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Abstract. Using different technique and weaker restrictions on parameters, convergence and stability
results of an SP iterative algorithm with errors for a strongly accretive Lipschitzian operator on a Banach
space are established. Validity of new convergence results is verified through numerical examples and con-
vergence comparison of various iterative algorithms is depicted. As applications of our convergence result,

we solve a nonlinear operator equation and a variational inclusion problem. Our results are refinement
and generalization of many classical results.

1. Introduction and Preliminaries

Let X be a real Banach space.

Definition 1.1. An operator T : X — X is called:

Definition 1.2. (i) Lipschitizian, if there exists L > 0 such that for all x, y € X, we have

I7x = Ty < Lf}x -]

7

(ii) strongly pseudo-contractive [14] if for all ¥ > 0, k € (0,1) and x, y € X, we have

|x =yl < |x—y+ I -T-kDx-(I-T-kD)y]

, 1)
(iii) strongly accretive iff for all r > 0, x,y € X and k € (0, 1), we have

v =yl < |px= v+ (T - kDx— (T - kD y]|. 2)
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From (1) and (2), it is obvious that an operator T is strongly pseudo-contractive iff (I — T) is strongly
accretive. Also, an operator T is strongly accretive iff (T — kI) is accretive. Moreover, if T is accretive,
then (I + T)™! is non-expansive (see [1]). It is well known that every strongly pseudo-contractive operator
with a fixed point is strictly hemi-contractive but converse may not be true and class of strongly pseudo-
contractive operators is a proper subclass of the class of ¢- strongly pseudo-contractive operators (see [1] for
details). So, strongly accretive operators are closely connected with strongly pseudo-contractive, accretive,
non-expansive, strictly hemi-contractive and ¢- strongly pseudo-contractive operators.

Definition 1.3. ([1]) Let {x,};, C X, be the sequence generated by an iterative algorithm of T defined by

Xn+l = f(T/ xrl)/ (3)

where xo € X is the initial approximation and f is some function. Suppose {x,},; , converges to a fixed point p of T.

Let {pu},, C X be an arbitrary sequence and k, = ||pn+1 - f(T, pn)H. Then, the iterative algorithm (3) is said to be
T-stable if and only if lim,_,« k, = 0 implies lim,_, pn = p. Moreover, if Y.~ k, < oo implies that lim, e pn = p,
then the iterative algorithm defined by x,41 = f(T, x,,) is said to be almost T-stable.

Stability implies almost stability but converse may not be true (cf. [24]).

Fixed point results and iterative method for Lipschitizian operators have been considered by many
authors [2, 15, 18].

The following iterative algorithms have been studied for approximating fixed points of nonlinear oper-
ators in Banach spaces:

Mann iterative algorithm with errors of Liu [20]:
Xne1 = (1= an) X + ay Ty + 1y, (4)

where 0 < a,, <1 and {u,} is a summable sequence in X.

Ishikawa iterative algorithm with errors of Liu [20]:
o1 = (Q—ap)xn+a, Ty, +uy, (5)
Yn (I =Bu)xn +PuTxy + vy,

where 0 < ay,, n <1 and {u,}, {v,} are summable sequences in X.

Noor iterative algorithm with errors [23]:

Xn+1l = (1 - an)xn + anTyn + Uy (6)

Yn (1 - ﬁn)xn + ﬁnTZn + ﬁn On
Zn A =vu)xn + yu Txy + wy,

where u,, v,, w, are appropriate sequences in X and 0 < a,, B, yn < 1.
SP iterative algorithm of Phuengrattana and Suantai [25]:

Xn+l = (1 - an) Yn + anT]/n (7)
Yn 1- ,Bn)zn + ,BnTZn
Zp (1 - Vn) Xn + ynTxn/

where 0 < ay, Bn, yn < 1.



V. Kumar et al. / Filomat 34:11 (2020), 3689-3704 3691

Remark 1.4. Putting u, = v, = 0in (4) and (5), respectively, we get Mann [22] and Ishikawa [13] iterative algo-
rithms, respectively. Also if we put B, = v, = 0, then SP iterative algorithm (7) becomes Mann iterative algorithm
[22].

The convergence and stability problems for iterative algorithms involving various types of operators
have been studied by many authors [5, 6, 9, 16, 17, 21, 23, 26-36]. Nonlinear maps act as models for
many systems in different scientific disciplines (see [14] for details). Gu and Lu [11] studied Ishikawa
iterative algorithm with mixed errors for solutions of variational inclusions for accretive type mappings
in Banach spaces. Kim et al. [19] proved convergence of Ishikawa iterative algorithm with mixed errors
using strong accretive Lipschitzian operators in Banach spaces. Chugh and Kumar [7] studied strong
convergence and almost stability of SP iterative algorithm with mixed errors for the accretive Lipschitzian
and strongly accretive Lipschitzian operators in Banach spaces. Recently, Chugh et al. [8] and Hussain et
al. [12] proved some strong convergence results of iterative algorithms. In computational mathematics,
a fixed point iterative algorithm is valuable and useful for applications if it satisfies the following conditions:

(i) it converges to a fixed point of an operator (ii) it is stable (iii) it is faster as compared to other iterative
algorithms existing in the literature.

In this paper, we improve results of Chidume [5], Chugh and Kumar [7], Gu and Lu [11], Kim et al.
[19], Liu [20], Xu and Xie [27] and Xu [28] by using new and different convergence techniques for an SP
iterative algorithm with mixed errors. We support our results with numerical examples and applications.
Moreover, with the help of C + + programs, we show that SP algorithm with mixed errors converges faster
and is stable instead of almost stable.

The following lemmas and definitions are needed to prove our main results:

Lemma 1.5. ([1]) Let {a,} be a sequence of nonnegative real numbers satisfying:
Ay < 0a,+b,, n>1,
where b, > 0,lim,, 0 b, =0and 0 <6 < 1. Then a, —» 0as n — oo.
Lemma 1.6. ([18]) Let {a,}, {b,} and {c,} be nonnegative real sequences satisfying the condition:
ane1 < (1= Ayp)ay + by + ¢y, (n 2 np),
where ng is some nonnegative integer and {A,} is a sequence in [0,1] such that Y., Ay, = oo, b, = o(A,) and

Yoo Cn < 00. Then a, — 0asn — oo.

It is well known that a continuous strongly pseudo-contractive selfmap has a unique fixed point.
Moreover, the equation Tx = f has a unique solution for every continuous strongly accretive mapping
T:D(T) c X — X for given f € X (for details see [10]).

For the solution by iteration of certain nonlinear functional equations in Banach spaces, the reader is
referred to Browder and Petryshyn [3].

Variational inclusions, generalization of variational inequalities, have been widely studied [4, 11]. One
of the most interesting and important problems in the theory of variational inclusions is the development
of an efficient and implementable iterative algorithm [4, 11, 12].
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LetT,A: X — X, g: X — X*be mappings on a real reflexive Banach space X, X* is dual of X and (;, )
denotes pairing of X and X*. Let ¢ : X* — (—00, 00) be a proper convex lower semicontinuous function with
subdifferential dp : X* — 2X" defined by
@Pp)x ={x" e X p(y) —p(x) = (y—x,x"), Yy e X}.
If for any given y € X, there exists an x € X such that g(x) € D(dp) and

(Tx—Ax -y, f = 9(x)) 2 p(g(x)) — @(f),Vf € X, 8)

holds then, we say that x is a solution of variational inclusion problem (8).

Lemma 1.7. ([4]) Let dpog : X — 2X be a mapping on a real reflexive Banach space X. Then the following statements
are equivalent:

(i) p € X is a solution of variational inclusion problem (8);
(ii) p € X is a fixed point of the mapping S : X — 2X defined as
Sx =y — (Tx — Ax + dp(g(x))) + x; (that is, p € Sp)

(iii) p € X is a solution of the equation y = Tx — Ax + dp(g(x)).

2. Main Results

Theorem 2.1. Let X be a real Banach space and T : X — X be a strongly pseudo-contractive Lipschitzian mapping
with Lipschitz constant L > 1. For any given xo € X, let {x,} be the SP iterative algorithm with mixed errors defined by

Xpe1 = (I —an)Yn +an Ty, + uy 9)
Yn = (1 - ,Bn)zn + ,Bn Tz, + vy,
Zy = (1 - yn) Xn + Vn Txy, + Wy,

where 0 < ay, B, Yn < 1 and {u,}, {v,), {wn) are sequences in X satisfying the following conditions:

: k
(1) 0<a§0€nﬁm,

BaL—=1) +Vu (L=12 + By (L =12 < apfk— 2= K)oy LA + L)} (1 = £),Yn € Nand t € (0,1);

(i) up = ul, +u), |[u,|| = olan) (n = 0)and Y, |[1) || < co;

(iii) Lo lloull < 00, Yiulo llwall < co.

Then

1. {x,} in (9) converges strongly to a unique fixed point p of T.
2. for any sequence {p,} C X lim, e pn = p iff limy—0 kyy = 0, where

kn = ”Pn+1 - (1 - an)qn — Op TQn — Un||, qn = (1 _ﬁn)rn +ﬁnTrn + Uy,
Ty = (1 = Bu)pn + PuTpn + Wy, that is, {x,} in (9) is T— stable.
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Proof. By (9), we have

(tust =) + (1 = T =KD 301 = (I = T = kD)p] 10
= (L= @)U =) + @l = T = KDy + Ty =ty = kDp + 1.

As T is strongly pseudo-contractive and a Lipschitzian mapping, so by (10), we get

[ = p + @l = T = kDxa = (1= T = kDpl|
(1= an) |[yn = || + | Ty = Totusa|| + @al(1 = K) |Jxnir = p| + llezall

Jbeve =l

IN A

which implies

[1 = (X = )] [Jner = pf| < (0= ) ||y = pl| + | Ty = Tt || + Il

or
(1-ay) 1
w1~ P S g [V — s w— Txy —— |[uall. 11

||x +1 P” S [1—a,(1-K)] ”y P” - a, (1 — 1] ”T]/ B2 +1|| + an(1— 0] llaall (11)
Now, 1 - 1= a(l ol 1 Sﬁg 21— (1-ank)
implies

1-a,

-_ - 12

T—ad—p =~k (12)
and

ay 1-a,2-k)
_ - >1— _

- ioa0-0 " T-aa-p >l @@=h

implies
an

Ta,d—f = @=h (13)

Also
1 1 1

T—amd-0 - 1-(0-0 & (14)

Using (12)-(14), (11) yields
”n

s = pl| < (1= k) [y = pl| + 0@ = B[ Ty = Ty | + 1l (15)
Now, using Lipschitz condition on T, (9) implies

(R Y Y - i

Laty ||yn = Tyl + LIl
Loty ||yn = p|| + Ltn | Ty = p) + Ll
Lay(1+L) ||y = pl| + LIl

ININ AN IA
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Also, by (9), we have the following estimate:

(1= B) |[zn = pl| + Bu | T20 = p|| + ll0al (17)
(1= B) |[zn = p|| + BaL Iz — || + lloull

[T+ Ba(L = D1 |}za — p|| + lloall

[1+Ba(L = DI||X = yu)xu + yuTxu + wy = p|| + lloall

= [T+ Bl = DA = y) tn = || + v [|T0 = 1

+[1+ Bu(L = D] llwall + lfol

[T+ Bu(@ = DI = ) |Jxn = p|| + Ly s = p|[1

[0l + [1+ Ba(L = D] oyl

= [1+4Bu(L = DI =y + Lyw) [Jxu = p|| + loall + [1 + Bu@ = D] llw,ll -

s = p

I IA A

IN

Using estimate (17), (16) becomes

Ty = Txan|| < Lata( + L)1 + Bu(L = DI = yu + Ly |Jxn = p||] (18)

+Lay (1 + L) l[vall + L l[nll + Loty (1 + L)1 + Bu(L = D]yl -

Estimates (15), (17) and (18) yield

IA

(1 = a,k) [1+ By (L —1)] [(1 —u+Lya) xn - p||] (19)
(2 = )Lay (1 + L) [1+ Bu(L = D[ = yu + Lyn) | = p |

+[1 - auk + La2@ = K1 + )] lloall + Lat, (2 —k+ %) il

Jbev =

1 = ak + La22 = K1 + )] [[onll + Lay (2 k4 %) It
+[1 = ayk + L(1 + L)a2(2 = O][1 + Bu(L — D] |[w,]l

(1 = a)[1 + Bu(L = DI =y + Lyn) .
= +Q@-BLa2( + L)1+ Bu(l = DIA =y + Lyy) [P

1
+[1 - ak + La?(2 = k)(1 + L)] |[v,]| + La, (2 —k+ E) [z ]

+[1 =k + L(1 + L)y (2 = ©)][1 + Bu(L — D] [l
= [+ BuL = DIA = yu + Lyn)1 — aulk — 2 = KL + L} v = p
1 = ank + La2(2 = K)(1 + L)]lloall + Lan (2 ket %) it
+[1 = ayk + L(1 + L)a;(2 = O1[1 + Bu(L — D] [[wyll
1 - [anfk = 2 = Ka,L1 + L)} = yu(L = 1) = Bu(L. = 1) = yuPu(L = 1] |} — p|
+[1 4+ 2L(1 + L)]{foll + L (2 + %) iyl + L[1 + 2L(1 + L)] Jfwall.

IA

By condition (i), the inequality (19) becomes
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IA

a1 = 7| 1 - ayfk— (2 = k)ay L1 + L)} + afk — (2 — D), L(1 + D}1 = 1) |, — p (20)
+[1 + 2L(1 + )] ||vall + L (2 + %) [letnll + L[1 + 2L(1 + L) |w,||
= [1-anlk—2-ka,LA+ L] I x, —pl

+L (2 + %) [ltnll + [1 + 2L(1 + L)] ||oall + L[1 + 2L(1 + L)] |[ewa]|

IA

[1- alk— 2 -KaL + L)} |x. - p||
4L (2 + %) iyl + 1+ 2L(1 + L)] [[onll + L[1 + 2L(1 + L)] [l

Also, by condition (ii), we have u), = d,a,, where {6,} is a sequence of nonnegative numbers tending to 0.
Hence

lunll < Onaty + ||y || - (21)
Using (21), (20) becomes
[ =pll < [1-atk=@=kaLd + L) |x - p| (22)

+L(2 + %)(6,70(” +]

144
un

)+ [1+2L(1 + DI + L)([[vall + [[ewl])-

Now, if we put [1-a{k—(2-K)aL(1+L)} ] = Sand L (2 + 1) (5 ctn+
then (22) reduces to

u/ D+ [1+2LA+D)]A+L)(lloull+wal)) = o,

lbev =l < 8]k = pl] + 0. 23)

By conditions (ii)-(iii) and Lemma 1.5, the inequality (23) yields strong convergence of {x,} in (9) to a fixed
pointp of T.

To prove uniqueness of fixed point p, let g be an another fixed point of T. With r = 1, in the definition of
strongly pseudo-contractive mapping, we have

lp=dll<lp-q+1d-T-kpp--T~-kiql|=|p-q+k@q-p)|=0-k]|p-1q

which is possible only if p = 4.
(2) Suppose that {p,} C X, is an arbitrary sequence and lim,,_, k, = 0.

7

Then
||pn+1 - TPH = ||pn+1 - (1 - an)qn - aann - Z/ln“ + ”(1 - an)qn + anTI]n + Uy — TP” (24)
= kn+||sn—Tp ,
where
Sp = (1 = an)gn + oy Tqn + uy. (25)
By (25), we have

(50— p) + aull = T = KI) 5, — (I = T~ kD) p]
= (1 =-an)@n—p)+auld-T-kDs, + Tq,] — a,(I = kDp + uy,
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which further implies

IA

lls« — 7| llsn = p + aul@ = T = kDs, — (I - T - kDpl| (26)

(1 = a) |70 = p|| + an || T9n — Tsu|| + (@ = &) |5 = p|| + lall .

IA

Rearranging terms in (26), as in (15), we get

s = pll < @ = @b g = pl| + @s2 ~ k) [T, T, + L. 27)

Following the procedure to get (22), we have the following estimate

lsi =P < [1-alk—@~KaLd + L) |p. | (28)
+L (2 + %) (6pary +

uy|) + [1+ 2L(1 + D)](Ioull + L llewnll)-

The inequality (28) together with the inequality (24) yields

oo = Tpl| < [1-atk—@~KaL®+ D} |[p. - p (29)
+L (2 + %)(man + ([t |]) + [1 4+ 2L(1 + L)I([wnll + Llw,ll) + k.
Set
0 = 1—-alk—@2-k)aL(l+ L)}t
op = L(Z + %)(6,, ay + ([ |) + [1 + 2L + L)](|oall + Llwpll) + ky.

Using condition (iii) and Lemma 1.5, the inequality (29) yields lim,,_, ||pn+1 - p” = 0, thatis, lim,_,c py+1 =

p.
For the converse, let lim,,_,., p, = p. Then by (28), we have

ky HPHH -(I-an)gn—anTq, - un“

Hpn+1 - Sn”

lpnss = pll+ [lsn = 2]

[Pt = p|| + 11 = atk = @2 = K)aL(1 + L)} ||p. - p||

+L(2+ %)(6,1(1,1 +

A1l

IN

uy|) + [1+ 2L(1 + L)] ([l + Lllwall),

which implies lim,,,« k, = 0. Hence {x,} in (9) is T-stable.
O

Corollary 2.2. Let X be a real Banach space and T : X — X be a strongly pseudo-contractive Lipschitzian mapping
with Lipschitz constant L > 1. For any given xo € X, let {x,} be the Mann iterative algorithm with mixed errors
defined by (4) with the following conditions:

(i)0<a§ansm(n20);

(i) u, = u), + ul/, =o0(ay) (n>0)and Y, < oo,

’ 14
un u}’l
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Then

1. {x,} in (4) converges strongly to the unique fixed point p of T.
2. For any sequence {p,} C X, lim,_,co pn = p implies limy_« ky, = 0, where
k, = ”pn+1 -1 -anpn—ayIp, — u,,“, that is, {x,} in (4) is T— stable.

Proof. Take B, =0,y, =0,v, =w, = 0in Theorem 2.1. [

By taking u, = c,(r, — x,), in Corollary 2.2, we can obtain the results similar to ([28, Theorem 1] and [27,
Corollary 3.4]), by using the iterative algorithm:

Xn+1 = (1 — O — Cn) Xp +ay Txy + cuty, (30)

where {r,,} isabounded sequence in X and {a,}, {c,} are sequences in [0, 1] satisfying the following conditions:

(i)0<a§ansm(n20);

(ii) lim;, 0 ¢, = 0.

Noor iterative algorithm with mixed errors in view of SP iterative algorithm with mixed errors in (9) is
given by:

Xn+l = (1 - an) Xn + Qy Tyn + Uy (31)
Yn = (1 - ,Bn) Xp + ﬁn Tz, + vy,
zn = (1 =yu)xn+VuTxy + wy.

The following examples validate our results.

Example 2.3. Let X = [%,3]. Define an operator T from X to X as Tx = 1 with fixed point p = 1. It is easy to
check that T is a Lipschitz strongly pseudo-contractive operator for any k € (0, 1) with Lipschitz constant L = 4. Put
a =0.002,, = 0.008, k=09, t=0.5,

1 1 0.008 1

1
o= a7 = @y oy Il = loall = o5 and llwall =

m+ 1) (1 n+2)

(n+3)2°

All the conditions of Theorem 2.1 are satisfied. So, the sequence {x,} in (9) converges strongly to the fixed point 1 and
is T-stable. Taking initial value xo = 3, convergence comparison of different iterative algorithms to the fixed point 1
is shown in Table 1 (Figure 1).

Example 2.4. Let X = [0, 2] and define an operator T from X to X as Tx = |1 -2 sin x| with fixed point p = 0.33759.
It is easy to check that the operator T is a Lipschitz strongly pseudo-contractive operator with Lipschitz constant
L =2 Witha =0.001, a, =0.009, k =0.8, t = 0.6,

Bn = ﬁ,yn = ﬁ,llunll = (2'2(1))92 + m,llvnll = m,llwnll = ﬁ,ﬂll the conditions of Theorem 2.1 are
satisfied. So {x,} in (9) converges strongly to the fixed point 0.33759 and is T-stable. Tnking initial value xo = 2,
convergence of different iterative algorithms to fixed point 0.33759 is shown in Table 2 (Figure 2).

Table 1 (Figure 1) and Table 2 (Figure 2) show that SP iterative algorithm converges faster to the fixed
point of given operator as compared to other iterative algorithms. Near initial approximation, only Mann
algorithm shows resemblance with SP algorithm but as we move away from it, SP algorithm shows fast
convergence as compared to Mann iterative algorithm. Moreover, from the beginning to the end, SP
iterative algorithm converges much faster than Ishikawa and Noor iterative algorithms. Hence, we con-
clude that due to faster convergence rate, SP iterative algorithm has better potential for further applications.
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Table 1: Convergence behavior of various iterative algorithms for Example 2.3.

No of iterations (1) | Algorithm (4) | Algorithm (5) | Algorithm (31) | Algorithm (9)
1 2.97867 2.99983 2.99997 2.97846
2 2.95752 2.99966 2.99993 2.95712
3 2.93657 2.99949 2.9999 2.93597
4 2.91580 2.99932 2.99986 2.91501
5 2.89522 2.99915 2.99983 2.89424
833 1.00001 2.8621 297173 1.00001
834 1.00001 2.86194 29717 1.00001
835 1.00001 2.86178 2.97167 1.00001
836 1.00001 2.86162 2.97163 1
837 1.00001 2.86145 29716 1
838 1.00001 2.86129 2.97157 1
839 1.00001 2.86113 2.97153 1
840 1.00001 2.86097 29715 1
841 1.00001 2.86081 2.97146 1
842 1.00001 2.86065 2.97143 1
843 1.00001 2.86049 29714 1
844 1 2.86033 2.97136 1
845 1 2.86017 2.97133 1
65455 1 1.00097 1.58059 1
65456 1 1.00096 1.58058 1
65457 1 1.00096 1.58057 1
65458 1 1.00096 1.58055 1
65459 1 1.00096 1.58054 1

3698
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Table 2: Convergence behavior of various iterative algorithms for Example 2.4.

No of iterations (1) | Algorithm (4) | Algorithm (5) | Algorithm (31) | Algorithm (9)
1 1.97463 1.99611 1.99871 1.96949
2 1.94931 1.99221 1.99742 1.93904
3 1.92404 1.98832 1.99613 1.90868
4 1.89883 1.98443 1.99484 1.87842
5 1.8737 1.98054 1.999355 1.84829
6 1.84866 1.97665 1.99226 1.8183
7 1.82371 1.97276 1.99097 1.78846
8 1.79887 1.96888 1.98968 1.75881
9 1.77415 1.96499 1.98839 1.72934
10 1.74955 1.96111 1.9871 1.70009

400 0.337651 0.81795 1.50643 0.337592
401 0.337649 0.81622 1.50529 0.337592
402 0.337648 0.814495 1.50415 0.337591
403 0.337646 0.812775 1.503 0.337591
404 0.337644 0.811061 1.50186 0.337591
405 0.337643 0.809353 1.50072 0.337591
406 0.337641 0.80765 1.49958 0.33759
407 0.33764 0.805953 1.49844 0.33759
480 0.337592 0696122 1.41686 0.33759
481 0.337592 0.694798 1.41577 0.33759
482 0.337592 0.693479 1.41468 0.33759
483 0.337591 0.692164 1.41358 0.33759
484 0.337591 0.690854 1.41249 0.33759
485 0.337591 0.689549 1.4114 0.33759
486 0.337591 0.688548 1.41031 0.33759
487 0.337591 0.686951 1.40922 0.33759
488 0.33759 0.685659 1.40813 0.33759
489 0.33759 0.684371 1.40704 0.33759
490 0.33759 0.642801 1.40690 0.33759
3275 0.33759 0.337591 0.370747 0.33759
3276 0.33759 0.337591 0.370703 0.33759
3277 0.33759 0.337591 0.37066 0.33759
3278 0.33759 0.337591 0.370616 0.33759
3279 0.33759 0.337591 0.370573 0.33759
3280 0.33759 0.33759 0.37053 0.33759
3281 0.33759 0.33759 0.370487 0.33759
3282 0.33759 0.33759 0.370443 0.33759
9716 0.33759 0.33759 0.337591 0.33759
9717 0.33759 0.33759 0.337591 0.33759
9718 0.33759 0.33759 0.337591 0.33759
9719 0.33759 0.33759 0.337591 0.33759
9720 0.33759 0.33759 0.337591 0.33759
9721 0.33759 0.33759 0.337591 0.33759
9722 0.33759 0.33759 0.337591 0.33759
9723 0.33759 0.33759 0.337591 0.33759
9724 0.33759 0.33759 0.33759 0.33759
9725 0.33759 0.33759 0.33759 0.33759
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Figure 1: Convergence behavior of different iterative algorithms for Example 2.3 with initial guess xp = 3.

3. Applications

In this section, we use our convergence result to solve a nonlinear operator equation and a variational
inclusion problem.

Theorem 3.1. Suppose that X is a real Banach space and A : X — X is a Lipschitz strongly accretive mapping. Let

x* be a solution of equation Ax = f, where f € X is any given point.
Define R : X — X by Rx = f + x — Ax,¥x € X. For arbitrary xg € X, let {x,} be the SP iterative algorithm with

mixed errors defined by

Xn+l = (1 - an) Yn Ty R]/n + Uy (32)
Yo = (1 =PBn)zn+PuRzy+v,
zn = (1 =yu)xy+ VaRx, +wy, n>0,

where 0 < ay, Bn, Yn < 1and {uy,}, {v,), {w,) are sequences in X satisfying the following conditions:

: k
(1) O<a§a€nﬁm,

Bu(L = 1) + yu(L = 1)% + By yn(L — 1)? < aty {k — (2 — Kty L(1 + L)}(1 — ), ¥ € N and t € (0, 1);

< 00,

= O(ay) (n > 0)and i |

144
ul’l

(i) uy =uj, +uy, ||u,
(iii) Yooio lloall < 00, Yoo llwnll < co.

Then {x,} in (32) converges strongly to the unique solution x* of Ax = f and is R— stable to approximate this
solution of Ax = f.
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Figure 2: Convergence behavior of different iterative algorithms for Example 2.4 with initial guess xp = 2.

Proof. As A is Lipschitz strongly accretive mapping, so Rx = f + x — Ax is Lipschitz strongly pseudo-
contractive mapping with Lipschitz constant L* = 1 + L > 1. If we replace T by R in (9), then convergence
of iterative algorithm (32) to the fixed point of mapping R is obvious from Theorem 2.1 and it is easy to see
that x* is a unique fixed point of R iff x* is a solution of equation Ax = f. Stability of iterative algorithm (32)
follows on the same lines as stability of iterative algorithm (9) in the proof of Theorem 2.1.

O

Putting v, = w, =0, B = y» = 0, in Theorem 3.1, we can obtain result for Mann iterative algorithm with
mixed errors [27, Corollary 3.2].

Also, putting u, = v, = w, = 0, in Theorem 3.1, we can obtain corresponding result for SP iterative
algorithm (7).

Remark 3.2. Theorem 3.1 generalizes: (i) and improves [7, Theorem 2.4] as “almost stability” of SP iterative algo-
rithm with mixed errors is replaced by “stability”,

(ii) corresponding results in [28] as our sequence {a,,} need not converge to zero and boundness condition on domain
or range of the mapping R is waived,

(iii) the results in [5] as L, space is replaced by more general Banach space,

(iv) and improves some results in [19, 20, 24, 27].

Theorem 3.3. Suppose that X is a real reflexive Banach space, T, A : X — X, g : X — X' are mappings
and @ @ X* — (—00,00) is a proper convex lower semicontinuous function with subdifferential dp such that
T —-A+dpog : X — X is a Lipschitzian strongly accretive operator with a Lipschitz constant L > 1. Define an
operator S : X — X by Sx = f + (I — (T — A + dpog)) x, where f € X is any given point. For arbitrary xy € X, let
{xn} be the SP iterative algorithm with mixed errors defined by
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Xpe1 = (1 =an) Yn + anSyn + uy (33)
Yn = (1 - ,Bn)zn + ,Bn Sz, + vy
Zn = (1 =yu)xn+VnSxy +wy, n 20,

where 0 < ay, B, Yn < 1 and {u,}, {v,}, {w,} are sequences in X satisfying the following conditions:

: k
(1) 0<a$0€nﬁm,

Bl = 1) + Y (L= 1) + Buyn(L = 1 < apfk — 2 = K)ov, L(L + L)}(1 = #), ¥n € Nand t € (0, 1);

< 00,

=O(ay) (n>0)and ¥,°,

(ii) uy, = uj, +u, ||u;, u;
(iii) Yooio lloall < 00, Yoo llwnll < co.

Then the iterative algorithm (33) converges to the fixed point x* of S and x* is the unique solution of nonlinear
variational inclusion problem (8).

Proof. As T — A + dpog is a Lipschitzian strongly accretive operator, so for any f € X, the equation f =
(T — A+ dpog) x has a unique solution x* € X. Using Lemma 1.7, x* € X is a solution of nonlinear variational
inclusion problem (8) and it is fixed point of the operator S. Since T — A + dpog : X — X is a Lipschitzian
strongly accretive operator, therefore by (2), we have

llx = || < |lx = v + 1I(T = A + dpo g) — kI)x = (T = A + dpog) — KDyl (34)
Using Sx = f + (I — (T — A + dopog)) x, (34) yields

|x =yl < |x=y+rI-S—kDx—(T-S-kDy]|. (35)
So that S is a Lipschitzian strongly pseudo-contractive operator with Lipscitz constant L* = 1+ L. Replacing
T by Sin (9), L by L* in condition (i) of Theorem 2.1 and following the procedure of the proof of Theorem
2.1, it is easy to prove that the iterative algorithm (33) converges to the unique solution x* of nonlinear
variational inclusion problem (§).

O

Putting v, = w, =0, B, = y» = 0, in Theorem 3.3, we can obtain the corresponding result for Mann
iterative algorithm with mixed errors (4).

Also, taking ¢ = 0, u, = v, = w, = 0, in Theorem 3.3, we can obtain the solution of variational inequaltiy
(Tx-Ax—-y,f—gx)>0, Vfe X, (36)

using SP iterative algorithm (7).
Remark 3.4. Theorem 3.1 is a special case of Theorem 3.3 when ¢ =0,A=0,g=0and S =R

Remark 3.5. Theorem 3.3: (i) improves and modifies results of Gu and Lu [11] as faster SP iterative algorithm has
been used instead of slow Mann and Ishikawa iterative algorithms,
(ii) improves results of Gu and Lu [11] for strongly accretive maps.
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