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Abstract. LetUσ
2n be the set of unicyclic signed graphs with perfect matchings having 2n vertices, where

σ is a signing function from the edge set of the graphs considered to {−1, 1}. The increasing order of the
signed graphs among Uσ

2n according to their minimal energies is considered. A relationship between the
energies of a unicyclic graph and of its signed graphs is derived. A new integral formula for comparing the
energies of two signed graph is introduced. InUσ

2n with n ≥ 721, the first 18 signed graphs in the increasing
order by their minimal energies are obtained.

1. Introduction

Let G = (V(G),E(G)) be a simple undirected graph of order n, where V(G) and E(G) are the vertex set and
the edge set of G, respectively. Let V(G) = {v1, v2, . . . , vn}. A signed graph, denoted by S = (G, σ), is obtained
from G by assigning a positive or negative label on the edge of E(G), where σ : E(G)→ {−1, 1} is the signing
function. Namely, for an edge viv j of G, σ(viv j) = −1 or 1, where 1 ≤ i, j ≤ n. We say that G is the underlying
graph of S and S is the signed graph of G. If each edge of E(G) has a positive label, then S becomes G. The
signed graph is of theoretical interest due to both their applications in modeling a variety of physical and
socio-psychological processes and their interesting connections with many classical mathematical systems
[6].

The sign of a signed cycle is defined to be the product of signs of its edges. A signed cycle is said to
be positive/negative if its sign is positive/negative. Namely, a positive/negative signed cycle contains an
even/odd number of negative edges. A signed graph is said to be balanced if each of its cycles is positive,
and otherwise to be unbalanced.

The adjacency matrix of S is an n × n matrix A(S) = (ai j), where ai j = σ(viv j) if vi is adjacent to v j and
ai j = 0 otherwise. The characteristic polynomial of S is

φS(x) = det[xI −A(S)] = xn + a1(S)xn−1 + · · · + an−1(S)x + an(S), (1)

where I is the unit matrix of order n and a1(S), · · · , an(S) are the coefficients of φS(x). The n roots of φS(x) = 0
are denoted by λ1, · · · , λn, which are called the eigenvalues of the corresponding signed graph S. Since
A(S) is a real symmetric matrix, all λi with 1 ≤ i ≤ n are real.
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We denote the adjacency matrix of G by A(G) = (ai j), where ai j = a ji = 1 if i and j are adjacent, else
ai j = a ji = 0 for 1 ≤ i, j ≤ n. The energy of G, denoted by E(G), as introduced by Gutman [8], is defined as
the sum of the absolute values of all the eigenvalues ofA(G).

Let M be an m × n complex matrix. The singular values of M are the positive square roots of the
eigenvalues ofMM∗, whereM∗ is the conjugate transpose ofM. Nikiforov [16] first defined that the energy
of a matrixM is the sum of its singular values. For undirected graphs, there are various generalizations
of the graph energy, for example, the matching energy by Gutman and Wagner [10], Laplacian energy by
Gutman and Zhou [11], the incidence energy by Jooyandeh et al. [14], the distance energy by Indulal et al.
[13] and Ramane et al. [19], and so on. For directed graphs, Peña and Rada [17] introduced the energy of
a digraph, and Adiga et al. [2] proposed the skew energy of an oriented graph. The energy for the signed
digraphs was defined by Bhat and Pirzada [3, 18].

The energy of the signed graph S was first introduced by Germina et al. [6] and it can be reduced to

E(S) =

n∑
i=1

|λi|. (2)

Bhat and Pirzada [4] expressed E(S) as the following Coulson integral formula

E(S) =
1

2π

∫ +∞

−∞

1
x2 log

[( b n
2 c∑

j=0

b2 j(S)x2 j
)2

+
( b n

2 c∑
j=0

b2 j+1(S)x2 j+1
)2]

dx, (3)

where bi(S) = |ai(S)| for 0 ≤ i ≤ n. Note that b0(S) = 1, b1(S) = 0 and b2(S) equals the number of edges in S.
It can be seen from (3) that E(S) is a strictly monotonously increasing function of bi(S), where 0 ≤ i ≤ n. Let
S1 and S2 be two unicyclic signed graphs. We get

bi(S1) ≥ bi(S2) =⇒ E(S1) ≥ E(S2), (4)

where E(S1) = E(S2) if and only if bi(S1) = bi(S2) for all 0 ≤ i ≤ n. We will refer to the relation (4) as the
method of coefficient comparison. For the sake of conciseness, we introduce the symbols “ ⇀ ” and “
 ”.

E(S1) < E(S2) ⇐⇒ S1 ⇀ S2, E(S1) = E(S2) ⇐⇒ S1 
 S2. (5)

The Coulson integral formula for E(G), as introduced in [9], can readily be written by replacing S in (3) with
G, where bi(G) = |ai(G)| and ai(G) is the coefficients of the characteristic polynomial of G for 0 ≤ i ≤ n.

The relation (4) has successfully been employed in the study on the extremal values of energy for signed
graphs. Among all the unicyclic signed graphs with n vertices, Bhat and Pirzada [4] characterized the
unicyclic signed graph with the minimal energy. Among all the bicyclic signed graphs with n vertices, Bhat
et al. [5] determined the bicyclic signed graphs with the first and the second minimal energies.

We denote by U2n the set of unicyclic graphs with perfect matchings having 2n vertices. Among U2n,
for the increasing order of graphs according to their minimal energies, Wang [20] obtained the first 7 graphs
for l = 2r + 1 and l = 4 j + 2 when n ≥ 45, where l is the girth of the graphs considered and r, j are positive
integers; and Zhu [25] derived the first 7 graphs when n ≥ 191.

Let Uσ
2n be the set of unicyclic signed graphs with perfect matchings having 2n vertices, where σ is a

signing function from the edge set of the graphs considered to {−1, 1}. In this paper, we will study the
increasing order of the signed graphs amongUσ

2n according to their minimal energies.
This paper is organized as follows. In Section 2, some graphs are introduced and necessary lemmas are

presented. The results of Section 3 are divided into five parts. In Subsection 3.1, a relationship between the
energies of a unicyclic graph and of its signed graphs is derived. In Subsection 3.2, a new integral formula
for comparing the energies of two signed graph is introduced. The capped graphs, in which the number of
2-matchings is less than 2n− 3, of the graphs amongU2n are characterized in Subsection 3.3. In Subsection
3.4, by using the method of coefficient comparison in (4), the theorem of zero points and the new integral
formula (presented in Theorem 3.3 in Subsection 3.2), we compare energies for the signed graphs whose
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capped graphs have the number of 2-matchings being less than 2n − 3. In Subsection 3.5, the preceding
18 signed graphs in the increasing order by their minimal energies are obtained amongUσ

2n with n ≥ 721;
and the preceding 12 graphs in the increasing order by their minimal energies are derived amongU2n with
n ≥ 721.

2. Preliminaries

A basic figure is a graph whose components are cycles or edges or both. In 1980, Acharya [1] studied
the characteristic polynomial of a signed graph and got Lemma 2.1 as follows.

Lemma 2.1. [1] If S is a signed graph with characteristic polynomial φS(x) = xn + a1(S)xn−1 + · · ·+ an−1(S)x + an(S),
then for all j = 1, 2, . . . ,n, we have

a j(S) =
∑
L∈L j

(−1)p(L)2|c(L)|
∏

Z∈c(L)

s(Z), (6)

where L j is the set of all basic figures L of order j in S, p(L) the number of components of L, c(L) the set of all cycles
in L, and s(Z) the sign of cycle Z.

For u ∈ V(S), let S − u be the graph obtained from S by deleting u and all the edges in S which are
incident with u. For e ∈ E(S), let S − e be the graph obtained from S by deleting e.

Lemma 2.2. [7] Let S be a unicyclic signed graph and uv a pendent edge of S with a pendent vertex v. Then

φS(x) = xφ(S−v)(x) − φ(S−v−u)(x). (7)

A k-matching of G is a union of k independent edges in G. Let m(G, k) be the number of k-matchings in
G, where 0 ≤ k ≤ n. For G and its signed graph S, it is obvious that m(G, k) = m(S, k) for 0 ≤ k ≤ n.

Lemma 2.3. [9] Let e = uv be an edge of a graph G. Then we have

m(G, k) = m(G − e, k) + m(G − u − v, k − 1). (8)

T1 u T2v

(a) T

T1

v

u T2

(b) T′

Figure 1: T and T′ in Lemma 2.4.

Let T be a tree as shown in Fig. 1(a). Namely, T is obtained from an edge uv by attaching trees T1 and
T2 at u and v, respectively. Let T′ be the tree obtained from T by first identifying u and v and then attaching
a pendent edge at u. T′ is the tree as shown in Fig. 1(b). For the 2-matchings of T and T′, by using Lemma
2.3, we can get Lemma 2.4 as follows. We omit the proof of Lemma 2.4 since it is straighforward.

Lemma 2.4. Let T and T′ be two trees as shown in Fig. 1. We have m(T, 2) > m(T′, 2).
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Lemma 2.5. [4] If S is a signed graph on n vertices, then

E(S) =
1
π

∫ +∞

−∞

1
x2 log

∣∣∣∣∣xnφS(
i
x

)
∣∣∣∣∣ dx, (9)

where i2 = −1.

For G ∈ U2n, the relationship between bi(G) and m(G, i) is shown in Theorem 4 in [12] and Lemma 2 in
[22].

Next, we will give a formula to calculate m(G, i), where G ∈ U2n.

It is consistent to define m(G, 0) = 1. Obviously, m(G, 1) = 2n. Let Ĝ = G −M(G) − S0, where M(G) is
the perfect matching of G and S0 the set of isolated vertices in G −M(G). It is clear that |M(G)| = n, where
|M(G)| is the number of edges in M(G). We call Ĝ the capped graph of G and G the original graph of Ĝ.
Each k-matching Ω of G can be partitioned into two parts: Ω = Φ

⋃
Ψ, where Φ is a matching in Ĝ and

Ψ ⊂M(G). Thus, for G ∈ U2n, we have [24]

m(G, k) =

k∑
i=0

m(Ĝ, i)
(
n − j
k − i

)
= p +

k∑
i=2

m(Ĝ, i)
(
n − j
k − i

)
, (10)

where

p =

(
n
k

)
+ n

(
n − 2
k − 1

)
(11)

and j is the number of edges in M(G) which are adjacent to the i-matching Φ.
For n ≥ 2, Pn is a path with n vertices, and the vertices of Pn are labeled consecutively by v1, v2, . . . , vn.

For l ≥ 3, Cl is a cycle with l vertices, and the vertices of Cl are labeled consecutively by u1,u2, . . . ,ul. For
n ≥ 3, Xn is a star with n vertices.

For l = 3, some graphs are introduced as follows.
For n ≥ 4, Ca

n is the graph obtained from C3 by attaching a and n − a − 3 pendent edges to u1 and u2
respectively, where 0 ≤ a ≤ [ n−3

2 ].
For n ≥ 5, Qn is the graph obtained by identifying u1 of C3 with a pendent vertex of Xn−2.
For n ≥ 6, let Hn, Sn and Tn be the graphs obtained by identifying v2, v3 and v4 of P4 of In−2 with u1 of

C3 respectively, where In−2 with n ≥ 6 is the graph obtained from P4 = v1v2v3v4 by attaching n − 6 pendent
edges to v2 of P4.

For n ≥ 6, Rn is the graph obtained from C3 by attaching n − 5 pendent edges to u1 and a path of length
2 to u2.

For n ≥ 6, Wn is the graph obtained from C3 by attaching one pendent edge to u1 and identifying u2 of
C3 with a pendent vertex of Xn−3.

For n ≥ 6, Yn is the graph obtained from C3 by attaching one pendent edge to u1 and u2 and n−5 pendent
edges to u3.

Denote byK = {Ca
n,Qn,Hn,Sn,Tn,Rn,Wn,Yn}, where 0 ≤ a ≤ [ n−3

2 ].
For n ≥ 7, On is the graph obtained from P6 by attaching n − 6 pendent edges to v2. For n ≥ 6, Zn is the

graph obtained from C5 by attaching n − 5 pendent edges to u1.
LetHn be the set of unicyclic graphs with n vertices. Let dia(G) be the diameter of a graph G.

Lemma 2.6. [21, 23] Let G ∈ Hn with n ≥ 7 and Cl the cycle contained in G. If one of the three conditions holds: (i)
dia(G − e) ≥ 5 and G − e , On, where e is an edge of Cl; or (ii) l = 3 and G < K ; or (iii) l ≥ 5 and G , Zn, then we
have m(G, 2) ≥ 3n − 12 and m(G, 3) ≥ 2n − 12, where the two equalities do not hold simultaneously.
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3. Main results

3.1. Comparing the energies of a unicyclic graph and of its signed graphs
Bhat and Pirzada [4] obtained that for a unicyclic graph G with an odd girth, any two signed graphs on

G have the same energy. In Theorem 3.2, we will extend this result to the relationship between the energies
of a unicyclic graph and of its signed graphs. To obtain Theorem 3.2, Lemma 3.1 is needed. By Lemma 2.1,
we can get Lemma 3.1 as follows.

Lemma 3.1. Let S ∈ Uσ
2n, l the length of the cycle contained in S and r and h integers with r, h ≥ 1. Then

b2i+1(S) =

{
0, l = 2r, l = 2r + 1 & 2i + 1 < l,
2m(S − Cl, i − l−1

2 ), l = 2r + 1 & 2i + 1 ≥ l; (12)

b2i(S) =


m(S, i), l = 2r + 1,
m(S, i) + 2m(S − Cl, i − l

2 ), if S is balanced and l = 4h + 2 or
S is unbalanced and l = 4h,

m(S, i) − 2m(S − Cl, i − l
2 ), if S is balanced and l = 4h or

S is unbalanced and l = 4h + 2.

(13)

For a unicyclic graph G, by Lemma 3.1 and (3), we can conclude that any two balanced graphs of G have
the same energy and any two unbalanced graphs of G also have the same energy. If G is a unicyclic graph,
we use, for simplicity, G+ to denote its balanced graph and G− its unbalanced graph throughout this paper.
We have a relationship for E(G+), E(G−) and E(G), as shown in Theorem 3.2.

Theorem 3.2. Let G be a unicyclic graph with girth l. For positive integers r, h ≥ 1, we have
(i) E(G+) = E(G−) = E(G) for l = 2r + 1;
(ii) E(G+) = E(G) < E(G−) for l = 2r with r = 2h;
(iii) E(G+) = E(G) > E(G−) for l = 2r with r = 2h + 1.

Proof. Let l = 2r + 1. By Lemma 2 in [22] and Lemma 3.1, we have b2i(G−) = b2i(G+) = b2i(G) = m(G, i),
b2i+1(G−) = b2i+1(G+) = b2i+1(G) = 0 for 2i + 1 < l, and b2i+1(G−) = b2i+1(G+) = b2i+1(G) = 2m(G − Cl, i − r) for
2i + 1 ≥ l, where 0 ≤ i ≤ [n/2]. Furthermore, by comparing E(G), E(G+) and E(G−) in terms of their Coulson
integral formula in (3), we get Theorem 3.2(i).

By the method similar to that for Theorem 3.2(i), we can get Theorem 3.2(ii) and (iii). �

3.2. A new integral formula for comparing the energies of two signed graphs
From Lemma 2.5, we obtain a new integral formula for comparing the energies between two signed

graphs by directly using their characteristic polynomials, which are shown in Theorem 3.3.

Theorem 3.3. Let φS1 (x) and φS2 (x) be the characteristic polynomials of signed graphs S1 and S2 respectively, where
S1 and S2 have the same number of vertices. Then

E(S1) − E(S2) =
1
π

∫ +∞

−∞

log

∣∣∣∣∣∣φS1 (ix)
φS2 (ix)

∣∣∣∣∣∣ dx. (14)

Proof. From Lemma 2.5, we have

E(S1) − E(S2) =
1
π

∫ +∞

−∞

1
x2 log

∣∣∣∣∣∣xnφS1 ( i
x )

xnφS2 ( i
x )

∣∣∣∣∣∣ dx. (15)

Obviously, we get

E(S1) − E(S2) = −
1
π

[ ∫ 0

−∞

log

∣∣∣∣∣∣φS1 ( i
x )

φS2 ( i
x )

∣∣∣∣∣∣ d(
1
x

) +

∫ +∞

0
log

∣∣∣∣∣∣φS1 ( i
x )

φS2 ( i
x )

∣∣∣∣∣∣ d(
1
x

)
]
. (16)
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Since 0 is a flaw, we obtain∫ 0

−∞

log

∣∣∣∣∣∣φS1 ( i
x )

φS2 ( i
x )

∣∣∣∣∣∣ d(
1
x

) =

∫ c

−∞

log

∣∣∣∣∣∣φS1 ( i
x )

φS2 ( i
x )

∣∣∣∣∣∣ d(
1
x

) +

∫ 0

c
log

∣∣∣∣∣∣φS1 ( i
x )

φS2 ( i
x )

∣∣∣∣∣∣ d(
1
x

)

=

∫ 1
c

0
log

∣∣∣∣∣∣φS1 (it)
φS2 (it)

∣∣∣∣∣∣ dt +

∫
−∞

1
c

log

∣∣∣∣∣∣φS1 (it)
φS2 (it)

∣∣∣∣∣∣ dt =

∫
−∞

0
log

∣∣∣∣∣∣φS1 (it)
φ2(it)

∣∣∣∣∣∣ dt, (17)

where 1
x = t. Similarly, we have∫ +∞

0
log

∣∣∣∣∣∣φS1 ( i
x )

φS2 ( i
x )

∣∣∣∣∣∣ d(
1
x

) =

∫ 0

+∞

log

∣∣∣∣∣∣φS1 (it)
φS2 (it)

∣∣∣∣∣∣ dt. (18)

Substituting (17) and (18) into (16), we obtain (14). �

3.3. Finding the graphs whose capped graphs have 2-matching less than 2n − 3
In this section, among U2n, the graphs whose capped graphs have 2-matching less than 2n − 3 are

characterized in Lemma 3.8. To obtain Lemma 3.8, we need to introduce Lemmas 3.4–3.7 first.
Let Tn+1 be the set of trees with n + 1 vertices. Let Ea,b

n+1 be the tree obtained from P4 by attaching a and b
pendent edges at v2 and v3 respectively, where 0 ≤ a ≤ [ n−3

2 ] and b = n − a − 3. Let Fa,b,c
n+1 be the tree obtained

from P5 by attaching a, b and c pendent edges at v2, v3 and v4 respectively, where 0 ≤ a, b, c ≤ n − 4 and
a + b + c = n − 4.

Lemma 3.4. Let G ∈ U2n and n ≥ 9. If Ĝ ∈ Tn+1 and Ĝ , Xn+1,E0,n−3
n+1 ,E1,n−4

n+1 ,F0,0,n−4
n+1 ,F0,n−4,0

n+1 , then m(Ĝ, 2) ≥
2n − 3.

Proof. Let G ∈ U2n with n ≥ 9 and Ĝ ∈ Tn+1. We suppose Ĝ , Xn+1. Thus, dia(Ĝ) ≥ 3. Four cases are
considered according to the value of dia(Ĝ).

Case (i). dia(Ĝ) = 3.
In this case, Ĝ = Ea,b

n+1. By (8), we have m(Ea,b
n+1, 2) = (a + 1)(n − 2 − a) , f1(a). Therefore, m(Ea,b

n+1, 2) is an
increasing function of a since f ′1(a) = −2a + n − 3 ≥ 0, where 0 ≤ a ≤ [ n−3

2 ]. We have m(E0,n−3
n+1 , 2) = f1(0) =

n − 2 < 2n − 3, m(E1,n−4
n+1 , 2) = f1(1) = 2(n − 3) < 2n − 3, and m(Ea,b

n+1, 2) = f1(a) ≥ f1(2) = 3(n − 4) ≥ 2n − 3 for
2 ≤ a ≤ [ n−3

2 ]. Namely, in Case (i), if G , E0,n−3
n+1 ,E1,n−4

n+1 , then we have m(Ĝ, 2) ≥ 2n − 3.
Case (ii). dia(Ĝ) = 4.
In this case, Ĝ may be viewed as a tree obtained from P5 by attaching trees T1, T2 and T3 at v2, v3 and

v4, respectively. Let |E(T1)| = a, |E(T2)| = b and |E(T3)| = c, where 0 ≤ a, b, c ≤ n − 4 and a + b + c = n − 4. By
using Lemma 2.4 repeatedly, we get m(Ĝ, 2) ≥ m(Fa,b,c

n+1 , 2). Three subcases are considered as follows.
Subcase (ii.i). a = 0, 0 ≤ b, c ≤ n − 4 and c = n − 4 − b.
By (8), we have

m(F0,b,c
n+1 , 2) = (b + 2)(n − 3 − b) + b + 1 , f2(b). (19)

We get f ′2(b) = −2b + n − 4. Thus, m(F0,b,c
n+1 , 2) is an increasing function of b with 0 ≤ b ≤ b n−4

2 c and
a decreasing function of b with d n−4

2 e ≤ b ≤ n − 4. We have m(F0,0,n−4
n+1 , 2) = f2(0) = 2n − 5 < 2n − 3,

m(F0,n−4,0
n+1 , 2) = f2(n − 4) = 2n − 5 < 2n − 3 and m(F0,b,c

n+1 , 2) = f2(b) ≥ min{ f2(1), f2(n − 5)} = 3n − 10 ≥ 2n − 3,
where 1 ≤ b ≤ n − 5.

Next, we use the same analysis as those for Case (i) or Subcase (ii.i) to derive the property of the
2-matching of the graphs considered.

Subcase (ii.ii). b = 0, 1 ≤ a, c ≤ [ n−4
2 ] and c = n − 4 − a.

By (8), we have m(Fa,0,c
n+1 , 2) = (a + 2)(n − 3 − a) + a + 1 , f3(a) ≥ f3(1) = 3n − 10 ≥ 2n − 3.
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Subcase (ii.iii). c = 0, 0 ≤ a, b ≤ n − 4 and a = n − 4 − b.
Subcase (ii.iii) is the same as that for Subcase (ii.i).
Subcase (ii.iv). 1 ≤ a, c ≤ [ n−5

2 ], 1 ≤ b ≤ n − 6 and c = n − 4 − a − b.
If a = 1, then by (8), we obtain m(F1,b,c

n+1 , 2) = (b + 1)(n − 4 − b) + 2(n − 3) , f4(b) ≥ min{ f4(1), f4(n − 6)} =

4n − 16 ≥ 2n − 3. If 2 ≤ a ≤ [ n−5
2 ], then by (8), we get

m(Fa,b,c
n+1 , 2) = (a + 1)(n − a − 2) + b(n − 3 − a − b) + n − 3 − a − b

≥ (a + 1)(n − a − 2) , f5(a) ≥ f5(2) = 3(n − 4) ≥ 2n − 3.

By the proofs of Subcases (ii.i)–(ii.iv), we have m(Ĝ, 2) ≥ m(Fa,b,c
n+1 , 2) ≥ 2n − 3 if Ĝ , F0,0,n−4

n+1 ,F0,n−4,0
n+1 .

Case (iii). dia(Ĝ) = 5.
In this case, Ĝ may be viewed as a tree obtained from P6 by attaching trees T1, T2, T3, and T4 at v2, v3,

v4, and v5 respectively. Let |E(T1)| = a, |E(T2)| = b, |E(T3)| = c, and |E(T4)| = d, where 0 ≤ a, b, c, d ≤ n − 5 and
a + b + c + d = n − 5. By using Lemma 2.4 repeatedly, we have

m(Ĝ, 2) ≥ m(Ga,b,c,d
n+1 , 2), (20)

where Ga,b,c,d
n+1 is the graph obtained from P6 by attaching a, b, c, and d pendent edges to v2, v3, v4, and v5

respectively. By the methods similar to those for Case (ii), we can obtain m(Ĝ, 2) ≥ m(Ga,b,c,d
n+1 , 2) ≥ 2n − 3.

Case (iv). dia(Ĝ) ≥ 6.
In this case, Ĝ can be viewed as a connected tree obtained from Pd+1 by attaching trees, say T1, . . . ,Td−1,

at v2, . . . , vd respectively. By using Lemma 2.4 repeatedly and by the proof of Case (iii), we obtain m(Ĝ, 2) ≥
m(Ga,b,c,d

n+1 , 2) ≥ 2n − 3.
By combining the proofs of Cases (i)–(iv), we get Lemma 3.4. �
For l = 4, some graphs are introduced as follows.
For n ≥ 6, An is the graph obtained from C4 by attaching one and n − 5 pendent edges to u1 and u2

respectively.
For n ≥ 7, Bn is the graph obtained from C4 by attaching a path P3 to u1 and n − 6 pendent edges to u3.
For n ≥ 6, Cn is the graph obtained from C4 by identifying u1 of C4 with a pendent vertex of Xn−3.
For n ≥ 5, Da

n is the graph obtained from C4 by attaching a and n − a − 4 pendent edges to u1 and u3
respectively, where 0 ≤ a ≤ [ n−4

2 ].

Lemma 3.5. Let G ∈ U2n and n ≥ 10. If Ĝ ∈ Hn and Ĝ , D0
n,Hn,C0

n,C1
n, then m(Ĝ, 2) ≥ 2n − 3.

Proof. Let Ĝ ∈ Hn and n ≥ 10, where G ∈ U2n. Suppose that the cycle contained in Ĝ is Cl. Three cases are
considered as follows.

Case (i). l ≥ 5.
If Ĝ = Zn, then m(Ĝ, 2) = 3n−10 > 2n−3. If Ĝ , Zn, then by Lemma 2.6, we have m(Ĝ, 2) ≥ 3n−12 ≥ 2n−3.
Case (ii). l = 4.
If Ĝ , An,Bn,Cn,Da

n, then we can choose an edge e on C4 of Ĝ such that Ĝ − e , On and dia(Ĝ − e) ≥ 5.
Therefore, by Lemma 2.6, we have m(Ĝ, 2) ≥ 3n − 12 ≥ 2n − 3. By direct calculation, we get m(An, 2) =
3n − 11 ≥ 2n − 3 and m(Bn, 2) = m(Cn, 2) = 4n − 16 > 2n − 3. By (8), we have

m(Da
n, 2) = (n − 3 − a)(a + 2) + a , f6(a). (21)

Thus, f6(a) is an increasing function of a since f ′6(a) = −2a + n − 4 ≥ 0 for 0 ≤ a ≤ [ n−4
2 ]. If Ĝ = D0

n, then
m(D0

n, 2) = f6(0) = 2n−6 < 2n−3. If Ĝ = Da
n with 1 ≤ a ≤ [ n−4

2 ], then m(Da
n, 2) = f6(a) ≥ f6(1) = 3n−11 ≥ 2n−3.

Case (iii). l = 3.
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If Ĝ < K , then by Lemma 2.6, we have m(Ĝ, 2) ≥ 3n − 12 ≥ 2n − 3. When n ≥ 10, we obtain m(Qn, 2) =
m(Rn, 2) = 3n−11 > 2n−3, m(Sn, 2) = 4n−18 > 2n−3, m(Tn, 2) = 4n−16 > 2n−3, m(Wn, 2) = 4n−17 > 2n−3,
m(Yn, 2) = 3n − 12 > 2n − 3, and m(Hn, 2) = 2n − 6 < 2n − 3. If Ĝ = Ca

n, then by (8), we have

m(Ca
n, 2) = (n − 3 − a)(a + 1) + a , f7(a). (22)

Thus, f7(a) is an increasing function of a since f ′7(a) = −2a + n − 3 ≥ 0 for 0 ≤ a ≤ [ n−3
2 ]. If Ĝ = C0

n, then
m(C0

n, 2) = f7(0) = n − 3 < 2n − 3. If Ĝ = C1
n, then m(C1

n, 2) = f7(1) = 2n − 7 < 2n − 3. If Ĝ = Ca
n with

2 ≤ a ≤ [ n−3
2 ], then f7(a) ≥ f7(2) = 3n − 13 ≥ 2n − 3.

By the proofs of Cases (i)–(iii), we obtain that if Ĝ , D0
n,Hn,C0

n,C1
n, then m(Ĝ, 2) ≥ 2n − 3 for n ≥ 10. �

Let the number of the components of Ĝ be o(Ĝ).

Lemma 3.6. Let G ∈ U2n and n ≥ 10. If o(Ĝ) ≥ 3 and each component of Ĝ is a tree, then m(Ĝ, 2) ≥ 2n − 3.

Proof. If o(Ĝ) ≥ 4, then we concatenate Ĝ together into a graph (denoted by G̃) in such a way that o(G̃) = 3.
Obviously, m(Ĝ, 2) > m(G̃, 2). We suppose that the numbers of vertices for the three components of G̃ are
a + 1, b + 1 and n − a − b + 1. Using Lemma 2.4 repeatedly, we obtain m(G̃, 2) ≥ m(Xa+1 ∪Xb+1 ∪Xn−a−b+1, 2).
We suppose 1 ≤ a ≤ b and a + b ≤ n − 1.

If a = 1, then we suppose 1 ≤ b ≤ [ n−1
2 ]. By (8), we have m(X2 ∪ Xb+1 ∪ Xn−b, 2) = b(n − 1 − b) + n − 1 ,

f8(b) ≥ f8(1) = 2n− 3 since f8(b) is an increasing function of b for 1 ≤ b ≤ [ n−1
2 ]. If a ≥ 2, then by (8), we have

m(Xa+1 ∪ Xb+1 ∪ Xn−a−b+1, 2) = m(Xa+1 ∪ Xn−a+1, 2) + b(n − a − b)
≥ m(Xa+1 ∪ Xn−a+1, 2) + 1 ≥ 2n − 3. (23)

Therefore, we obtain Lemma 3.6. �

Lemma 3.7. Let G ∈ U2n with n ≥ 10. If Ĝ is unconnected and Ĝ , X2 ∪ C0
n−1,X2 ∪ Xn,X3 ∪ Xn−1,X2 ∪ E0,n−4

n ,
then m(Ĝ, 2) ≥ 2n − 3.

Proof. Let G ∈ U2n and n ≥ 10. Two cases are considered according to the types of the capped graph Ĝ.
Case (i). Ĝ is an unconnected graph whose components are trees and a cycle.
If Ĝ is composed of trees and a cycle, then we might concatenate them together into a connected unicyclic

graph (denoted by Ĝ1). If Ĝ1 < {D0
n,Hn,C0

n,C1
n}, then by Lemma 3.5, m(Ĝ, 2) > m(Ĝ1, 2) ≥ 2n − 3. Otherwise,

if Ĝ1 ∈ {D0
n,Hn,C0

n,C1
n}, then four subcases are considered as follows.

Subcase (i.i). Ĝ1 = D0
n.

If o(Ĝ) = 2, then Ĝ = Xa+1 ∪D0
n−a with 1 ≤ a ≤ n − 4. By (8), we have

m(Xa+1 ∪D0
n−a, 2) = (a + 2)(n − a) − 6 , f9(a)

≥ min{ f9(1), f9(n − 4)} = 3n − 9 ≥ 2n − 3. (24)

If o(Ĝ) ≥ 3, then we can concatenate Ĝ into a graph with two components Xa+1∪D0
n−a, where 2 ≤ a ≤ n−4.

Thus, by (24), we get m(Ĝ, 2) ≥ m(Xa+1 ∪D0
n−a, 2) ≥ 2n − 3.

Subcase (i.ii). Ĝ1 = C0
n.

If o(Ĝ) = 2, then Ĝ = Xa+1 ∪ C0
n−a with 1 ≤ a ≤ n − 3. For a = 1, we have

m(X2 ∪ C0
n−1, 2) = 2n − 5 < 2n − 3. (25)

For 2 ≤ a ≤ n − 3, by (8), we get

m(Xa+1 ∪ C0
n−a, 2) = (a + 1)(n − a) − 3 , f10(a)

≥ min{ f10(2), f10(n − 3)} = 3n − 9 ≥ 2n − 3. (26)
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If o(Ĝ) ≥ 3, then we can concatenate Ĝ into a graph with two components Xa+1∪C0
n−a, where 2 ≤ a ≤ n−3.

Therefore, by (26), we get m(Ĝ, 2) ≥ m(Xa+1 ∪ C0
n−a, 2) ≥ 2n − 3.

Subcase (i.iii). Ĝ1 = Hn.
If o(Ĝ) = 2, then Ĝ may be one among the four types: X2∪C0

n−1, X3∪C0
n−2, Xa+1∪Hn−a with 1 ≤ a ≤ n−6, and

E0,a−1
a+3 ∪C0

n−a−2 with 1 ≤ a ≤ n−5. By (25) and (26), we have m(X2∪C0
n−1, 2) < 2n−3 and m(X3∪C0

n−2) ≥ 2n−3
respectively. By (8), we get

m(Xa+1 ∪Hn−a, 2) = (a + 2)(n − a) − 6 , f11(a)
≥ min{ f11(1), f11(n − 5)} = 3n − 9 ≥ 2n − 3,

m(E0,a−1
a+3 ∪ C0

n−a−2, 2) = (a + 2)(n − a − 2) + n − 5 , f12(a)

≥ min{ f12(1), f12(n − 5)} = 4n − 14 ≥ 2n − 3.

If o(Ĝ) ≥ 3, then we concatenate Ĝ into a graph with two components such that the graph is not X2∪C0
n−1.

By the proof as above, we get m(Ĝ, 2) ≥ 2n − 3.
Subcase (i.iv). Ĝ1 = C1

n.
If o(Ĝ) = 2, then Ĝ may be X2 ∪C0

n−1 or Xa+1 ∪C1
n−a with 1 ≤ a ≤ n− 4. By (25), we have m(X2 ∪C0

n−1, 2) <
2n − 3. By (8), for 1 ≤ a ≤ n − 4, we get

m(Xa+1 ∪ C1
n−a, 2) = (a + 2)(n − a) − 7 , f13(a)

≥ min{ f13(1), f13(n − 4)} = 3n − 10 ≥ 2n − 3. (27)

If o(Ĝ) ≥ 3, then we concatenate Ĝ into a graph with two components such that it is not X2 ∪ C0
n−1.

Therefore, by (27), we get m(Ĝ, 2) ≥ 2n − 3.
By combining the proofs of Subcases (i.i)–(i.iv), we have m(Ĝ, 2) ≥ 2n − 3 if Ĝ , X2 ∪ C0

n−1.
Case (ii). Ĝ is an unconnected graph whose components are trees only.
If o(Ĝ) ≥ 3, then by Lemma 3.6, we have m(Ĝ, 2) ≥ 2n−3. Next, we always assume o(Ĝ) = 2. We concate-

nate Ĝ together into a tree, denoted by Ĝ2. Obviously, Ĝ2 ∈ Tn+1. If Ĝ2 < {Xn+1,E0,n−3
n+1 ,E1,n−4

n+1 ,F0,0,n−4
n+1 ,F0,n−4,0

n+1 },
then by Lemma 3.4, m(Ĝ, 2) > m(Ĝ2, 2) ≥ 2n − 3. Otherwise, if Ĝ2 ∈ {Xn+1,E0,n−3

n+1 ,E1,n−4
n+1 ,F0,0,n−4

n+1 ,F0,n−4,0
n+1 }, then

five subcases are considered as follows.
Subcase (ii.i). Ĝ2 = Xn+1.
As o(Ĝ) = 2, Ĝ = Xa+1 ∪ Xn−a+1 with 1 ≤ a ≤ [ n

2 ]. By (8), we have m(Xa+1 ∪ Xn−a+1, 2) = a(n − a) , f14(a).
Thus, f14(a) is an increasing function of a since f ′14(a) ≥ 0 for 1 ≤ a ≤ [ n

2 ]. We have

m(X2 ∪ Xn, 2) = f14(1) = n − 1 < 2n − 3, (28)
m(X3 ∪ Xn−1, 2) = f14(2) = 2n − 4 < 2n − 3, (29)
m(Xa+1 ∪ Xn−a+1, 2) = f14(a) ≥ f14(3) = 3(n − 3) ≥ 2n − 3, (30)

for 3 ≤ a ≤ [ n
2 ].

Subcase (ii.ii). Ĝ2 = E0,n−3
n+1 .

As o(Ĝ) = 2, Ĝ may be one among the three types: X2 ∪ Xn, X3 ∪ Xn−1 and Xa+1 ∪ E0,n−a−3
n−a+1 with

1 ≤ a ≤ n− 3. By (28) and (29), we only need to consider the last type. By (8), we have m(Xa+1 ∪E0,n−a−3
n−a+1 , 2) =

a(n − a) + n − 2 − a = (a + 1)(n − a) − 2 , f15(a). If a = 1, then we have

m(X2 ∪ E0,n−4
n , 2) = f15(1) = 2n − 4 < 2n − 3. (31)

If 2 ≤ a ≤ n − 3, then we get

m(Xa+1 ∪ E0,n−a−3
n−a+1 , 2) = f15(a) ≥ min{ f15(2), f15(n − 3)} = 3n − 8 ≥ 2n − 3. (32)



L. Yuan, W. H. Wang / Filomat 34:11 (2020), 3721–3745 3730

Subcase (ii.iii). Ĝ2 = E1,n−4
n+1 .

As o(Ĝ) = 2, Ĝ may be one among the four types: X3 ∪ Xn−1, X4 ∪ Xn−2, X2 ∪ E0,n−4
n , and Xa+1 ∪ E1,n−a−4

n−a+1
with 1 ≤ a ≤ n − 4. By (29)–(31), we only need to consider the last type. We get m(Xa+1 ∪ E1,n−a−4

n−a+1 , 2) =
(a + 2)(n − a) − 6 , f16(a) ≥ min{ f16(1), f16(n − 4)} = 3n − 9 ≥ 2n − 3 for 1 ≤ a ≤ n − 4.

Subcase (ii.iv). Ĝ2 = F0,0,n−4
n+1 .

As o(Ĝ) = 2, Ĝ may be one among the four types: X3 ∪Xn−1, X2 ∪ E0,n−4
n , Xn−2 ∪ E0,0

4 , and Xa+1 ∪ F0,0,n−a−4
n−a+1

with 1 ≤ a ≤ n−4. By (29), (31) and (32), we only need to consider the last type. We get m(Xa+1∪F0,0,n−a−4
n−a+1 , 2) =

(a + 2)(n − a) − 5 , f17(a) ≥ min{ f17(1), f17(n − 4)} = 3n − 8 ≥ 2n − 3 for 1 ≤ a ≤ n − 4.
Subcase (ii.v). Ĝ2 = F0,n−4,0

n+1 .
If o(Ĝ) = 2, Ĝ may be one among the four types: X2∪E0,n−4

n , X3∪E0,n−5
n−1 , Xa+1∪F0,n−a−4,0

n−a+1 with 1 ≤ a ≤ n−4,
and E0,a−1

a+3 ∪E0,n−a−5
n−a−1 with 1 ≤ a ≤ [ n−4

2 ]. By (31) and (32), we only need to consider the last two types. We get
m(Xa+1 ∪ F0,n−a−4,0

n−a+1 , 2) = (a + 2)(n − a) − 5 , f18(a) ≥ min{ f18(1), f18(n − 4)} = 3n − 8 ≥ 2n − 3 for 1 ≤ a ≤ n − 4
and m(E0,a−1

a+3 ∪ E0,n−a−5
n−a−1 , 2) = (a + 2)(n − a − 2) + n − 4 , f19(a) ≥ f19(1) = 4n − 13 ≥ 2n − 3 for 1 ≤ a ≤ [ n−4

2 ].
By the proofs of Subcases (ii.i)–(ii,v), if Ĝ , X2∪Xn,X3∪Xn−1,X2∪E0,n−4

n , then we have m(Ĝ, 2) ≥ 2n− 3.
In conclusion, by the proofs of Cases (i) and (ii), we obtain Lemma 3.7. �

Let Ĥ , F̂ and Î be the sets of the special graphs in Lemmas 3.4, 3.5 and 3.7 respectively. Namely

Ĥ = {Xn+1,E0,n−3
n+1 ,E1,n−4

n+1 ,F0,0,n−4
n+1 ,F0,n−4,0

n+1 }, (33)

F̂ = {D0
n,Hn,C0

n,C
1
n}, (34)

Î = {X2 ∪ C0
n−1,X2 ∪ Xn,X3 ∪ Xn−1,X2 ∪ E0,n−4

n }. (35)

Let Â = Ĥ ∪ F̂ ∪ Î. By Lemmas 3.4–3.7, we have Lemma 3.8 as follows.

Lemma 3.8. Let G ∈ U2n with n ≥ 10. If Ĝ < Â, then m(Ĝ, 2) ≥ 2n − 3.

For each capped graph in F̂ , Ĥ and Î, we can construct its original graph. Let F ,H and I be the sets
of the original graphs of the capped graphs in F̂ , Ĥ and Î respectively. By construction, we get

H = {A2n,1,B2n,i (1 ≤ i ≤ 4),C2n,i (1 ≤ i ≤ 5),D2n,i (1 ≤ i ≤ 7),E2n,i (1 ≤ i ≤ 7)},
F = {F2n,1,G2n,1,H2n,1, I2n,1},

I = {J2n,i (1 ≤ i ≤ 4),K2n,i (1 ≤ i ≤ 3),L2n,i (1 ≤ i ≤ 10),M2n,i (1 ≤ i ≤ 19)}.

InH , we have Â2n,i = Xn+1, B̂2n,i = E0,n−3
n+1 (1 ≤ i ≤ 4), Ĉ2n,i = E1,n−4

n+1 (1 ≤ i ≤ 5), D̂2n,i = F0,0,n−4
n+1 (1 ≤ i ≤ 7), and

Ê2n,i = F0,n−4,0
n+1 (1 ≤ i ≤ 7). In F , we get F̂2n,1 = D0

n, Ĝ2n,1 = C0
n, Ĥ2n,1 = Hn, and Î2n,1 = C1

n. In I, we obtain
Ĵ2n,i = X2 ∪ Xn (1 ≤ i ≤ 4), K̂2n,i = X2 ∪ C0

n−1 (1 ≤ i ≤ 3), L̂2n,i = X3 ∪ Xn−1 (1 ≤ i ≤ 10), and M̂2n,i = X2 ∪ E0,n−4
n

(1 ≤ i ≤ 19).
Let A = H ∪ F ∪ I. It is noted that there are 64 graphs in A. All the graphs in A are shown in

Appendix A. For each graph in Appendix A, the dashed line with a label represents the number of P3
attached at the vertex of the graph. There exist a balanced graph and an unbalanced one corresponding to
each unicyclic graph in A. Let A+ and A− be the sets of all the corresponding balanced and unbalanced
graphs, respectively. For the unbalanced graphs in Appendix A, we denote the positive edge by a plain
line and the negative edge by a dotted line.

Lemma 3.9. Let G ∈ U2n with n ≥ 10 and S its signed graph. Let l be the girth of G and r, j be integers with r, j ≥ 1.
(i) For l = 2r + 1, if G < A, then E(F−2n,1) < E(G) = E(G+) = E(G−);
(ii) For l = 4 j + 2, if S is balanced and S < A+, then E(F−2n,1) < E(S);
(iii) For l = 4 j, if S is unbalanced and S < A−, then E(F−2n,1) < E(S).
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Proof. Obviously, F̂2n,1 = D0
n. It is noted that m(D0

n, 2) = 2n − 6. Since each 2-matching of D0
n is adjacent to

four edges of M(F−2n,1) and m(D0
n, i) = 0 for 3 ≤ i ≤ n, we have

m(F−2n,1, k) = p + (2n − 6)
(
n − 4
k − 2

)
. (36)

From Lemma 3.1 and the fact that F−2n,1 − C−4 is composed of n − 4 independent edges and four isolated
vertices, we obtain

b2k(F−2n,1) = m(F−2n,1, k) + 2m(F−2n,1 − C−4 , k − 2)

= m(F−2n,1, k) + 2
(
n − 4
k − 2

)
= p + (2n − 4)

(
n − 4
k − 2

)
. (37)

(i) l = 2r + 1.
By Lemma 3.1, we have

b2k(S) = m(S, k) = p + m(Ŝ, 2)
(
n − j
k − 2

)
+

n∑
i=3

m(Ŝ, i)
(
n − j
k − i

)
≥ p + m(Ŝ, 2)

(
n − 4
k − 2

)
. (38)

If G < A, then by Lemma 3.8, we have m(Ŝ, 2) ≥ 2n−3 for n ≥ 10, where S is the signed graph of G. Therefore,
it follows from (37) and (38) that b2k(F−2n,1) ≤ b2k(S), where the equality does not hold for 0 ≤ k ≤ [n/2].
For example, b4(F−2n,1) < b4(S). Furthermore, from Lemma 3.1, we have b2k+1(F−2n,1) = 0 ≤ b2k+1(S) for
0 ≤ k ≤ [n/2]. Thus, by (4) and Theorem 3.2, we get Lemma 3.9(i).

By the methods similar to those for l = 2r + 1, we have Lemma 3.9(ii) and (iii). �

3.4. Comparing the energies of two signed graphs amongA+
∪A

−

To obtain our final results, we need to compare their energies for the signed graphs in A+
∪ A

−. The
method of coefficient comparison in (4) will be used as the first choice. For two unicyclic signed graphs in
A

+
∪A

−, if their coefficients of the corresponding characteristic polynomials are incomparable, then their
energies are directly performed on the basis of (2) by using the theorem of zero points, the integral formula
in (14), and analytical techniques for the integral formula. In this section, the characteristic polynomial
φS(x) of S is rewritten by φ(S, x).

Lemma 3.10 obtained by Li and Li [15] and Lemmas 3.11 and 3.12 derived by Wang [20] are simply
quoted here.

Lemma 3.10. [15] If n ≥ 5, then M+
2n,2 ⇀ A2n,1.

Lemma 3.11. [20] A2n,1 ⇀ B+
2n,1 for n ≥ 7 while B+

2n,1 ⇀ A2n,1 for 3 ≤ n ≤ 6.

Lemma 3.12. [20] B+
2n,1 ⇀ G2n,1 ⇀ B2n,2 for n ≥ 4.

Lemma 3.13. G2n,1 ⇀ B2n,4 for n ≥ 4.

Proof. By (7), we get

φ(G2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + 3(n + 1)x4 + 2x3

− (n + 4)x2 + 1], (39)

φ(B2n,4, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (3n + 4)x4 + 6x3

− (n + 4)x2
− 2x + 1]. (40)

By (39), (40) and (4), we have G2n,1 ⇀ B2n,4 for n ≥ 4. �
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Lemma 3.14. B2n,4 ⇀ B2n,2 for n ≥ 4.

Proof. By (7), we obtain

φ(B2n,4, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (3n + 4)x4 + 6x3

− (n + 4)x2
− 2x + 1],

φ(B2n,2, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (3n + 4)x4 + 4x3

− (n + 5)x2
− 2x + 1].

In (14), let S1 = B2n,4 and S2 = B2n,2. Therefore, by (14), we obtain

E(B2n,4) − E(B2n,2) =
1

2π

∫ +∞

−∞

log
p2

1(x) + q2
1(x)

p2
2(x) + q2

2(x)
dx, (41)

where p1(x) = x8 + (n + 4)x6 + (3n + 4)x4 + (n + 4)x2 + 1, q1(x) = 2x5 + 6x3 + 2x, p2(x) = x8 + (n + 4)x6 +
(3n + 4)x4 + (n + 5)x2 + 1, and q2(x) = 2x5 + 4x3 + 2x. For n ≥ 4, we get [p2

1(x) + q2
1(x)] − [p2

2(x) + q2
2(x)] =

−x2[2x8 + 2nx6 + (6n − 12)x4 + (2n + 1)x2 + 2] ≤ 0. Therefore, it follows from (41) that B2n,4 ⇀ B2n,2 for n ≥ 4.
�

Lemma 3.15. B2n,2 ⇀ J2n,3 for n ≥ 4.

Proof. By (7), we deduce

φ(B2n,2, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (3n + 4)x4 + 4x3

− (n + 5)x2
− 2x + 1], (42)

φ(J2n,3, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (3n + 5)x4 + 6x3

− (n + 5)x2
− 2x + 1]. (43)

By (42), (43) and (4), we get B2n,2 ⇀ J2n,3 for n ≥ 4. �

Lemma 3.16. J2n,3 ⇀ B−2n,1 for n ≥ 4.

Proof. It follows from (7) that

φ(J2n,3, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (3n + 5)x4 + 6x3

− (n + 5)x2
− 2x + 1], (44)

φ(B−2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6 + (3n + 6)x4
− (n + 7)x2 + 1]. (45)

In (14), let S1 = J2n,3 and S2 = B−2n,1. Therefore, by (14), we obtain

E(J2n,3) − E(B−2n,1) =
1

2π

∫ +∞

−∞

log
p2

1(x) + q2
1(x)

p2
2(x)

dx, (46)

where p1(x) = x8 + (n + 4)x6 + (3n + 5)x4 + (n + 5)x2 + 1, q1(x) = 2x5 + 6x3 + 2x and p2(x) = x8 + (n + 4)x6 + (3n +
6)x4 + (n + 7)x2 + 1. Since [p2

1(x) + q2
1(x)]− p2

2(x) = −x4[2x8 + (2n + 8)x6 + (10n + 3)x4 + (14n− 10)x2 + 4n + 2] ≤ 0
for n ≥ 4, it follows from (46) that J2n,3 ⇀ B−2n,1 for n ≥ 4. �

Lemmas 3.17 and 3.18 are simply quoted, which are derived by Wang [20] and Zhu [25] respectively.

Lemma 3.17. [20] B2n,3 ⇀ F+
2n,1 for n ≥ 45 while F+

2n,1 ⇀ B2n,3 for 4 ≤ n ≤ 44.

Lemma 3.18. [25] If n ≥ 4, then B2n,2 ⇀ J2n,1.

Lemma 3.19. B−2n,1 ⇀ J+
2n,2 for n ≥ 43 while J+

2n,2 ⇀ B−2n,1 for 4 ≤ n ≤ 42.

Proof. By (7), we have

φ(B−2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6 + (3n + 6)x4
− (n + 7)x2 + 1]

, (x2
− 1)n−411(x), (47)

φ(J+
2n,2, x) = x2(x2

− 1)n−3[x4
− (n + 3)x2 + 2n]

, x2(x2
− 1)n−312(x). (48)
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Obviously, we get

11(

√
1

2n
) =

1 − 8n + 22n2
− 44n3 + 8n4

16n4 > 0 (n ≥ 5),

11(

√
1
n

) =
1 − 4n + 5n2

− 4n3

n4 < 0 (n ≥ 4),

11(
√

0.38) = −0.992237 − 0.001672n < 0 (n ≥ 4),

11(
√

0.385) = −1.01195 + 0.00260837n > 0 (n ≥ 388),

11(
√

2.61) = −1.11102 + 0.046719n > 0 (n ≥ 24),

11(
√

2.62) = −0.972525 − 0.011528n < 0 (n ≥ 4),

11(
√

n) = 1 − 7n + 5n2
− n3 < 0 (n ≥ 4),

11(
√

n + 1) = −3 − 2n + 2n2 > 0 (n ≥ 4).

According to the theorem of zero points, we obtain

E(B−2n,1) = 2(n − 4) +

8∑
i=1

|xi|

< 2(n − 4) + 2(

√
1
n

+
√

0.385 +
√

2.62 +
√

n + 1), (n ≥ 388). (49)

Since 12(
√

1.99) = −2.0099 + 0.01n > 0 for n ≥ 201, 12(
√

2) = −2 < 0, 12(
√

n + 1) = −2 < 0, and
12(
√

n + 2) = −2 + n > 0 for n ≥ 3, we have

2(n − 3) + 2(
√

1.99 +
√

n + 1) < E(J+
2n,2), (n ≥ 201). (50)

It follows from 2(n − 4) + 2(
√

1
n +
√

0.385 +
√

2.62 +
√

n + 1) < 2(n − 3) + 2(
√

1.99 +
√

n + 1) that the
right-handed side of (49) is less than the left-handed side of (50) for n ≥ 388. Therefore, B−2n,1 ⇀ J+

2n,2 for
n ≥ 388. The calculation yields B−2n,1 ⇀ J+

2n,2 for 43 ≤ n ≤ 387 while J+
2n,2 ⇀ B−2n,1 for 4 ≤ n ≤ 42. �

Lemma 3.20. J+
2n,2 ⇀ B2n,3 for n ≥ 3.

Proof. By (7), we have

φ(J+
2n,2, x) = x2(x2

− 1)n−3[x4
− (n + 3)x2 + 2n], (51)

φ(B2n,3, x) = (x2
− 1)n−3[x6

− (n + 3)x4
− 2x3 + (2n + 1)x2 + 2x − 1]. (52)

It follows from (51), (52) and (4) that J+
2n,2 ⇀ B2n,3 for n ≥ 3. �

Lemma 3.21. B2n,3 ⇀ J2n,4 for n ≥ 3.

Proof. By (7), we get

φ(B2n,3, x) = (x2
− 1)n−3[x6

− (n + 3)x4
− 2x3 + (2n + 1)x2 + 2x − 1], (53)

φ(J2n,4, x) = (x2
− 1)n−3[x6

− (n + 3)x4
− 2x3 + (2n + 2)x2 + 4x − 1]. (54)

It follows from (53), (54) and (4) that B2n,3 ⇀ J2n,4 for n ≥ 3. �

Lemma 3.22. J2n,4 ⇀ J−2n,2 for n ≥ 3.
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Proof. By (7), we obtain

φ(J2n,4, x) = (x2
− 1)n−3[x6

− (n + 3)x4
− 2x3 + (2n + 2)x2 + 4x − 1], (55)

φ(J−2n,2, x) = (x2
− 1)n−3[x6

− (n + 3)x4 + (2n + 4)x2
− 4]. (56)

In (14), let S1 = J2n,4 and S2 = J−2n,2. Therefore, by (14), we obtain

E(J2n,4) − E(J−2n,2) =
1

2π

∫ +∞

−∞

log
p2

1(x) + q2
1(x)

p2
2(x)

dx, (57)

where p1(x) = x6 + (n + 3)x4 + (2n + 2)x2 + 1, q1(x) = 2x3 + 4x and p2(x) = x6 + (n + 3)x4 + (2n + 4)x2 + 4. For
n ≥ 3, we have [p2

1(x) + q2
1(x)] − p2

2(x) = −4x8
− (4n + 14)x6

− (14n + 14)x4
− (12n + 12)x2

− 15 < 0. Therefore,
by (57), we get J2n,4 ⇀ J−2n,2 for n ≥ 3. �

Lemma 3.23. J−2n,2 ⇀ C+
2n,1 for n ≥ 721 while C+

2n,1 ⇀ J−2n,2 for 4 ≤ n ≤ 720.

Proof. By (7), we deduce

φ(J−2n,2, x) = (x2
− 1)n−3[x6

− (n + 3)x4 + (2n + 4)x2
− 4], (58)

φ(C+
2n,1, x) = (x2

− 1)n−4[x8
− (n + 4)x6 + (4n − 2)x4

− (n + 3)x2 + 1]. (59)

By (14), we obtain

E(J−2n,2) − E(C+
2n,1) =

1
π

∫ +∞

−∞

log f1(n, x)dx =
2
π

∫ +∞

0
log f1(n, x)dx, (60)

where

f1(n, x) =
(x2 + 1)[x6 + (n + 3)x4 + (2n + 4)x2 + 4]

x8 + (n + 4)x6 + (4n − 2)x4 + (n + 3)x2 + 1
. (61)

Then

∂ f1(n, x)
∂n

=
−x2(x2 + 2)(x2 + 1)

(
x6 + 9x4 + 6x2 + 1)

[x8 + (n + 4)x6 + (4n − 2)x4 + (n + 3)x2 + 1]2 ≤ 0. (62)

Thus f1(n, x) is a decreasing function of n. When n ≥ 721, it follows from (60) and (62) that

E(J−2n,2) − E(C+
2n,1) =

2
π

∫ +∞

0
log f1(n, x)dx ≤

2
π

∫ +∞

0
log f1(721, x)dx

�
2
π
× (−0.0000107) < 0. (63)

It follows from (63) that J−2n,2 ⇀ C+
2n,1 for n ≥ 721 while the calculation yields C+

2n,1 ⇀ J−2n,2 for 4 ≤ n ≤ 720.
�

Lemma 3.24. C+
2n,1 ⇀ F+

2n,1 ⇀ D+
2n,2 ⇀ I2n,1 for n ≥ 4.

Proof. By (7), we get

φ(C+
2n,1, x) = (x2

− 1)n−4[x8
− (n + 4)x6 + (4n − 2)x4

− (n + 3)x2 + 1], (64)

φ(F+
2n,1, x) = (x2

− 1)n−4[x8
− (n + 4)x6 + (4n − 2)x4

− (n + 4)x2 + 1], (65)

φ(D+
2n,2, x) = (x2

− 1)n−4[x8
− (n + 4)x6 + (4n − 1)x4

− (n + 4)x2 + 1], (66)

φ(I2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (4n − 1)x4 + 2x3

− (n + 4)x2 + 1]. (67)

By (64)–(67) and (4), we get Lemma 3.24. �
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Lemma 3.25. I2n,1 ⇀ F−2n,1 for n ≥ 4.

Proof. By (7), we have

φ(I2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (4n − 1)x4 + 2x3

− (n + 4)x2 + 1], (68)

φ(F−2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6 + (4n + 2)x4
− (n + 4)x2 + 1]. (69)

In (14), let S1 = I2n,1 and S2 = F−2n,1. By (14), we get

E(I2n,1) − E(F−2n,1) =
1

2π

∫ +∞

−∞

log
p2

1(x) + q2
1(x)

p2
2(x)

dx, (70)

where p1(x) = x8 + (n + 4)x6 + (4n−1)x4 + (n + 4)x2 + 1, q1(x) = 2x5 + 2x3 and p2(x) = x8 + (n + 4)x6 + (4n + 2)x4 +
(n + 4)x2 + 1. For n ≥ 4, since [p2

1(x) + q2
1(x)]− p2

2(x) = −x4[6x8 + (6n + 20)x6 + (24n− 5)x4 + (6n + 20)x2 + 6] ≤ 0,
it follows from (70) that I2n,1 ⇀ F−2n,1 for n ≥ 4. �

Lemma 3.26. F−2n,1 
 L−2n,1 for n ≥ 4.

Proof. By (7), we obtain φ(F−2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6 + (4n + 2)x4
− (n + 4)x2 + 1] = φ(L−2n,1, x).

Obviously, we get Lemma 3.26. �

Lemma 3.27. F−2n,1 ⇀ E+
2n,3 for n ≥ 35 while E+

2n,3 ⇀ F−2n,1 for 6 ≤ n ≤ 34.

Proof. By (7), we get

φ(F−2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6 + (4n + 2)x4
− (n + 4)x2 + 1], (71)

φ(E+
2n,3, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 8)x8

− (11n − 1)x6

+ (6n + 5)x4
− (n + 5)x2 + 1]. (72)

By (14), we obtain

E(F−2n,1) − E(E+
2n,3) =

1
π

∫ +∞

−∞

log f2(n, x)dx =
2
π

∫ +∞

0
log f2(n, x)dx, (73)

where

f2(n, x) =
(x2 + 1)2[x8 + (n + 4)x6 + (4n + 2)x4 + (n + 4)x2 + 1]

φ2

with φ2 = x12 + (n + 6)x10 + (6n + 8)x8 + (11n − 1)x6 + (6n + 5)x4 + (n + 5)x2 + 1. Then

∂ f2(n, x)
∂n

= −
x4(4x2 + 1)(x4 + 3x2 + 1)(x4 + 4x2 + 1)(x2 + 1)2

(φ2)2 ≤ 0. (74)

Thus f2(n, x) is a decreasing function of n. When n ≥ 35, we get

E(F−2n,1) − E(E+
2n,3) =

2
π

∫ +∞

0
log f2(n, x)dx ≤

2
π

∫ +∞

0
log f2(35, x)dx

�
2
π
× (−0.0011112) < 0. (75)

Therefore, by (75), we obtain F−2n,1 ⇀ E+
2n,3 for n ≥ 35 while the calculation yields E+

2n,3 ⇀ F−2n,1 for 6 ≤ n ≤ 34.
�
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Lemma 3.28. E+
2n,3 ⇀ E+

2n,2 ⇀ D+
2n,3 for n ≥ 6.

Proof. By (7), we have

φ(E+
2n,3, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 8)x8

− (11n − 1)x6

+ (6n + 5)x4
− (n + 5)x2 + 1], (76)

φ(E+
2n,2, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 8)x8

− (11n + 2)x6

+ (7n + 4)x4
− (n + 6)x2 + 1], (77)

φ(D+
2n,3, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 8)x8

− (11n + 2)x6

+ 8nx4
− (2n + 2)x2 + 1]. (78)

It follows from (76)–(78) and (4) that Lemma 3.28 holds. �

Lemma 3.29. E+
2n,3 ⇀ H2n,1 for n ≥ 6.

Proof. By (7), we get

φ(E+
2n,3, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 8)x8

− (11n − 1)x6

+ (6n + 5)x4
− (n + 5)x2 + 1], (79)

φ(H2n,1, x) = (x2
− 1)n−6[x12

− (n + 6)x10
− 2x9 + (6n + 9)x8 + 8x7

− (11n + 3)x6

− 8x5 + (6n + 9)x4 + 2x3
− (n + 6)x2 + 1]. (80)

It follows from (79), (80) and (4) that E+
2n,3 ⇀ H2n,1 for n ≥ 6. �

Lemma 3.30. E+
2n,3 ⇀ M+

2n,7 for n ≥ 6.

Proof. By (7), we obtain

φ(E+
2n,3, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 8)x8

− (11n − 1)x6

+ (6n + 5)x4
− (n + 5)x2 + 1], (81)

φ(M+
2n,7, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 9)x8

− (11n + 3)x6

+ (6n + 9)x4
− (n + 6)x2 + 1]. (82)

Thus, E+
2n,3 ⇀ M+

2n,7 for n ≥ 6 follows from (81), (82) and (4). �

Lemma 3.31. M+
2n,7 ⇀ M+

2n,3 ⇀ M+
2n,4 for n ≥ 6.

Proof. By (7), we get

φ(M+
2n,7, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 9)x8

− (11n + 3)x6

+ (6n + 9)x4
− (n + 6)x2 + 1], (83)

φ(M+
2n,3, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 9)x8

− (11n + 4)x6

+ (7n + 5)x4
− (n + 6)x2 + 1], (84)

φ(M+
2n,4, x) = (x2

− 1)n−6[x12
− (n + 6)x10 + (6n + 9)x8

− 12nx6

+ (9n − 3)x4
− (2n + 2)x2 + 1]. (85)

Thus, Lemma 3.31 directly follows from (83)–(85) and (4). �

Lemma 3.32. F−2n,1 ⇀ M+
2n,5 for n ≥ 31 while M+

2n,5 ⇀ F−2n,1 for 5 ≤ n ≤ 30.
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Proof. By (7), we have

φ(F−2n,1, x) = (x2
− 1)n−4[x8

− (n + 4)x6 + (4n + 2)x4
− (n + 4)x2 + 1]

, (x2
− 1)n−413(x), (86)

φ(M+
2n,5, x) = x2(x2

− 1)n−5[x8
− (n + 5)x6 + (5n + 4)x4

− (7n − 6)x2 + 2n − 2]

, x2(x2
− 1)n−514(x). (87)

By calculation, we have 13(
√

1
n ) > 0 for n ≥ 4, 13(

√
2
n ) < 0 for n ≥ 8, 13(

√
0.26) < 0 for n ≥ 5, 13(

√
0.27) > 0

for n ≥ 4, 13(
√

3.73) > 0 for n ≥ 4, 13(
√

3.74) < 0 for n ≥ 5, 13(
√

n − 1) < 0 for n ≥ 5, and 13(
√

n) > 0 for
n ≥ 4. According to the theorem of zero points, we have

E(F−2n,1) = 2(n − 4) +

8∑
i=1

|xi|

< 2(n − 4) + 2(

√
2
n

+
√

0.27 +
√

3.74 +
√

n), (n ≥ 8). (88)

Since 14(
√

0.38) > 0 for n ≥ 5, 14(
√

0.39) < 0 for n ≥ 24, 14(
√

1.99) < 0 for n ≥ 204, 14(
√

2) > 0 for n ≥ 5,
14(
√

2.6) > 0 for n ≥ 65, 14(
√

2.62) < 0 for n ≥ 5, 14(
√

n) < 0 for n ≥ 5, and 14(
√

n + 1) > 0 for n ≥ 5, we have

2(n − 5) + 2(
√

0.38 +
√

1.99 +
√

2.6 +
√

n) < E(M+
2n,5), (n ≥ 204). (89)

It follows from 2(n − 4) + 2(
√

2
n +
√

0.27 +
√

3.74 +
√

n) < 2(n − 5) + 2(
√

0.38 +
√

1.99 +
√

2.6 +
√

n) that
the right-handed side of (88) is less than the left-handed side of (89) for n ≥ 204. Therefore, F−2n,1 ⇀ M+

2n,5
for n ≥ 204. The calculation yields F−2n,1 ⇀ M+

2n,5 for 31 ≤ n ≤ 204 while M+
2n,5 ⇀ F−2n,1 for 5 ≤ n ≤ 30. �

Lemma 3.33. M+
2n,5 ⇀ M+

2n,6 
 L+
2n,2 for n ≥ 5.

Proof. By (7), we obtain

φ(M+
2n,5, x) = x2(x2

− 1)n−5[x8
− (n + 5)x6 + (5n + 4)x4

− (7n − 6)x2 + 2n − 2], (90)

φ(M+
2n,6, x) = x2(x2

− 1)n−5[x8
− (n + 5)x6 + (5n + 4)x4

− (7n − 3)x2 + 3n − 3]
= φ(L+

2n,2, x). (91)

Therefore, Lemma 3.33 directly follows from (90), (91) and (4). �

Lemma 3.34. F−2n,1 ⇀ C2n,5 for n ≥ 4.

Proof. It follows from (7) that

φ(C2n,5, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + 4nx4 + (2n − 2)x3

− (n + 4)x2
− 2x + 1]

, (x2
− 1)n−415(x). (92)

By calculation, we have 15(−
√

n + 1) > 0 for n ≥ 4, 15(−
√

n) < 0 for n ≥ 4, 15(−1.49) < 0 for n ≥ 4,

15(−1.48) > 0 for n ≥ 382, 15(−1) = 0, 15(−
√

2
n ) < 0 for n ≥ 5, 15(−

√
1
n ) > 0 for n ≥ 4, 15(

√
1

2n ) > 0 for n ≥ 7,

15(
√

1
n ) < 0 for n ≥ 4, 15(0.31) < 0 for n ≥ 4, 15(0.32) > 0 for n ≥ 32, 15(2.17) > 0 for n ≥ 7399, 15(2.18) < 0 for

n ≥ 4, 15(
√

n) < 0 for n ≥ 4, and 15(
√

n + 1) > 0 for n ≥ 7, we have

2(n − 4) +
√

n + 1.48 + 1 +

√
1
n

+

√
1

2n
+ 0.31 + 2.17 +

√
n < E(C2n,5), (n ≥ 7399). (93)
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It follows from 2(n−4)+2(
√

2
n +
√

0.27+
√

3.74+
√

n) < 2(n−4)+
√

n+1.48+1+
√

1
n +

√
1

2n +0.31+2.17+
√

n
that the right-handed side of (88) is less than the left-handed side of (93) for n ≥ 7399. The calculation yields
F−2n,1 ⇀ C2n,5 for 4 ≤ n ≤ 7398. Therefore, F−2n,1 ⇀ C2n,5 for n ≥ 4. �

Lemma 3.35. C2n,5 ⇀ D2n,6 for n ≥ 4.

Proof. By (7), we get

φ(C2n,5, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + 4nx4 + (2n − 2)x3

− (n + 4)x2
− 2x + 1], (94)

φ(D2n,6, x) = (x2
− 1)n−4[x8

− (n + 4)x6
− 2x5 + (4n + 1)x4 + (2n − 2)x3

− (n + 5)x2
− 2x + 1]. (95)

Thus, C2n,5 ⇀ D2n,6 for n ≥ 4 directly follows from (94), (95) and (4). �

3.5. The preceding 18 signed graphs in the increasing order by their minimal energies inUσ
2n with n ≥ 721

By Lemmas 3.10–3.25, we get the first 18 signed graphs in the increasing order according to their
minimal energies among Uσ

2n with n ≥ 721, which are showed in Theorem 3.36. In the proof of Theorem
3.36, we need to compare E(F−2n,1) with the energies of some signed graphs among A+

∪ A
− by using the

method of coefficient comparison. Due to the tedious calculations for the coefficients of their characteristic
polynomials, we directly list their coefficients in (A1)–(A37) in Appendix B, which are derived by using
Lemma 3.1.

Theorem 3.36. Let S ∈ Uσ
2n and G , J2n,1,C2n,2,D2n,1,D2n,4,D2n,7,C2n,3, where G is the underlying graph of S. Let

l be the girth of S and r, j be integers with r, j ≥ 1. If one of the following three conditions holds: (i) l = 2r + 1; (ii)
l = 4 j + 2 and S is balanced; (iii) l = 4 j and S is unbalanced, then for n ≥ 721, we have

M+
2n,2 ⇀ A2n,1 ⇀ B+

2n,1 ⇀ G2n,1 ⇀ B2n,4 ⇀ B2n,2 ⇀ J2n,3 ⇀ B−2n,1 ⇀ J+
2n,2 ⇀ B2n,3

⇀ J2n,4 ⇀ J−2n,2 ⇀ C+
2n,1 ⇀ F+

2n,1 ⇀ D+
2n,2 ⇀ I2n,1 ⇀ F−2n,1 
 L−2n,1 ⇀ S. (96)

Proof. Let n ≥ 721. By Lemmas 3.10–3.16 and 3.19–3.25, we have the first to the sixteenth inequalities in
(96). By Lemma 3.26, we have F−2n,1 
 L−2n,1 in (96). Next, we prove the last inequality F−2n,1 ⇀ S in (96),
where S does not contain the preceding terms in (96).

Let B be the set of J2n,1, C2n,2, C2n,3, D2n,1,D2n,4,D2n,7, and all the 18 graphs listed in (96) before S.
Let C = (A+

∪ A
−) \ B. We divide C into three subsets according to the girth of the graph. Namely

C = C1 ∪ C2 ∪ C3, where

C1 = {C2n,4,C2n,5,D2n,5,D2n,6,E2n,1,E2n,i(4 ≤ i ≤ 7)} ∪ {H2n,1}

∪ {K2n,i(1 ≤ i ≤ 3),L2n,i(3 ≤ i ≤ 10),M2n,i(8 ≤ i ≤ 19)},
C2 = {C−2n,1,D

−

2n,2,D
+
2n,3,D

−

2n,3,E
+
2n,2,E

−

2n,2,E
+
2n,3,E

−

2n,3}

∪ {L+
2n,2,L

−

2n,2,M
+
2n,i(3 ≤ i ≤ 7),M−2n,i(2 ≤ i ≤ 7)},

C3 = {L+
2n,1,M

+
2n,1,M

−

2n,1}.

It is noted that all the graphs in C1 have odd girth 3 or 5. All the graphs in C2 and in C3 have even girths 4
and 6, respectively. Three cases are considered according to the girth l of the signed graph.

Case (i). l = 2r + 1.
Since l = 2r + 1, by Theorem 3.2, for a fixed graph G ∈ A, we have E(G−) = E(G+) = E(G). Therefore, we

only need to prove F−2n,1 ⇀ G in (96), where G has girth 2r + 1 and G does not contain the preceding terms
in (96).

If G < A, then by Lemma 3.9(i), we have F−2n,1 ⇀ G. If G ∈ A\B, then G ∈ C1 since G has girth l = 2r + 1.
Next, we prove F−2n,1 ⇀ G for G ∈ C1.
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By Lemmas 3.34 and 3.35, we have F−2n,1 ⇀ C2n,5 ⇀ D2n,6. By Lemmas 3.27 and 3.29, we have F−2n,1 ⇀
E+

2n,3 ⇀ H2n,1. Furthermore, by using the method of coefficient comparison and comparing (A2) with (A9),
(A10) and (A11), we obtain F−2n,1 ⇀ E+

2n,3 ⇀ G, where G ∈ {E2n,1,E2n,4,E2n,5}. By comparing (A3) with (A4),
(A5), (A12), (A13), (A6), (A7), and (A8), we get F−2n,1 ⇀ H2n,1 ⇀ G, where G ∈ {C2n,4,D2n,5,E2n,6,E2n,7,K2n,i (1 ≤
i ≤ 3)}. By comparing (A1) with (A14)–(A33), we obtain F−2n,1 ⇀ G, where G ∈ {L2n,i (3 ≤ i ≤ 10),M2n,i (8 ≤
i ≤ 19)}.

Case (ii). l = 4 j and S is unbalanced.
If S < A−, then by Lemma 3.9(iii), we have E(F−2n,1) < E(S). If S ∈ A− \ B, since S has girth l = 4 j and S is

unbalanced, then we only need to prove F−2n,1 ⇀ S, where S ∈ {C−2n,1,D
−

2n,2,D
−

2n,3,E
−

2n,2,E
−

2n,3}∪ {L
−

2n,2,M
−

2n,i (2 ≤
i ≤ 7)}.

By comparing (A1) with (A36), (A37) and (A35), we get F−2n,1 ⇀ C−2n,1,D
−

2n,2,M
−

2n,2 for n ≥ 6. We have the
following inequalities: F−2n,1 ⇀ D+

2n,3 ⇀ D−2n,3 (by Lemmas 3.27, 3.28 and Theorem 3.2(ii)), F−2n,1 ⇀ E−2n,2 (by
Lemmas 3.27, 3.28 and Theorem 3.2(ii)), F−2n,1 ⇀ E−2n,3 (by Lemma 3.27 and Theorem 3.2(ii)), F−2n,1 ⇀ L−2n,2 (by
Lemmas 3.32, 3.33 and Theorem 3.2(ii)), F−2n,1 ⇀ M−2n,3 and F−2n,1 ⇀ M−2n,4 (by Lemmas 3.27, 3.30, 3.31, and
Theorem 3.2(ii)), F−2n,1 ⇀ M−2n,5 (by Lemma 3.32 and Theorem 3.2(ii)), F−2n,1 ⇀ M−2n,6 (by Lemmas 3.32, 3.33,
and Theorem 3.2(ii)), and F−2n,1 ⇀ M−2n,7 (by Lemmas 3.27, 3.30 and Theorem 3.2(ii)).

Case (iii). l = 4 j + 2 and S is balanced.
If S < A+, then by Lemma 3.9(ii), we have F−2n,1 ⇀ S. If S ∈ A+

\ B, since S has girth l = 4 j + 2 and S is
balanced, then S ∈ {L+

2n,1,M
+
2n,1}. By Lemma 3.26 and Theorem 3.2(iii), we get F−2n,1 
 L−2n,1 ⇀ L+

2n,1. By (A1)
and (A34) and by Theorem 3.2(iii), we obtain F−2n,1 ⇀ M−2n,1 ⇀ M+

2n,1.
By the proofs of Cases (i)–(iii), we get Theorem 3.36. �
It should be pointed out that when 6 ≤ n ≤ 721, for the graphs among Uσ

2n, the increasing order
according to their minimal energies are complicated and irregular. Bearing E(F+

2n,1) = E(F2n,1) in mind, we
can, by Theorems 3.2 and 3.36, directly obtain Theorem 3.37 as follows. Namely, amongU2n with n ≥ 721,
the first 12 graphs in the increasing order according to their minimal energies are obtained. In 2011, Wang
[20] obtained the first 7 graphs, which are shown in Theorem 1 in [20]. Therefore, Theorem 3.37 extends
the results of Theorem 1 in [20] and updates the proof of Theorem 1 in [20].

Theorem 3.37. Let G ∈ U2n with n ≥ 721 and G , J2n,1,C2n,2,D2n,1,D2n,4,D2n,7,C2n,3. Let l be the girth of G and
r, j be integers with r, j ≥ 1. If l = 2r + 1 or l = 4 j + 2, then we have

M2n,2 ⇀ A2n,1 ⇀ B2n,1 ⇀ G2n,1 ⇀ B2n,4 ⇀ B2n,2 ⇀ J2n,3 ⇀ J2n,2 ⇀ B2n,3

⇀ J2n,4 ⇀ C2n,1 ⇀ F2n,1 ⇀ G. (97)
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Appendix A : Figures for signed graphs amongA+ ∪A−
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Appendix B: Expressions for coefficients of characteristic polynomials of some signed graphs among
A+ ∪A−

{
b2i(F−2n,1) = p + (2n − 4)

(n−4
i−2

)
,

b2i+1(F−2n,1) = 0.
(A1)

{
b2i(E+

2n,3) = p + (2n − 7)
(n−4

i−2
)

+ (n − 5)
(n−6

i−3
)
−

(n−4
i−3

)
−

(n−5
i−3

)
,

b2i+1(E+
2n,3) = 0.

(A2)
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b2i(H2n,1) = p + (2n − 6)

(n−4
i−2

)
+ (n − 5)

(n−6
i−3

)
,

b2i+1(H2n,1) =

{
0, 2i + 1 < 3
2
(n−3

i−1
)

+ 2
(n−5

i−2
)
, 2i + 1 ≥ 3.

(A3)


b2i(C2n,4) = p + (2n − 6)

(n−4
i−2

)
+ (n − 3)

(n−4
i−3

)
,

b2i+1(C2n,4) =

{
0, 2i + 1 < 3
2
(n−3

i−1
)

+ 2
(n−3

i−2
)
, 2i + 1 ≥ 3.

(A4)


b2i(D2n,5) = p + (2n − 5)

(n−4
i−2

)
+ (2n − 5)

(n−4
i−3

)
,

b2i+1(D2n,5) =

{
0, 2i + 1 < 3
2
(n−3

i−1
)

+ 2
(n−3

i−2
)
, 2i + 1 ≥ 3.

(A5)


b2i(K2n,1) = p + (2n − 5)

(n−4
i−2

)
+ 2

(n−4
i−3

)
+ (n − 4)

(n−5
i−3

)
,

b2i+1(K2n,1) =

{
0, 2i + 1 < 3
2
(n−3

i−1
)

+ 2
(n−4

i−2
)
, 2i + 1 ≥ 3.

(A6)


b2i(K2n,2) = p + (2n − 5)

(n−4
i−2

)
+ (n − 2)

(n−4
i−3

)
+ (n − 4)

(n−5
i−3

)
,

b2i+1(K2n,2) =

{
0, 2i + 1 < 3
2
(n−3

i−1
)

+ 2
(n−4

i−2
)
, 2i + 1 ≥ 3.

(A7)


b2i(K2n,3) = p + (2n − 5)

(n−4
i−2

)
+

(n−4
i−3

)
+

(n−5
i−3

)
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(n−6
i−3

)
,
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0, 2i + 1 < 3
2
(n−3
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+ 2
(n−5

i−2
)
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(A8)


b2i(E2n,1) = p + (2n − 5)

(n−4
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)
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(n−4
i−3

)
+ (n − 4)

(n−5
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)
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0, 2i + 1 < 5
2
(n−4

i−2
)
, 2i + 1 ≥ 5.

(A9)
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b2i(E2n,4) = p + (2n − 5)
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(A11)
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(A12)
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b2i(L2n,3) = p + (2n − 4)
(
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b2i(M2n,14) = p + (2n − 4)
(
n − 4
i − 2

)
+

(
n − 4
i − 3

)
+

(
n − 5
i − 3

)
+ (n − 4)

(
n − 6
i − 3

)
. (A28)

b2i(M2n,15) = p + (2n − 4)
(
n − 4
i − 2

)
+ 4

(
n − 4
i − 3

)
+ (n − 4)

(
n − 5
i − 3

)
. (A29)

b2i(M2n,16) = p + (2n − 4)
(
n − 4
i − 2

)
+ 2

(
n − 4
i − 3

)
+ 2

(
n − 5
i − 3

)
+ (n − 5)

(
n − 6
i − 3

)
. (A30)

b2i(M2n,17) = p + (2n − 4)
(
n − 4
i − 2

)
+ (2n − 4)

(
n − 4
i − 3

)
. (A31)

b2i(M2n,18) = p + (2n − 4)
(
n − 4
i − 2

)
+ (2n − 4)

(
n − 4
i − 3

)
. (A32)

b2i(M2n,19) = p + (2n − 4)
(
n − 4
i − 2

)
+ (n − 1)

(
n − 4
i − 3

)
+ (n − 4)

(
n − 5
i − 3

)
. (A33)

b2i(M−2n,1) = p + (2n − 4)
(
n − 4
i − 2

)
+

(
n − 4
i − 3

)
+ (n − 4)

(
n − 5
i − 3

)
. (A34)

b2i(M−2n,2) = p + (2n − 2)
(
n − 4
i − 2

)
+ 3

(
n − 3
i − 3

)
+ (n + 3)

(
n − 4
i − 3

)
. (A35)

b2i(C−2n,1) = p + (2n − 4)
(
n − 4
i − 2

)
+ 3

(
n − 4
i − 3

)
. (A36)

b2i(D−2n,2) = p + (2n − 3)
(
n − 4
i − 2

)
+ 4

(
n − 4
i − 3

)
. (A37)


