

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Schur Convexity of Mixed Mean of *n* Variables Involving Three Parameters

Dong-sheng Wang^a, Huan-Nan Shi^b, Chun-Ru Fu^c

^aBasic courses department, Beijing Polytechnic, Beijing100176, China ^bDepartment of Electronic Information, Teacher's College, Beijing Union University, Beijing City, 100011, P.R.China ^cBeijing Union University Applied college of science and technology, Beijing 102200, China

Abstract. In this paper, we discuss the Schur convexity, the Schur geometric convexity and Schur harmonic convexity of the mixed mean of n variables involving three parameters. As an application, we have established some inequalities of the Ky Fan type related to the mixed mean of n variables, and the lower bound inequality of Gini mean for n variables is given.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on the real number field by \mathbb{R}^n .

$$\mathbb{R}^n_+ = \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : x_i > 0, i = 1, \dots, n \}.$$

In particular, \mathbb{R}^1 and \mathbb{R}^1_+ denoted by \mathbb{R} and \mathbb{R}_+ respectively.

In 2009, Kuang [1] defined the mixed mean of two variables with three parameters as follows:

$$K_2(w_1, w_2, p) = \left(\frac{w_1 A(x^p, y^p) + w_2 G(x^p, y^p)}{w_1 + w_2}\right)^{\frac{1}{p}}$$
(1)

where $A(a,b) = \frac{a+b}{2}$ is arithmetic mean, $G(a,b) = \sqrt{ab}$ is geometric mean, $p \neq 0$, $w_1, w_2 \geq 0$, $w_1 + w_2 \neq 0$.

In recent years, the research on Schur convexity of all kinds of means with two variables is moer and more active and fruiful(see references[5]-[8],[10]-[30]).

Fu et al.(see[8]) studied the Schur convexity, Schur geometric convexity and Schur harmonic convexity of $K_2(w_1, w_2, p)$.

Obviously, for $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n_+$, $K_2(w_1, w_2, p)$ can be generalized as follows:

$$K_n(w_1, w_2, p) = \left(\frac{w_1 A_n(\mathbf{x}^p) + w_2 G_n(\mathbf{x}^p)}{w_1 + w_2}\right)^{\frac{1}{p}}$$
(2)

Communicated by Marko Petković

²⁰¹⁰ Mathematics Subject Classification. Primary 26E60; Secondary 26D15, 26A51

 $[\]textit{Keywords}$. mixed mean of n variables; Schur convexity; Schur geometric convexity; Schur harmonic convexity; majorization; inequalities

Received: 22 November 2019; Revised: 23 October 2020; Accepted: 02 November 2020

Email addresses: wds000651225@sina.com (Dong-sheng Wang), sfthuannan@buu.com.cn, shihuannan2014@qq.com (Huan-Nan Shi), fuchunru2008@163.com (Chun-Ru Fu)

where $A_n(\mathbf{x}^p) = \frac{1}{n} \sum_{i=1}^n x_i^p$, $G_n(\mathbf{x}^p) = (\prod_{i=1}^n x_i^p)^{\frac{1}{n}}$ is arithmetic mean and geometric mean of $\mathbf{x}^p = (x_1^p, \dots, x_n^p)$. Wang et al.(see[9]) studied the Schur convexity, Schur geometric convexity and Schur harmonic convexity of $K_n(w_1, w_2, p)$.

Related geometric mean and harmonic mean, we define following the mixed mean of n variables involving three parameters.

Definition 1.1.

$$W_{n}(x, w_{1}, w_{2}, p) = \begin{cases} \left(\frac{w_{1}H_{n}(x^{p}) + w_{2}G_{n}(x^{p})}{w_{1} + w_{2}}\right)^{\frac{1}{p}}, & 0 \leq w_{1}, w_{2} < +\infty; \\ \left(H_{n}(x^{p})\right)^{\frac{1}{p}}, & w_{1} = +\infty; \\ \left(G_{n}(x^{p})\right)^{\frac{1}{p}}, & w_{2} = +\infty. \end{cases}$$

$$Where H_{n}(x^{p}) = \frac{n}{\sum_{i=1}^{n} x_{i}^{-p}}, G_{n}(x^{p}) = \prod_{i=1}^{n} x_{i}^{\frac{p}{n}}, p \neq 0, w_{1} \geq 0, w_{2} \geq 0, w_{1} + w_{2} \neq 0, x \in \mathbb{R}_{+}^{n}.$$

$$(3)$$

Where
$$H_n(x^p) = \frac{n}{\sum_{i=1}^n x_i^{-p}}$$
, $G_n(x^p) = \prod_{i=1}^n x_i^{\frac{p}{n}}$, $p \neq 0$, $w_1 \geq 0$, $w_2 \geq 0$, $w_1 + w_2 \neq 0$, $x \in \mathbb{R}^n_+$

In this paper, Schur convexity, Schur geometric convexity, Schur harmonic convexity of $W_n(\mathbf{x}, w_1, w_2, p)$ are discussed. As applications some interesting inequalities are obtained.

Our main results are as follows:

Theorem 1.2. Let $p \neq 0$, $w_1 \geq 0$, $w_2 \geq 0$, $w_1 + w_2 \neq 0$.

- (i) If $p \ge -1$, then $W_n(x, w_1, w_2, p)$ is Schur-concave with $x \in \mathbb{R}^n_+$.
- (ii) If $p \ge 0$, then $W_n(x, w_1, w_2, p)$ is Schur-geomertrically concave with $x \in \mathbb{R}^n_+$. If p < 0, then $W_n(x, w_1, w_2, p)$ is Schur-geomertrically convex with $x \in \mathbb{R}^n_+$.
- (iii) If $p \le 1$, then $W_n(x, w_1, w_2, p)$ is Schur-harmonically convex with $x \in \mathbb{R}^n_+$.

Theorem 1.3. The function $W_n(x, w_1, w_2, p)$ is decreasing with $w_1 \in [0, +\infty)$, $W_n(x, w_1, w_2, p)$ is increasing with $w_2 \in [0, +\infty)$.

Theorem 1.4. Let $x = (x_1, \dots, x_n) \in \mathbb{R}^n_+, 0 \le w_2^* \le w_2$.

- (i) If p ≤ -1, then \$\frac{W_n(x,w_1,w_2,p)}{W_n(x,w_1,w_2^*,p)}\$ is Schur-concave with \$x ∈ \mathbb{R}_+^n\$.
 (ii) If p ≤ 0, then \$\frac{W_n(x,w_1,w_2,p)}{W_n(x,w_1,w_2,p)}\$ is Schur-geomertrically concave with \$x ∈ \mathbb{R}_+^n\$.
 If p ≥ 0, then \$\frac{W_n(x,w_1,w_2,p)}{W_n(x,w_1,w_2^*,p)}\$ is Schur-geomertrically convex with \$x ∈ \mathbb{R}_+^n\$.
 (iii) If p ≥ 1, then \$\frac{W_n(x,w_1,w_2,p)}{W_n(x,w_1,w_2,p)}\$ is Schur-harmonically convex with \$x ∈ \mathbb{R}_+^n\$.

Theorem 1.5. If $0 < x_i \le \frac{1}{2}(i = 1, \dots, n)$, then $\frac{W_n(x_i, w_1, w_2, 1)}{W_n((1-x)_i, w_1, w_2, 1)}$ is increasing with w_2 .

2. Definitions and Lemmas

We introduce some definitions and lemmas, which will be used in the proofs of the main results in subsequent sections.

Definition 2.1 ([2, 3]). *Let* $x = (x_1, \dots, x_n)$ *and* $y = (y_1, \dots, y_n) \in \mathbb{R}^n_+$

- (i) x is said to be majorized by y (in symbols x < y) if $\sum_{i=1}^{n} x_{[i]} \le \sum_{i=1}^{n} y_{[i]}$ for $k = 1, \dots, n-1$ and $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_{i}$ where $x_{[1]} \ge \cdots \ge x_{[n]}$ are rearrangements of x and y in a descending order.
- (ii) $\Omega \subset \mathbb{R}^n$ is called a convex set if $(\alpha x_1 + \beta y_1, \dots, \alpha x_n + \beta y_n) \in \Omega$ for any x and $y \in \Omega$, where α and $\beta \in [0,1]$ with $\alpha + \beta = 1$.
- (iii) Let $\Omega \in \mathbb{R}_n$, $\varphi : \Omega \to \mathbb{R}$ is said to be a Schur convex function on Ω implies $\varphi(x) \leq \varphi(y)$. φ is said to be a Schur concave function on Ω if $-\varphi$ is Schur convex function.

Definition 2.2 ([4, 5]). *Let* $x = (x_1, ..., x_n)$ *and* $y = (y_1, ..., y_n) \in \mathbb{R}^n_+$.

- (i) A set $\Omega \subset \mathbb{R}^n_+$ is called a geometrically convex set if $(x_1^{\alpha}y_1^{\beta}, \dots, x_n^{\alpha}y_n^{\beta}) \in \Omega$ for any x and $y \in \Omega$, where α and $\beta \in [0,1]$ with $\alpha + \beta = 1$.
- (ii) Let $\Omega \subset \mathbb{R}^n_+$, $\varphi \colon \Omega \to \mathbb{R}_+$ is said to be a Schur geometrically convex function on Ω if $(\log x_1, \ldots, \log x_n) < (\log y_1, \ldots, \log y_n)$ on Ω implies $\varphi(x) \leq \varphi(y)$. φ is said to be a Schur geometrically concave function on Ω if and only if $-\varphi$ is Schur geometrically convex function.

Definition 2.3 ([5, 6]). *Let* $\Omega \subset \mathbb{R}^n_+$.

- (i) A set Ω is said to be a harmonically convex set if $\frac{xy}{\lambda x + (1-\lambda)y} \in \Omega$ for every $x, y \in \Omega$ and $\lambda \in [0,1]$, where $xy = \sum_{i=1}^{n} x_i y_i$ and $\frac{1}{x} = \left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)$.
- (ii) A function $\varphi: \Omega \to \mathbb{R}_+$ is said to be a Schur harmonically convex function on Ω if $\frac{1}{x} < \frac{1}{y}$ implies $\varphi(x) \le \varphi(y)$. A function φ is said to be a Schur harmonically concave function on Ω if and only if $-\varphi$ is a Schur harmonically convex function.

Lemma 2.4 ([2, 3]). Let $\Omega \subset \mathbb{R}^n$ is convex set, and has a nonempty interior set Ω^0 . Let $\varphi : \Omega \to \mathbb{R}$ is continuous on Ω and differentiable in Ω^0 . Then φ is the Schur – convex(Schur – concave) function, if and only if it is symmetric on Ω and if

$$(x_1 - x_2) \left(\frac{\partial \varphi}{\partial x_1} - \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \quad (or \le 0, respectively)$$

holds for any $x = (x_1, \dots, x_n) \in \Omega^0$.

Lemma 2.5 ([4, 5]). Let $\Omega \subset \mathbb{R}^n_+$ be a symmetric geometrically convex set with a nonempty interior Ω^0 . Let $\varphi : \Omega \to \mathbb{R}_+$ be continuous on Ω and differentiable on Ω^0 . Then φ is a Schur geometrically convex (Schur geometrically concave) function if and only if φ is symmetric on Ω and

$$(x_1 - x_2) \left(x_1 \frac{\partial \varphi}{\partial x_1} - x_2 \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \quad (or \le 0, respectively)$$

holds for any $\mathbf{x} = (x_1, \dots, x_n) \in \Omega^0$.

Lemma 2.6 ([6, 7]). Let $\Omega \subset \mathbb{R}^n_+$ be a symmetric harmonically convex set with a nonempty interior Ω^0 . Let $\varphi : \Omega \to \mathbb{R}_+$ be continuous on Ω and differentiable on Ω^0 . Then φ is a Schur harmonically convex (Schur harmonically concave) function if and only if φ is symmetric on Ω and

$$(x_1 - x_2) \left(x_1^2 \frac{\partial \varphi}{\partial x_1} - x_2^2 \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \quad (or \le 0, respectively)$$

holds for any $x = (x_1, \dots, x_n) \in \Omega^0$.

Lemma 2.7. [3] Let $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n_+$ and $G_n(x) = \prod_{i=1}^n x_i^{\frac{1}{n}}$. Then

(*i*)

$$\left(\underbrace{\log G_n(x), \log G_n(x), \cdots, \log G_n(x)}_{n}\right) < (\log x_1, \log x_2, \cdots, \log x_n). \tag{4}$$

(ii) If $\sum_{i=1}^{n} x_i = s$, then

$$\left(\frac{s-x_1}{n-1}, \frac{s-x_2}{n-1}, \cdots, \frac{s-x_n}{n-1}\right) < (x_1, x_2, \cdots, x_n).$$
 (5)

(iii) If $0 < r \le s$, then

$$\left(\frac{x_1^r}{\sum_{i=1}^n x_i^r}, \cdots, \frac{x_n^r}{\sum_{i=1}^n x_i^r}\right) < \left(\frac{x_1^s}{\sum_{i=1}^n x_i^s}, \cdots, \frac{x_n^s}{\sum_{i=1}^n x_i^s}\right). \tag{6}$$

(iv) Let $\sum_{i=1}^{n} x_i = s$. For any c > 0, we have

$$\left(\frac{c+x_1}{nc+s'}, \cdots, \frac{c+x_n}{nc+s}\right) < \left(\frac{x_1}{s'}, \cdots, \frac{x_n}{s'}\right). \tag{7}$$

3. Proofs of Main results

Proof. [Proof of Theorem 1.2] Write

$$w(w_1, w_2, p) = \frac{w_1 H_n(\mathbf{x}^p) + w_2 G_n(\mathbf{x}^p)}{w_1 + w_2}.$$

It is clear that $W_n(\mathbf{x}, w_1, w_2, p)$ is symmetric with $(x_1, \dots, x_n) \in \mathbb{R}^n_+$, without loss generality, we may assume that $x_1 \ge x_2 > 0$. We have

$$\frac{\partial H_n}{\partial x_1} = \frac{p}{n} [H_n(\mathbf{x}^p)]^2 \frac{1}{x_1^{p+1}}, \frac{\partial H_n}{\partial x_2} = \frac{p}{n} [H_n(\mathbf{x}^p)]^2 \frac{1}{x_2^{p+1}}.$$

$$\frac{\partial G_n}{\partial x_1} = \frac{p}{n} G_n(\mathbf{x}^p) \frac{1}{x_1}, \frac{\partial G_n}{\partial x_2} = \frac{p}{n} G_n(\mathbf{x}^p) \frac{1}{x_2}$$

And then

$$\begin{split} \frac{\partial W_n}{\partial x_1} &= \frac{1}{p} [w(w_1, w_2, p)^{\frac{1}{p}-1} \frac{1}{w_1 + w_2} \left(w_1 \frac{\partial H_n}{\partial x_1} + w_2 \frac{\partial G_n}{\partial x_1} \right) \\ &= \frac{1}{n} \frac{1}{w_1 + w_2} [w(w_1, w_2, p)]^{\frac{1}{p}-1} \left(w_1 (H_n(\mathbf{x}^p))^2 \frac{1}{x_1^{p+1}} + w_2 G_n(\mathbf{x}^p) \frac{1}{x_1} \right), \\ \frac{\partial W_n}{\partial x_2} &= \frac{1}{n} \frac{1}{w_1 + w_2} [w(w_1, w_2, p)]^{\frac{1}{p}-1} \left(w_1 (H_n(\mathbf{x}^p))^2 \frac{1}{x_2^{p+1}} + w_2 G_n(\mathbf{x}^p) \frac{1}{x_2} \right), \end{split}$$

$$x_1 \frac{\partial W_n}{\partial x_1} = \frac{1}{n} \frac{1}{w_1 + w_2} [w(w_1, w_2, p)]^{\frac{1}{p} - 1} \left(w_1 (H_n(\mathbf{x}^p))^2 \frac{1}{x_n^p} + w_2 G_n(\mathbf{x}^p) \right),$$

$$x_2 \frac{\partial W_n}{\partial x_2} = \frac{1}{n} \frac{1}{w_1 + w_2} [w(w_1, w_2, p)]^{\frac{1}{p} - 1} \left(w_1 (H_n(\mathbf{x}^p))^2 \frac{1}{x_2^p} + w_2 G_n(\mathbf{x}^p) \right),$$

$$x_1^2 \frac{\partial W_n}{\partial x_1} = \frac{1}{n} \frac{1}{w_1 + w_2} [w(w_1, w_2, p)]^{\frac{1}{p} - 1} \left(w_1 (H_n(\mathbf{x}^p))^2 \frac{1}{x_1^{p-1}} + w_2 G_n(\mathbf{x}^p) x_1 \right),$$

$$x_2^2 \frac{\partial W_n}{\partial x_2} = \frac{1}{n} \frac{1}{w_1 + w_2} [w(w_1, w_2, p)]^{\frac{1}{p} - 1} \left(w_1 (H_n(\mathbf{x}^p))^2 \frac{1}{x_2^{p-1}} + w_2 G_n(\mathbf{x}^p) x_2 \right).$$

Therefore

(i)

$$\Delta_{1} := (x_{1} - x_{2}) \left(\frac{\partial W_{n}}{\partial x_{1}} - \frac{\partial W_{n}}{\partial x_{2}} \right)$$

$$= (x_{1} - x_{2}) \frac{1}{n} \frac{1}{w_{1} + w_{2}} [w(w_{1}, w_{2}, p)]^{\frac{1}{p} - 1}$$

$$\times \left(w_{1} (H_{n}(\mathbf{x}^{p}))^{2} \left(\frac{1}{x_{1}^{p+1}} - \frac{1}{x_{2}^{p+1}} \right) + w_{2} G_{n}(\mathbf{x}^{p}) \left(\frac{1}{x_{1}} - \frac{1}{x_{2}} \right) \right).$$

If $p \ge -1$, then $\Delta_1 \le 0$. By Lemma 2.4, it follows that $W_n(\mathbf{x}, w_1, w_2, p)$ is Schur-concave with $\mathbf{x} \in \mathbb{R}^n_+$.

$$\Delta_2 := (x_1 - x_2) \left(x_1 \frac{\partial W_n}{\partial x_1} - x_2 \frac{\partial W_n}{\partial x_2} \right)$$

$$= (x_1 - x_2) \frac{1}{n} \frac{1}{w_1 + w_2} [w(w_1, w_2, p)]^{\frac{1}{p} - 1} w_1 (H_n(\mathbf{x}^p))^2 (\frac{1}{x_1^p} - \frac{1}{x_2^p}).$$

If $p \ge 0$, then $\Delta_2 \le 0$. By Lemma 2.5, it follows that $W_n(\mathbf{x}, w_1, w_2, p)$ is Schur-geometrically concave with $\mathbf{x} = (x_1, ... x_n) \in \mathbb{R}^n_+$. If p < 0, then $\Delta_2 \ge 0$. By Lemma 2.5, it follows that $W_n(\mathbf{x}, w_1, w_2, p)$ is Schur-geometrically convex with $\mathbf{x} \in \mathbb{R}^n_+$.

(iii)

$$\Delta_{3} := (x_{1} - x_{2}) \left(x_{1}^{2} \frac{\partial W_{n}}{\partial x_{1}} - x_{2}^{2} \frac{\partial W_{n}}{\partial x_{2}} \right)$$

$$= (x_{1} - x_{2}) \frac{1}{n} \frac{1}{w_{1} + w_{2}} [w(w_{1}, w_{2}, p)]^{\frac{1}{p} - 1}$$

$$\times \left(w_{1} (H_{n}(\mathbf{x}^{p}))^{2} (\frac{1}{x_{1}^{p-1}} - \frac{1}{x_{2}^{p-1}}) + w_{2} G_{n}(\mathbf{x}^{p}) (x_{1} - x_{2}) \right).$$

If $p \le 1$, then $\Delta_3 \ge 0$. By Lemma 2.6, it follows that $W_n(\mathbf{x}, w_1, w_2, p)$ is Schur harmonically convex with $\mathbf{x} \in \mathbb{R}^n_+$.

The proof of Theorem 1.2 is complete. \Box

Proof. [Proof of Theorem 1.3] Because

$$\frac{\partial W_n}{\partial w_1} = \frac{1}{(w_1 + w_2)^2} \left[H_n(\mathbf{x}^p)(w_1 + w_2) - (w_1 H_n(\mathbf{x}^p) + w_2 G_n(\mathbf{x}^p)) \right]$$
$$= \frac{1}{(w_1 + w_2)^2} w_2 [H_n(\mathbf{x}^p) - G_n(\mathbf{x}^p)] \le 0,$$

$$\frac{\partial W_n}{\partial w_2} = \frac{1}{(w_1 + w_2)^2} \left[G_n(\mathbf{x}^p)(w_1 + w_2) - (w_1 H_n(\mathbf{x}^p) + w_2 G_n(\mathbf{x}^p)) \right]$$
$$= \frac{1}{(w_1 + w_2)^2} w_1 [G_n(\mathbf{x}^p) - H_n(\mathbf{x}^p)] \ge 0.$$

So that, $W_n(\mathbf{x}, w_1, w_2, p)$ is decreasing with w_1 on $[0, +\infty)$, $W_n(\mathbf{x}, w_1, w_2, p)$ is increasing with w_2 on $[0, +\infty)$. The proof of Theorem 1.3 is complete. \square

Proof. [Proof of Theorem 1.3] Write

$$\overline{W}_n(\mathbf{x}) = \frac{W_n(\mathbf{x}, w_1, w_2, p)}{W_n(\mathbf{x}, w_1, w_2^*, p)},$$

$$w_n(\mathbf{x}) = \frac{w_1 H_n(\mathbf{x}^p) + w_2 G_n(\mathbf{x}^p)}{w_1 + w_2},$$

$$w_n^*(\mathbf{x}) = \frac{w_1 H_n(\mathbf{x}^p) + w_2^* G_n(\mathbf{x}^p)}{w_1 + w_2^*}.$$

We have

$$\begin{split} \frac{\partial \overline{W}_{n}}{\partial x_{1}} &= \frac{1}{W_{n}^{2}(\mathbf{x}, w_{1}, w_{2}^{*}, p)} \{ \frac{1}{p} (w_{n}(\mathbf{x}))^{\frac{1}{p}-1} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p}} \left[\frac{\frac{w_{1}p}{n} (H_{n}(\mathbf{x}^{p}))^{2} \frac{1}{x_{1}^{p+1}} + \frac{w_{2}p}{n} G_{n}(\mathbf{x}^{p}) \frac{1}{x_{1}}}{w_{1} + w_{2}} \right] \\ &- \frac{1}{p} (w_{n}(\mathbf{x}))^{\frac{1}{p}} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p}-1} \left[\frac{\frac{w_{1}p}{n} (H_{n}(\mathbf{x}^{p}))^{2} \frac{1}{x_{1}^{p+1}} + \frac{w_{2}p}{n} G_{n}(\mathbf{x}^{p}) \frac{1}{x_{1}}}{w_{1} + w_{2}^{*}} \right] \} \\ &= \frac{1}{W_{n}^{2}(\mathbf{x}, w_{1}, w_{2}^{*}, p)} \{ \frac{1}{n} (w_{n}(\mathbf{x}))^{\frac{1}{p}-1} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p}-1} \left[\frac{w_{1} (H_{n}(\mathbf{x}^{p}))^{2} \frac{1}{x_{1}^{p+1}} + w_{2} G_{n}(\mathbf{x}^{p}) \frac{1}{x_{1}}}{w_{1} + w_{2}^{*}} \right] \\ &\times \left[\frac{w_{1} (H_{n}(\mathbf{x}^{p}))^{2} \frac{1}{x_{1}^{p+1}} + w_{2}^{*} G_{n}(\mathbf{x}^{p}) \frac{1}{x_{1}}}{w_{1} + w_{2}^{*}} \right] \left[\frac{w_{1} H_{n}(\mathbf{x}^{p}) + w_{2} G_{n}(\mathbf{x}^{p})}{w_{1} + w_{2}} \right] \} \\ &= \frac{1}{W_{n}^{2}(\mathbf{x}, w_{1}, w_{2}^{*}, p)} \frac{1}{n} (w_{n}(\mathbf{x}))^{\frac{1}{p}-1} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p}-1} \frac{1}{(w_{1} + w_{2}^{*})(w_{1} + w_{2})} [w_{1} (H_{n}(\mathbf{x}^{p}))^{2} \\ &\times G_{n}(\mathbf{x}^{p}) (w_{2}^{*} - w_{2}) \frac{1}{x_{1}^{p+1}} + w_{1} H_{n}(\mathbf{x}^{p}) G_{n}(\mathbf{x}^{p}) (w_{2} - w_{2}^{*}) \frac{1}{x_{1}} \right] \\ &= \frac{1}{W_{n}^{2}(\mathbf{x}, w_{1}, w_{2}^{*}, p)} \frac{1}{n} (w_{n}(\mathbf{x}))^{\frac{1}{p}-1} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p}-1} \frac{w_{1}}{(w_{1} + w_{2}^{*})(w_{1} + w_{2})} H_{n}(\mathbf{x}^{p}) G_{n}(\mathbf{x}^{p}) \\ &\times (w_{2}^{*} - w_{2}) (H_{n}(\mathbf{x}^{p}) \frac{1}{x_{1}^{p+1}} - \frac{1}{x_{1}}), \end{split}$$

$$\frac{\partial \overline{W}_n}{\partial x_2} = \frac{1}{W_n^2(\mathbf{x}, w_1, w_2^*, p)} \frac{1}{n} (w_n(\mathbf{x}))^{\frac{1}{p} - 1} (w_n^*(\mathbf{x}))^{-\frac{1}{p} - 1} \frac{w_1}{(w_1 + w_2^*)(w_1 + w_2)} H_n(\mathbf{x}^p) G_n(\mathbf{x}^p)
\times (w_2^* - w_2) (H_n(\mathbf{x}^p) \frac{1}{x_2^{p+1}} - \frac{1}{x_2}),$$

and then

(*i*)

$$\Delta_{4} := (x_{1} - x_{2}) \left(\frac{\partial \overline{W}_{n}}{\partial x_{1}} - \frac{\partial \overline{W}_{n}}{\partial x_{2}} \right)$$

$$= \frac{1}{W_{n}^{2}(\mathbf{x}, w_{1}, w_{2}^{*}, p)} (x_{1} - x_{2}) \frac{1}{n} (w_{n}(\mathbf{x}))^{\frac{1}{p} - 1} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p} - 1} \frac{w_{1}}{(w_{1} + w_{2}^{*})(w_{1} + w_{2})}$$

$$\times H_{n}(\mathbf{x}^{p}) G_{n}(\mathbf{x}^{p}) (w_{2}^{*} - w_{2}) [H_{n}(\mathbf{x}^{p}) (x_{1}^{-(p+1)} - x_{2}^{-(p+1)}) + (x_{2}^{-1} - x_{1}^{-1})],$$

so, if $w_2^* \le w_2$ and $p \le -1$, then $\Delta_4 \le 0$. By Lemma 2.4, it follows that $\overline{W}_n(\mathbf{x}) = \frac{W_n(\mathbf{x}, w_1, w_2, p)}{W_n(\mathbf{x}, w_1, w_2, p)}$ is Schur concave with $\mathbf{x} \in \mathbb{R}_+^n$.

(ii)

$$\Delta_{5} := (x_{1} - x_{2}) \left(x_{1} \frac{\partial \overline{W}_{n}}{\partial x_{1}} - x_{2} \frac{\partial \overline{W}_{n}}{\partial x_{2}} \right)$$

$$= \frac{1}{W_{n}^{2}(\mathbf{x}, w_{1}, w_{2}^{*}, p)} (x_{1} - x_{2}) \frac{1}{n} (w_{n}(\mathbf{x}))^{\frac{1}{p} - 1} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p} - 1} \frac{w_{1}}{(w_{1} + w_{2}^{*})(w_{1} + w_{2})}$$

$$\times H_{n}^{2}(\mathbf{x}^{p}) G_{n}(\mathbf{x}^{p}) (w_{2}^{*} - w_{2}) (x_{1}^{-p} - x_{2}^{-p}),$$

so, if $w_2^* \le w_2$ and $p \le 0$, then $\Delta_5 \le 0$. By Lemma 2.5, it follows that $\overline{W}_n(\mathbf{x}) = \frac{W_n(\mathbf{x}, w_1, w_2, p)}{W_n(\mathbf{x}, w_1, w_2, p)}$ is Schur geometrically concave with $\mathbf{x} \in \mathbb{R}^n_+$. If $p \ge 0$, then $\Delta_5 \ge 0$. By Lemma 2.5, it follows that $\overline{W}_n(\mathbf{x}) = \frac{W_n(\mathbf{x}, w_1, w_2, p)}{W_n(\mathbf{x}, w_1, w_2, p)}$ is Schur geometrically convex with $\mathbf{x} \in \mathbb{R}^n_+$.

(iii)

$$\Delta_{6} := (x_{1} - x_{2}) \left(x_{1}^{2} \frac{\partial \overline{W}_{n}}{\partial x_{1}} - x_{1}^{2} \frac{\partial \overline{W}_{n}}{\partial x_{2}} \right)$$

$$= \frac{1}{W_{n}^{2}(\mathbf{x}, w_{1}, w_{2}^{*}, p)} (x_{1} - x_{2}) \frac{1}{n} (w_{n}(\mathbf{x}))^{\frac{1}{p} - 1} (w_{n}^{*}(\mathbf{x}))^{-\frac{1}{p} - 1} \frac{w_{1}}{(w_{1} + w_{2}^{*})(w_{1} + w_{2})}$$

$$\times H_{n}(\mathbf{x}^{p}) G_{n}(\mathbf{x}^{p}) (w_{2}^{*} - w_{2}) [H_{n}(\mathbf{x}^{p})(x_{1}^{-(p-1)} - x_{2}^{-(p-1)}) + (x_{2} - x_{1})],$$

so, if $w_2^* \le w_2$ and $p \ge 1$, then $\Delta_6 \ge 0$. By Lemma 2.6, it follows that $\overline{W}_n(\mathbf{x}) = \frac{W_n(\mathbf{x}, w_1, w_2, p)}{W_n(\mathbf{x}, w_1, w_2^*, p)}$ is Schur harmonically convex with $\mathbf{x} \in \mathbb{R}^n_+$.

The proof of Theorem 1.4 is complete. \Box

Proof. [Proof of Theorem 1.5] Let

$$W_{w_2,p} = \frac{W(\mathbf{x}, w_1, w_2, p)}{W(1 - \mathbf{x}, w_1, w_2, p)}$$
$$= \left[\frac{w_1 H_n(\mathbf{x}^p) + w_2 G_n(\mathbf{x}^p)}{w_1 H_n((1 - \mathbf{x})^p) + w_2 G_n((1 - \mathbf{x})^p)} \right]^{\frac{1}{p}},$$

then

$$\frac{\partial W_{w_2,p}}{\partial w_2} = \frac{1}{p} \left[\frac{w_1 H_n(\mathbf{x}^p) + w_2 G_n(\mathbf{x}^p)}{w_1 H_n((1-\mathbf{x})^p) + w_2 G_n((1-\mathbf{x})^p)} \right]^{\frac{1}{p}-1} \times \frac{w_1 [G_n(\mathbf{x}^p) H_n((1-\mathbf{x})^p) - H_n(\mathbf{x}^p) G_n((1-\mathbf{x})^p)]}{[w_1 H_n((1-\mathbf{x})^p) + w_2 G_n((1-\mathbf{x})^p)]^2}.$$

Because $0 < x_i \le \frac{1}{2}$, by Wang-Wang inequality([1]):

$$\frac{H_n(\mathbf{x})}{H_n(1-\mathbf{x})} \leq \frac{G_n(\mathbf{x})}{G_n(1-\mathbf{x})},$$

we have

$$H_n(\mathbf{x})G_n(1-\mathbf{x}) - G_n(\mathbf{x})H_n(1-\mathbf{x}) \le 0.$$

and then $\frac{\partial W_{w_2,1}}{\partial w_2} \ge 0$. So that, $W_{w_2,1} = \frac{W(\mathbf{x},w_1,w_2,1)}{W(1-\mathbf{x},w_1,w_2,1)}$ is increasing with w_2 . The proof of Theorem 1.5 is complete. \square

4. Applications

Theorem 4.1. The inequalities

$$[H(x_1^p, \dots, x_n^p)]^{\frac{1}{p}} \le W_n(x, w_1, w_2, p) \le [G(x_1^p, \dots, x_n^p)]^{\frac{1}{p}} = G_n(x)$$
(8)

hold.

Proof. Note that

$$W_n(\mathbf{x},0,w_2,p) = [G(x_1^p,\cdots,x_n^p)]^{\frac{1}{p}}, W_n(\mathbf{x},+\infty,w_2,p) = [H(x_1^p,\cdots,x_n^p)]^{\frac{1}{p}},$$

by Theorem 1.3, we have

$$[H(x_1^p, \dots, x_n^p)]^{\frac{1}{p}} \leq W_n(\mathbf{x}, w_1, w_2, p) \leq [G(x_1^p, \dots, x_n^p)]^{\frac{1}{p}}.$$

The proof is complete. \Box

Remark 4.2. Let p = 1, we get sharpening of H - G inequality:

$$H_n(x) \le W_n(x, w_1, w_2, 1) \le G_n(x).$$
 (9)

Theorem 4.3. Let $x_i > 0$, $i = 1, 2, \dots, n$, and $\sum_{i=1}^{n} x_i = s$. If $p \le -1$, $0 \le w_2^* < w_2$, then Ky-Fan type inequality:

$$\frac{W_n(x, w_1, w_2, p)}{W_n(s - x, w_1, w_2, p)} \le \frac{W_n(x, w_1, w_2^*, p)}{W_n(s - x, w_1, w_2^*, p)}$$
(10)

holds.

Proof. From Lemma 2.7, we have

$$\left(\frac{s-x_1}{n-1},\frac{s-x_2}{n-1},\cdots,\frac{s-x_n}{n-1}\right)<(x_1,x_2,\cdots,x_n),$$

by Theorem 1.4(i), it is follows that

$$\frac{W_n(\mathbf{x}, w_1, w_2, p)}{W_n(\mathbf{x}, w_1, w_2^*, p)} \le \frac{W_n\left(\frac{s-\mathbf{x}}{n-1}, w_1, w_2, p\right)}{W_n\left(\frac{s-\mathbf{x}}{n-1}, w_1, w_2^*, p\right)} = \frac{W_n(s-\mathbf{x}, w_1, w_2, p)}{W_n(s-\mathbf{x}, w_1, w_2^*, p)}$$

$$\Rightarrow \frac{W_n(\mathbf{x}, w_1, w_2, p)}{W_n(s - \mathbf{x}, w_1, w_2, p)} \le \frac{W_n(\mathbf{x}, w_1, w_2^*, p)}{W_n(s - \mathbf{x}, w_1, w_2^*, p)}.$$

The proof is complete. \Box

Remark 4.4. By Theorem 4.3 we know $M_1(w_2) = \frac{W_n(x,w_1,w_2,p)}{W_n(s-x,w_1,w_2,p)}$ is decreasing with w_2 . Notice that $W_n(x,w_1,0,p) = [H_n(x^p)]^{\frac{1}{p}}$, $W_n(x,w_1,+\infty,p) = [G_n(x^p)]^{\frac{1}{p}} = G_n(x)$. So that, for $x_i > 0$, $i = 1,2,\cdots$, n and $\sum_{i=1}^n x_i = 1$, if $p \le -1$ and $w_1 > 0$, $0 \le w_2 < +\infty$, then inequalities:

$$\frac{G_n(x)}{G_n(1-x)} \le \frac{W_n(x,w_1,w_2,p)}{W_n(1-x,w_1,w_2,p)} \le \frac{\left[H_n(x^p)\right]^{\frac{1}{p}}}{\left[H_n((1-x)^p)\right]^{\frac{1}{p}}}$$

holds.

Let p = -1. We get the sharpening of Ky Fen's inequality:

$$\frac{G_n(x)}{G_n(1-x)} \le \frac{W_n(x, w_1, w_2, -1)}{W_n(1-x, w_1, w_2, -1)} \le \frac{A_n(x)}{A_n(1-x)}.$$
(11)

Theorem 4.5. *If* $x_i > 0$, $i = 1, 2, \dots, n$, and $\sum_{i=1}^n x_i = 1$, then

$$\frac{H_n(x^{-1})}{H_n((1-x)^{-1})} \le \frac{W_n(x^{-1}, w_1, w_2, 1)}{W_n((1-x)^{-1}, w_1, w_2, 1)} \le \frac{G_n(x^{-1})}{G_n((1-x)^{-1})}.$$
(12)

Proof. If $x_i > 0$, $i = 1, 2, \dots, n$, $\sum_{i=1}^n x_i = 1$, when $0 \le w_2^* < w_2$, by Lemma 2.7 the majorization inequality:

$$\left(\frac{1}{\frac{n-1}{1-x_1}}, \cdots, \frac{1}{\frac{n-1}{1-x_n}}\right) < \left(\frac{1}{\frac{1}{x_1}}, \dots, \frac{1}{\frac{1}{x_n}}\right)$$

holds. By Theorem 1.4(iii), when $p \ge 1$, we get

$$\frac{W_n\left(\frac{n-1}{1-x}, w_1, w_2, p\right)}{W_n\left(\frac{n-1}{1-x}, w_1, w_2^*, p\right)} = \frac{W_n\left(\frac{1}{1-x}, w_1, w_2, p\right)}{W_n\left(\frac{1}{1-x}, w_1, w_2^*, p\right)} \le \frac{W_n\left(\frac{1}{x}, w_1, w_2, p\right)}{W_n\left(\frac{1}{x}, w_1, w_2^*, p\right)}$$

$$\Rightarrow \frac{W_n\left(\frac{1}{x}, w_1, w_2^*, p\right)}{W_n\left(\frac{1}{1-x}, w_1, w_2^*, p\right)} \le \frac{W_n\left(\frac{1}{x}, w_1, w_2, p\right)}{W_n\left(\frac{1}{1-x}, w_1, w_2, p\right)},$$

so $M_2(w_2) = \frac{W_n(\frac{1}{x}, w_1, w_2, p)}{W_n(\frac{1}{1-x}, w_1, w_2, p)}$ is increasing with w_2 . When $0 \le w_1 < +\infty$, we have

$$\frac{W_n\left(\frac{1}{x}, w_1, 0, p\right)}{W_n\left(\frac{1}{1-x}, w_1, 0, p\right)} \leq \frac{W_n\left(\frac{1}{x}, w_1, w_2, p\right)}{W_n\left(\frac{1}{1-x}, w_1, w_2, p\right)} \leq \frac{W_n\left(\frac{1}{x}, w_1, +\infty, p\right)}{W_n\left(\frac{1}{1-x}, w_1, +\infty, p\right)}.$$

By Definition 1.1, we get

$$\frac{\left(H_n(\frac{1}{\mathbf{x}})^p\right)^{\frac{1}{p}}}{\left(H_n(\frac{1}{1-\mathbf{x}})^p\right)^{\frac{1}{p}}} \leq \frac{W_n\left(\frac{1}{\mathbf{x}}, w_1, w_2, p\right)}{W_n\left(\frac{1}{1-\mathbf{x}}, w_1, w_2, p\right)} \leq \frac{\left(G_n(\frac{1}{\mathbf{x}})^p\right)^{\frac{1}{p}}}{\left(G_n(\frac{1}{1-\mathbf{x}})^p\right)^{\frac{1}{p}}}.$$

Let p = 1, we have

$$\frac{H_n(\mathbf{x}^{-1})}{H_n((1-\mathbf{x})^{-1})} \leq \frac{W_n(\mathbf{x}^{-1}, w_1, w_2, 1)}{W_n((1-\mathbf{x})^{-1}, w_1, w_2, 1)} \leq \frac{G_n(\mathbf{x}^{-1})}{G_n((1-\mathbf{x})^{-1})}.$$

The proof is complete. \Box

Theorem 4.6. *If* $0 < x_i \le \frac{1}{2}$, $i = 1, 2, \dots, n$, then

$$\frac{H_n(x)}{H_n(1-x)} \le \frac{W_n(x, w_1, w_2, 1)}{W_n(1-x, w_1, w_2, 1)} \le \frac{G_n(x)}{G_n(1-x)}.$$
(13)

Proof. By Theorem 1.5 we have

$$\frac{W_n\left(\mathbf{x}, w_1, 0, 1\right)}{W_n\left(1 - \mathbf{x}, w_1, 0, 1\right)} \leq \frac{W_n\left(\mathbf{x}, w_1, w_2, 1\right)}{W_n\left(1 - \mathbf{x}, w_1, w_2, 1\right)} \leq \frac{W_n\left(\mathbf{x}, w_1, +\infty, 1\right)}{W_n\left(1 - \mathbf{x}, w_1, +\infty, 1\right)},$$

and by Definition 1.1 we get

$$\frac{H_n(\mathbf{x})}{H_n(1-\mathbf{x})} \le \frac{W_n(\mathbf{x}, w_1, w_2, 1)}{W_n(1-\mathbf{x}, w_1, w_2, 1)} \le \frac{G_n(\mathbf{x})}{G_n(1-\mathbf{x})}.$$

The proof is complete. \Box

The following inequalities are introduced in reference [1](see[1],p52):

Let $x_i \in \mathbb{R}_+$, $i = 1, \dots, n$. If c > 0, then

$$\frac{A_n(\mathbf{x}+c)}{G_n(\mathbf{x}+c)} \le \frac{A_n(\mathbf{x})}{G_n(\mathbf{x})}.\tag{14}$$

We obtain the following sharpening of inequality (14).

Theorem 4.7. Let $x_i \in \mathbb{R}_+$, $i = 1, \dots, n$. For any c > 0, we have

$$\frac{G_n(x)}{G_n(c+x)} \le \frac{W_n(x, w_1, w_2, -1)}{W_n(c+x, w_1, w_2, -1)} \le \frac{A_n(x)}{A_n(c+x)}.$$
(15)

Proof. By Theorem 1.4 (i) and according to the majorization inequality in Lemma 2.7:

$$\left(\frac{c+x_1}{nc+s}, \cdots, \frac{c+x_n}{nc+s}\right) < \left(\frac{x_1}{s}, \cdots, \frac{x_n}{s}\right),$$

it is easy to prove inequality (15) is hold.

The proof is complete. \Box

Let $(x_1, \dots, x_n) \in \mathbb{R}^n_+$,

$$G(r,s;\mathbf{x}) = \left(\frac{\sum_{i=1}^{n} x_i^s}{\sum_{i=1}^{n} x_i^r}\right)^{\frac{1}{s-r}}, (s \neq r)$$

is Gini mean of n variables.

For Gini mean of n variables, we have the following conclusions.

Theorem 4.8. *Let* $x = (x_1, \dots, x_n) \in \mathbb{R}^n_+$. *If* 0 < r < s, *then*

$$G(r,s;x) \ge \left(\frac{W_n(x^s, w_1, w_2, -1)}{W_n(x^r, w_1, w_2, -1)}\right)^{\frac{1}{s-r}} \ge G_n(x). \tag{16}$$

Proof. By Lemma 2.7(*iii*) the majorization inequality:

$$\left(\frac{x_1^r}{\sum_{i=1}^n x_i^r}, \cdots, \frac{x_n^r}{\sum_{i=1}^n x_i^r}\right) < \left(\frac{x_1^s}{\sum_{i=1}^n x_i^s}, \cdots, \frac{x_n^s}{\sum_{i=1}^n x_i^s}\right)$$

holds, when $0 \le w_2^* < w_2$, by Theorem 1.4(i) we have

$$\frac{W_n(\frac{x^s}{\sum_{i=1}^n x_i^s}, w_1, w_2, p)}{W_n(\frac{x^s}{\sum_{i=1}^n x_i^s}, w_1, w_2^*, p)} \leq \frac{W_n(\frac{x^r}{\sum_{i=1}^n x_i^r}, w_1, w_2, p)}{W_n(\frac{x^r}{\sum_{i=1}^n x_i^r}, w_1, w_2^*, p)}$$

$$\Rightarrow \frac{W_n(\mathbf{x}^s, w_1, w_2, p)}{W_n(\mathbf{x}^r, w_1, w_2, p)} \le \frac{W_n(\mathbf{x}^s, w_1, w_2^*, p)}{W_n(\mathbf{x}^r, w_1, w_2^*, p)}.$$

So, $M_3(w_2) = \frac{W_n(\mathbf{x}^s, w_1, w_2, p)}{W_n(\mathbf{x}^r, w_1, w_2, p)}$ is decreasing with w_2 .

Notice that $W_n(\mathbf{x}^k, w_1, 0, p) = [H_n(\mathbf{x}^{kp})]^{\frac{1}{p}}$, $W_n(\mathbf{x}^k, w_1, +\infty, p) = [G_n(\mathbf{x}^{kp})]^{\frac{1}{p}} = G_n(\mathbf{x}^k)$, so that, for $x_i > 0$, $i = 1, 2, \dots, n$ and s > r > 0, if $p \le -1$ and $w_1 > 0$, $0 \le w_2 < +\infty$, then inequality

$$\frac{G_n(\mathbf{x}^s)}{G_n(\mathbf{x}^r)} \le \frac{W_n(\mathbf{x}^s, w_1, w_2, p)}{W_n(\mathbf{x}^r, w_1, w_2, p)} \le \frac{[H_n(\mathbf{x}^{sp})]^{\frac{1}{p}}}{[H_n(\mathbf{x}^{rp})]^{\frac{1}{p}}}$$

holds.

Let p = -1, we get inequality

$$G(r,s;\mathbf{x}) \ge \left(\frac{W_n(\mathbf{x}^s,w_1,w_2,-1)}{W_n(\mathbf{x}^r,w_1,w_2,-1)}\right)^{\frac{1}{s-r}} \ge G_n(\mathbf{x}).$$

The proof is complete. \Box

References

- [1] J. C. Kuang, Applied Inequalities (Chang yong bu deng shi), 4rd ed., Shandong Press of Science and Technology, Jinan, China, 2010 (in Chinese).
- [2] B. Y. Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990. (Chinese)
- [3] A. M. Marshall and I. Olkin, Inequalities: theory of majorization and its application. New York: Academies Press, 1979.
- [4] X. M. Zhang, Geometrically Convex Functions. Hefei: An'hui University Press, 2004. (Chinese)
- [5] Y.M. Chu, G.D. Wang and X.H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Mathematische Nachrichten, 2011, 284 (5-6): 653-663.
- [6] J.X. Meng, Y.M. Chu and X.M. Tang, The Schur-harmonic-convexity of dual form of the Hamy symmetric function, Matematički Vesnik, 2010, 62 (1): 37-46.
- [7] J.X. Meng, Y.M. Chu and X.M. Tang, The Schur-harmonic-convexity of dual form of the Hamy symmetric function, Matematički Vesnik, 2010, 62 (1): 37-46.
- [8] C.R FU, D.S. Wang, AND H.N. Shi, Schur convexity for a of two variables with three parameters, Filomat, 32:19(2018),6643-6651.
- [9] D.S. Wang, C.R. Fu and H.N. Shi, Schur-convexity for a mean of n variables with three parameters, https://www.researchgate.net/publication/337181499/.
- [10] W.M. Gong, X.H. Shen and Y.M. Chu, The Schur convexity for the generalized Muirhead mean, J. Math. Inequal., Volume 8, Number 4 (2014), 855-862.
- [11] Y. Wu, F. Qi and H.N. Shi, Schur-harmonic convexity for differences of some special means in two variables, J. Math. Inequal., J.Math. Inequal., Volume 8, Number 2 (2014), 321-330.
- [12] K.M. Nagaraja, Sudhir Kumar Sahu, Schur harmonic convexity of Stolarsky extended mean values, Scientia Magna, Vol. 9 (2013), No. 2, 18-29.
- [13] C.P. Niculescu, Convexity according to the geometric mean, Mathematical Inequalities & Applications, 2000,3(2): 155-167.
- [14] K.M. Nagaraja, Sudhir Kumar Sahu, Schur harmonic convexity of Stolarsky extended mean values, Scientia Magna, Vol. 9 (2013), No. 2, 18-29.
- [15] W.M. Gong, H. Sun and Y.M. Chu, The Schur convexity for the generalized muirhead mean, J.Math. Inequal., Volume 8, Number 4 (2014), 855-862.
- [16] H.N. Shi, Y.M. Jiang and W.D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini mean, Computers and Mathematics with Applications, 57 (2009) 266-274.
- [17] A. Witkowski, On Schur convexity and Schur-geometrical convexity of four-parameter family of means, Math. Inequal. Appl., 2011, 14 (4) 897-903.
- [18] J. Sándor, The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal., 2007, 1, no. 2, 212-215.

- [19] Y.M. Chu, X.M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, Journal of Mathematics of Kyoto University, 2008, 48(1): 229-238.
- [20] Y.M. Chu, X.M. Zhang, The Schur geometrical convexity of the extended mean values, Journal of Convex Analysis, 2008, 15, No. 4: 869-890.
- [21] W.F. Xia, Y.M. Chu, The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Mathematica Scientia 2011, 31B(3): 1103-1112.
- [22] H.N. Shi, B. Mihaly, S.H. Wu, and D.-M. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl., vol. 2008, Article ID 879273, 9 pages.
- [23] W.F. Xia, Y.M. Chu, The Schur multiplicative convexity of the generalized Muirhead mean, International Journal of Functional Analysis, Operator Theory and Applications, 2009, 1(1): 1-8.
- [24] Y.M. Chu, W.F. Xia, Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead Mean, Proceedings of A. Razmadze Mathematical Institute, Vol. 152 (2010), 19-27.
- [25] Z.H. Yang, Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homogeneous means, Abstr. Appl. Anal., Volume 2010, Article ID 830163, 16 pages doi:10.1155/2010/830163.
- [26] W.F. Xia, Y.M. Chu, The Schur convexity of the weighted generalized logarithmic mean values according to harmonic mean, International Journal of Modern Mathematics, 4(3) (2009), 225-233.
- [27] A. Witkowski, On Schur-convexity and Schur-geometric convexity of four-parameter family of means, Math. Inequal. Appl., 2011, 14 (4): 897-903.
- [28] Z.H. Yang, Schur harmonic convexity of Gini means, International Mathematical Forum, Vol. 6, 2011, no. 16, 747-762.
- [29] F. Qi, J. Sándor, S. S. Dragomir and A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., 2005, 9(3): 411-420.
- [30] L.L. FU, B.Y. Xi and H. M. Srivastava, Schur-convexity of the generalized Heronian means involving two positive numbers, Taiwanese Journal of Mathematics, 2011, 15(6): 2721-2731.