(x, w1, Wo, —1) < A,,(x)
Gn(l _x) h W‘/l(l — X, W1, W2, _1) - A‘/l(l - x).

(11)
Theorem 4.5. Ifx; >0,i=1,2,--- ,n,and Y i_; x; = 1, then
Hn(xil) Wn(x71/ w1, Wy, ]-) < Gn(xil) (12)
Hy(1 =21~ Wu(A =2 w,wy,1) ~ Gu((1-%)71)

Proof. 1fx;>0,i=1,2,---,n, Y x;=1,when0 < w;, < wy, by Lemma 2.7 the majorization inequality:

1 1 1 1
n—l’”"n_—l < I,...,I
1-x; 1-x, X1

Xn

holds. By Theorem 1.4(iii), when p > 1, we get

W, (%,wl,wzm) B W, (fo,wsz,P) - W, (i,wl,wz,p>

-1 * - 1 . - 1 .
W, (qTx,Z{Jth,P) W, (E,wl,wz,p) W, (;,wllwzlp)

W, (L, w1, w3, p) . Wi (L, 1,702, p)
W, (ﬁ—x,wl,w;,p) W, (f:,wl,wz,p)l

W (1w wap) . . . .
= — X2/ jgincreasing with ws.
s0 My (w») W (L orenp) s increasing with w,

When 0 < w; < +00, we have

W,,(%,wl,o,p) 3 Wn(,l—(,wl,wz,p)
W (5, w01,0,p) ~ Wa (5, w1, w2,p)
By Definition 1.1, we get

W, (%,wl,—koo,p)

W,,l (11Tx,’wl,+00,p>'

(Hn(,l-()”)% 3 Wi (L, w1, ws,p) 3 (Gn(i)’”)%

() WilEmnenn) (G dy)

1-x

Letp =1, we have
H‘rl (X_l) W?Z(x_ll wiy, Wz, 1) < G‘rl(x_l)

Hu(1=x)™) = Wa((1 =27 wi,wr,1) ~ Gu((1=%)71)

The proof is complete. [
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Theorem 4.6. If0 < x; < % i=1,2,---,n,then

Hn(x) < Wn (x/ w1, Wy, 1) < Gn (x)

. 1
Hn(l - x) B Wn(l — X, W1, Wy, 1) B Gl’l(l - x) ( 3)
Proof. By Theorem 1.5 we have

Wn (X/ w1, O/ ]-) < Wn (X, w1, W2, 1) < Wn (Xr w1, +09, ]-)
Wl’l (1 - X, w]/OI 1) B Wn (1 — X, W1, W2, 1) a WVI (1 — X, W1, +09, 1),

and by Definition 1.1 we get

HH(X) < Wn (X, w1, Wy, 1) < GH (X)
Hn(l - X) h Wn (1 — X, W1, W2, 1) - Gn(l - X).

The proof is complete. [

The following inequalities are introduced in reference [1](see[1],p52):
Letx; e Ry,i=1,--- ,n. If c >0, then
Anx+0) _ A
Gu(x+¢) = Gu(x)

(14)

We obtain the following sharpening of inequality (14).

Theorem 4.7. Let x; € Ry,i=1,--- ,n. Forany c > 0, we have

Gn (x) < Wﬂ (x/ wl/ wZ/ _1) < AVl (x)
Gulc+x) ~ Wylc+x,wy,wy,-1) ~ Au(c+x)

(15)

Proof. By Theorem 1.4 (i) and according to the majorization inequality in Lemma 2.7:

(c+x1 c+xn)<(x1 xn)
nc+s’  ‘mnc+s ! !

s’ s
it is easy to prove inequality (15) is hold.
The proof is complete. [

Let (x1,---,x,) € RY,

1
n S\ s—r

=% (s#7)
Y '

is Gini mean of n variables.
For Gini mean of n variables, we have the following conclusions.

G(r,s;%) = (

Theorem 4.8. Let x = (x1,--- ,x,) € R}. If0 <1 <s, then

Wn(xsl w1, W2, _1)):—7 > Gn(X). (16)

. >
G(r,s;x) > (Wn(xf, w110y, —1)

Proof. By Lemma 2.7(iii) the majorization inequality:

r r S S

xl o x” < xl o x”
n rs 7 n r n S/ 7 n S
Y X Yim X i Yim X




D. Wang et al. / Filomat 34:11 (2020), 3663-3674 3673

holds, when 0 < w; < w,, by Theorem 1.4(i) we have

i=

Wn(ﬁ,wl,wz,p) W55, w1, w2, p)

rrs
i=1%;

<
x5 - X"
Wn(m,wl/w;}’) Wn(m;wl/w;rp)

:Wn(xslwllwzp) W, (¢, w1, ws, p)
Wn(xr’ wi, Wy, P) - Wn(xr, w1, w;, p) ’

_ Wi wiwap) . : :
So, Ms(wy) = W o p) 1S decreasing with w,.

Notice that W,,(xk,wl,O,p) = [Hn(xk”)]%, W, (XK, Wi, +00,p) = [Gn(xk”)]%17 = G,(x"), so that, for x; > 0,
1,2,--- ,nands >r>0,ifp < -land w; > 0,0 < w, < +0o, then inequality

Gn(xs) < Wn(xs/w1/w2/p) < [Hn(xSp)]%
Gu(x') = WalX', w1, w2,p) = [H,,(x)]?

holds.

Let p = -1, we get inequality

1
Wn(xsl wy, Wy, _1) o

G(r,s;,x) =
(r ’ X) Wn(x?’/ wl/ wZI _1)

> Gu(x).

The proof is complete. [
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