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Abstract. M. A. Akyol and R. Sar1 [On semi-slant {*-Riemannian submersions, Mediterr. ]. Math.
14(6) (2017) 234.] defined semi-slant £*—Riemannian submersions from Sasakian manifolds onto Rie-
mannian manifolds. As a generalization of the above notion and natural generalization of anti-invariant
&t —Riemannian submersions, semi-invariant {*—Riemannian submersions and slant submersions, we
study hemi-slant £+ —Riemannian submersions from Sasakian manifolds onto Riemannian manifolds. We
obtain the geometry of foliations, give some examples and find necessary and sufficient condition for
the base manifold to be a locally product manifold. Moreover, we obtain some curvature relations from
Sasakian space forms between the total space, the base space and the fibres.

1. Introduction

Riemannian submersions betwen Riemannian manifolds were studied by O’'Neill and Gray [14, 23]. Af-
ter this kind of submersions were studied between manifolds endowed with differentiable structures. Many
authors studied different geometric properties of the Riemannian submersions, anti-invariant submersion
[18, 30, 33], semi-invariant submersion [4, 31], paraquaternionic 3-submersion [37], statistical submersion
[38], slant submersion [11, 12, 15, 27, 32], semi-slant submersion [16, 25, 26], conformal slant submersion
[2,17], conformal semi-slant submersion [1], bi-slant submersion [34] and Quasi bi-slant submersion [28].

On the other hand, Riemannian submersions have some aplications in physics and in mathematics. More
precisely, Riemannian submersions have applications in supergravity and superstring theories [21, 22],
Kaluza-Klein theory [9, 20] and Yang-Mills theory [8, 39].

As a generalization of anti-invariant, semi-invariant and slant submersion, Tastan et al. defined the
notion of hemi-slant Riemannian submersion in [36] (see also [3], [19], [24]).

Recently, Akyol et al. defined and studied of semi-invariant £--Riemannian submersion and semi-slant
&t-Riemannian submersion from almost contact manifolds onto Riemannian manifold [4, 5, 35]. They
studied the geometry of this new submersions on almost contact manifolds. Our motivation is to fill a gap
in the geometry of hemi-slant £-—Riemannian submersions in contact geometry.

The paper consists of five sections. Sect. 2, we mention fundamental basic notions related to Riemannian
submersions and Sasakian manifolds. Sect. 3, we define hemi-slant £t —Riemannian submersions from
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Sasakian manifolds onto Riemannian manifolds and demostrate lots of examples of such submersions.
Sect. 4, we investigate the geometry of leaves of the horizontal distribution and the vertical distribution of a
hemi-slant £+ —Riemannian submersion. In the final section, we obtain curvature properties of distribution
for a hemi-slant £+ —Riemannian submersion from Sasakian space forms.

2. Preliminaries

Let (M, <, >p) be an almost contact metric manifold with structure tensors (¢, &, 17, <, >ym) where ¢ is a
tensor field of type (1,1), £ is a characteristic vector field, 17 is a 1-form and <, > is the Riemannian metric
on M. Then these tensors satisfy [7]

PE=0, nop=0, n(¢) =1 (1)

P*=-I1+1®& and <X, QY >y=<X,Y >y —n(X)n(Y), )
where I denotes the identity endomorphism of TM and X, Y are any vector fields on M, where n(X) =<
X, & >m. Moreover, if M is Sasakian [29], then we have

(VMo)Y =< X, Y >y E+ (V)X and VE = —¢X, (3)

where VM is the connection of Levi-Civita covariant differentiation.
Let (M"™, <,>1) and (M",, <, >;) Riemannian manifolds, where dim(M;) = m, dim(M,) = nand m > n. A
Riemannian submersion ¢ : M; — M, is a map of M; onto M, satisfying the following axioms:

(i) ¢ has maximal rank.
(ii)The differential ¢. preserves the lenghts of horizontal vectors.

For each g € My, ¢~1(g) is an (m — 1) dimensional submanifold of M;. The submanifolds ¢~1(g), g € My,
are called fibers. A vector field on M; is called vertical if it is always tangent to fibres. A vector field on M;
is called horizontal if it is always orthogonal to fibres. A vector field X on M; is called basic if X is horizontal
and ¢-related to a vector field X" on My, i.e., ¢.X, = X('#) ® forall p € M;. Note that we denote the projection
morphisms on the distributions ker¢. and (ker¢.)* by V and H, respectively. We recall that the sections of
V, respectively H, are called the vertical vector fields, respectively horizontal vector fields. A Riemannian
submersion ¢ : M1 — M, determines two (1,2) tensor fields 7 and A on M;, by the formulas:

T(E,F) = TeF = HV.ypp VF + VV. ) HF (4)
and
A(E,F) = AeF = VV,, HF + HV,,, VF (5)

for any E,F € I'(TM;), where V and H are the vertical and horizontal projections (see [13]). From (4) and
(5), one can obtain

Vo'W = TyW + Yy W; (6)
V' X = TyX + H(V, X); 7)
V'V = V(VL V) + AxV; (8)
VY'Y = AxY + H(Vy'Y), )

for any X, Y € I'((ker¢.)*) and V, W € T'(ker¢.). Moreover, if X is basic then

H(Vy' X) = AxV. (10)
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We note that for U, V € T'(ker¢.), TuV coincides with the second fundamental form of the immersion of
the fibre submanifolds and for X, Y € I'((ker¢.)*), AxY = %(V [X, Y] reflecting the complete integrability of
the horizontal distribution . It is known that A is alternating on the horizontal distribution: AxY = —AyX,
for X, Y e I'((ker¢p.)*) and 7 is symmetric on the vertical distribution: 7V = 7vU for U, V € I'(ker.).

Lemma 2.1. (see [13], [23]). If ¢ : M1 — M, is a Riemannian submersion and X,Y basic vector fields on M,
¢—related to X' and Y’ on My, then we have the following properties

1. ‘HIX, Y] is a basic vector field and . HI[X, Y] = [X',Y'] o ¢;

2. H (Vé\fl Y) is a basic vector field ¢p—related to (Vl)\f,2 Y"), where VM and VM2 are the Levi-Civita connection on
M1 and Mz,‘

3. [E, U] € I'(ker¢p.), for any U € I'(ker.) and for any basic vector field E.

Let (M1, <, >m,) and (My, <, >u1,) be Riemannian manifolds and ¢ : M; — M is a smooth map. Then
the second fundamental form of ¢ is given by

(VOIX, Y) = Vg d.Y = gu(Vy Y) (11)

for X, Y € I'(TM;), where we denote the Levi-Civita connections of the metrics <, >y, and <, >y, conve-
niently by V. Recall that ¢ is called a totally geodesic map if (V$.)(X,Y) = 0 for X, Y € I'(TM,) [6]. It is known
that the second fundamental form is symmetric.

We note that, the tensor fields A, 7 their covariant derivatives play a fundemantal role in expressing
the Riemannian curvaure RM: of M. In 1966 ([23]), O’Neill are given

RM(U,V,W,S) = RV, W,S)+ < TuW,TvS >um, — < TyW,TuS >um, (12)

where R is Riemannian curvature tensor of any fibre (n71(x), <, >um,). Moreover if {U, V} is orthonormal
basis of the vertical 2-plane, then from (12) we have

KM(U, V) = KU, V) + ITuVIP = < Tul, TvV >u,

where KM and K is sectional curvature of M; and o7H(x).

3. Hemi-slant {*—Riemannian submersions

Definition 3.1. Let (M, ¢, &, 1, <, >m) be a Sasakian manifold and (N, <, >N) be a Riemannian manifold. Suppose
that there exists a Riemannian submersion ¢ : M — N such that & is normal to ker¢.. Then ¢ is called a hemi-slant
&+ —Riemannian submersion if the vertical distribution ker. of ¢ admits two orthogonal complementary distributions
D, and Dg such that D, is anti-invariant and Dy is slant, i.e, we have

kerp. =D, & Dy.
In this case, the angle O is called the hemi slant angle of the hemi-slant &+ —Riemannian submersion.

If 6 # 0, 5 then we say that the submersion is proper hemi-slant £*~Riemannian submersion. Now, we
are going to give some proper examples in order to guarantee the existence of hemi-slant £+ —Riemannian
submersions in Sasakian manifolds and demonstrate that the method presented in this paper is effective.
Note that, (R***1, ¢, 1, &, <, >gen1) will denote the manifold R*"*! with its usual contact structure given by
[10]

1 - igi _
nzz(dz—;ydx), & =20z,
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1 < A , , ,
< >=nen+ g Z(dxl Qdx' +dy @ dy'),

P
(p(Z(Xl&xi +Yidy') + Z9z) = Z(Yﬂxi - Xidy') + Z Yiy'oz
P P P

where (x1, .., Xy, Y1, ..., Yn, z) denotes the Cartesian coordinates on R¥+1,

Example 3.2. Every anti-invariant &+—Riemannian submersion from a Sasakian manifold onto a Riemannian man-
ifold is a hemi-slant &+ —Riemannian submersion with Dy = {0}.

Example 3.3. Every slant E+—Riemannian submersion from a Sasakian manifold onto a Riemannian manifold is a
hemi-slant &+ —Riemannian submersion with D, = {0}.

Example 3.4. Let ¢ be a submersion defined by

(P : (Rgl <, >]R9) - (]RS/ <, >IR5)

X1+ Xoti .
(1, X2, X3, X4, Y1, Y2, Y3, Y4, 2) (57 7 =5 /SinYXs = COS YXy, s, 2)

withy € (0, 5). Then it follows that

ker ¢ = Sp{V1 = —dx1 + Ay, Vo = —9x2 + dy1, V3 = —cos ydxz — sin ydxy,
Vs = dys)

and

(ker (P*)L = SP{WI = 8x1 + 8y2, Wy = axz + 3y1, W3 = sin y8x3 — COS an4,
Wy = dyy, Ws = 9z}

hence we have V1 = Wy, @V, = Wi. Thus it follows that D, = sp{V1, Vo) and Dy = sp{V3, V4} is a slant
distribution with hemi-slant angle 6 = y. Thus ¢ is a hemi-slant &+— submersion. Also by direct computations, we
obtain

< W;, W; >Ro=< (pWi, (pWi >R5, i= 1,..,5

which show that ¢ is a hemi-slant &-—Riemannian submersion.

Example 3.5. Let F be a submersion defined by

F: R%, <, >po — RS, <, >ps
R R
+ + +
(xll"'/ ]/1/‘--,2) (XI\/%IZI xz\/iylz xs\j;;/ ys\ﬁyzl,z)‘

The submersion F is hemi-slant &+—Riemannian submersion such that D, = sp{dx1 — dya, dxa — dy1} and Dy =
sp{dxs + dx4, Ay + Jdya} with hemi-slant angle 6 = 0.

Example 3.6. Let 7@ be a submersion defined by

n: (R7,<,>p) — (R*, <, >Ri)

(X1, s Y1, s Z) (%, sin yxs — cos Yy, cos fxs — sin fy3, 2).
The submersion 1 is a hemi-slant &+ —Riemannian submersion such that D, = sp{dx1—dxa} and Dy = sp{cos ydx;—
sin ydya, sin foxy — cos Bdys} with hemi-slant angle 6 = o + B.
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Let ¢ be a hemi-slant {-—Riemannian submersion from a Sasakian manifold (M, ¢, &, n, <, >pm) onto a
Riemannian manifold (N, <, >x). Then, for U € I'(ker¢.), we put

U=PUu+Qu
where PU € T'(D,) and QU € T'(Dy). For Z € T(TM), we have
Z=VZ+HZ

where VZ € I'(ker¢.) and HZ € T'(ker¢.)*.
We denote the complementary distribution to D, in (ker¢.)* by u. Then we have

(kerqb*)L = @DJ_ e u,
where @(u) C u. Hence p contains &. For V € I'(ker.), we write
eV =pV+awV (13)

where pV and wV are vertical (resp. horizontal) components of ¢V, respectively. Also for X € I'((ker¢.)*),
we have

@X = BX +CX, (14)

where B8X and CX are vertical (resp. horizontal) components of ¢X, respectively. Then the horizontal
distribution (ker¢.)* is decomposed as

(ker)* = pD. @ u,

here p is the orthogonal complementary distribution of D, and it is both invariant distribution of (ker¢.)*
with respect to ¢ and contains £. Then by using (6), (7), (13) and (14), we get

(Vop)W = BTyW — TywW (15)
(Vo)W = CTyW - TyvpW (16)
for V, W € I'(ker¢.), where
(Vop)W = VypW — pVy W
and
(Vo)W = HV, wW — oVy W,
The proof of the following is exactly same with slant immersions (see [10]), therefore we omit its proof.

Theorem 3.7. Let ¢ : (M, p,1n,&,<,>m) — (N,<,>N) be a hemi-slant &+—Riemannian submersion, where
(M, p,n, &, <,>nm) is a Sasakian manifold and (N, <, >y) is a Riemannian manifold. Then we have

p*W = cos® OW, W € T(Dp), (17)
where 0 denotes the hemi-slant angle of kerg..
By using above theorem, it is easy to see the following.

Lemma 3.8. Let ¢ : M — N be a hemi-slant &+ —Riemannian submersion from a Sasakian manifold (M, ¢, 1, &, <
, >m) onto a Riemannian manifold (N, <, >n). Then we have

<pU,pV >y=cos? 0 < U,V >y (18)

<ol wV >y=sin>0 < UV >y (19)
forall U,V € T(kerg.).
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4. Integrability, Totally Geodesicness and Decomposition Theorems

Theorem 4.1. Let ¢ : (M, @,1n,&,<,>m) — (N,<,>N) be a hemi-slant E+—Riemannian submersion, where
(M, p,n,&,<,>nm) is a Sasakian manifold and (N, <,>y) is a Riemannian manifold. Then the distribution D,
is integrable if and only if we have

<TupV = Tvel pZ >mu=< Vo.)(U, V) = (Vo.)(V, pU), p.(wZ) >N
forany U,V e T(D,) and Z € T(Dy).
Proof. For U,V € I'(TM), by using (2) and (3), we have

<VIV,Z >p=< VMoV, 0Z > . (20)
For U,V € I'(D,), Z € I'(Dy), using (2) and (20), we have

<[U V], Z>u=< VYoV, 9Z >y — < Vi'oU @Z >\ .
On the other hand, by using (6) we get

<[U V] Z>u=<TupV - TvoU, pZ > + < H(VY V) - H(V¥pU), wZ >y .
Now, using the property of ¢, we obtain

<[UV],Z>pm=<TueV -TveU, pZ >y

+ < O.VPV) — 9V o), 6. (w0Z) >x

which gives the proof. [

Theorem 4.2. Let ¢ be a hemi-slant E+—Riemannian submersion from a Sasakian manifold (M, ¢, 1, &, <, >um) onto
Riemannian manifold (N, <, >N) with a hemi-slant angle 0. Then the distribution Dy is integrable if and only if we
have

< (Vo )Z, wW) = (V. )(W, wZ), p.(pU) >Nn=< TzwpW — TwwpZ, U >u
forany Z, W € I'(Dg) and U e T'(D,).

Proof. For Z, W e I'(Dy) and U € I'(D, ), using (2) and (20) we have
<[ZWLU>y = <V¥eWelU >y - <VieZ U >y .
Therefore by using (13), we get
<[ZWlLU>y = -<V¥PWU>y - < V¥opW U >y
+ < VYW, U >y + < VM Z, U >
+ < ViwpZ, U > — < ViwZ, U > .
Now, by using (17) we obtain
<[ZWLU>y = cos’0<[ZWLU>y—<ViopW, U >y
+ < VMOW, U >y + < V¥wpZ, U >y
— < VRWZ,oU > .
Then we have,
sin® 0 < [Z, W], U >y =< VijwpZ - ViiopW,U >y

+ < VIOW = ViwZ, U > .
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On the other hand, by using (7) we get
sin0 < [ZWLU>y = <TwwpZ-TzwpW,U >y
+ < HVYwW) - H(ViwZ), pU >
= <TwwpZ-TzwpW, U >m
+ < Qu(VYWW) — p.(ViwZ), p.(pU) >N

which gives desired result. This completes the proof. [

Theorem 4.3. Let ¢ : (M, @,1n,&,<,>m) — (N, <,>N) be a hemi-slant E+—Riemannian submersion, where
(M, p,n,&,<,>Mm) is a Sasakian manifold and (N, <,>n) is a Riemannian manifold. Then the distribution D,
is parallel if and only if

< ¢.(VuV), ¢(wpZ) >pm=< eVuV,wZ >y
and

<VupV + TuwV,BX >y= - < TupV + H(VywV),CX >um
forany U,V € T(D.), Z € T(Dg), X € T((ker ¢.)*).
Proof. For U,V € I'(D,), Z € I'(Dg) using (2) we get

<VuV,Z>u <@VuV,oZ >p +n(VuVn(2)
< gDVuV, QDZ >M -

By using (13) we have,
<VuV,Z >y=— < VuV,0*Z + wpZ + pwZ >y .
Then, using (7) and (17), we obtain
sin? 0 < VyuV, Z >y= — < H(VuV), wpZ >m + < VuV,wZ > .
If we take into account the property of ¢, we get
sin? 0 < ViV, Z >y= — < 0.(VuV), pu(wpZ) >N + < oV V,wZ > .
On the other hand, for any U,V € T'(D, ) and X € I'((ker ¢.)*), from (2) and (3) we find
<VuV, X >m=<VyueV, X >\ .
Then by using (6), (7), (13) and (14), we get

<VuV, X >p =< TupV,CX >y + < VpV,BX >y
+ < TuwV,BX >y + < W(Vuﬂ)V), CX >um

which completes the proof. [

Theorem 4.4. Let ¢ be a hemi-slant E+—Riemannian submersion from a Sasakian manifold (M, ¢, 1, &, <, >um) onto
Riemannian manifold (N, <, >N) with a hemi-slant angle 0. Then the distribution Dy is parallel if and only if

< g (wW), (VO )(Z, U) >n=< U, TzpW >um
and

< (Vo )(Z, wW), p(X) >N — < (VP )Z, wpW), p.(CX) >N
=<TzwW,BX >p + < Z,pW >p n(X)

forall Z,W € T(Dg), U € T(D,), X € T((ker ¢,)*).
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Proof. For Z, W € I'(Dg) and U € I'(D, ), from (2) and (3), we have
<VzZW U >pm=<VzpW, U > .
Moreover, we get
<VWU>y=Z < oW, U >y — < W, VzoU > .
Then using (7) and (13), we have
<VzW U >py= = < pW, TzoU >p + < P(wW), P (VzeU) >N .
On the other hand, for any Z, W € I'(Dg), X € T'((ker ¢.)*), by using (2) and (3), we get

<V;W X >um < QVzW, X >pm +1(VZW)n(X)
< —(Vz<p)W + Vz(pW, (pX >+ < VW E>m U(X)
= <VzoW X >ym + < W, @Z > n(X).

By using (7), (17) and (18), we obtain

<VzW, X >y = cos® 0 < VW, X >y — < H(VzawpW), X >um
+ < Z,pW >p n(X)+ < TzwW, BX >pm
+ < (]‘{(Vza)W), CX >p .

Then we have

sin? 0 < VZzW, X >y = — < 0. (VzawpW), p.(X) >N + < Z, pW >y n(X)
+ < TzwW,BX >y + < ¢u(VZzoW), .(CX) >§

which proves assertion. [

Theorem 4.5. Let ¢ : (M, @,1n,&,<,>m) — (N,<,>N) be a hemi-slant E-—Riemannian submersion, where
(M, p,n,&,<,>m) is a Sasakian manifold and (N, <,>y) is a Riemannian manifold. Then D, defines a totally
geodesic foliation on M if and only if

< (Vo )(U @V), p(wZ) >N=< TuwpZ,V >um
and
<TupV,BX >p=< (V. )(U, pV), p.(CX) >N
forany U,V € T(D,),Z € T(Dg) and X € T((ker ¢.)*).
Proof. For any U,V € I'(D, ) and Z € I'(Dg), by using (2), (6), (7), (13) and (17), we have
<VuV,Z >y=cos’ 0 < VuV,Z >y = < TuV,wpZ >m + < HVupV), wZ >y .
Taking into account the property of ¢, we obtain
sin® 0 < VyV, Z >y= — < TuV,wpZ >m — < ¢.(VupV), p.(0Z) >N .
On the other hand, for any X € I'((ker ¢.)*), by using (2), (6), (7) and (14), we get
<VuV, X >py=<TueV,BX >y + < H(VyueV),CX > .
By using the property of ¢, we get
<VuV, X >u=<TupV,BX >m + < $.(VupV), $.(CX) >N

which completes proof. [
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Theorem 4.6. Let ¢ be a hemi-slant &+ —Riemannian submersion from a Sasakian manifold (M, @, n, &, <, >m) onto
Riemannian manifold (N, <, >N) with a hemi-slant angle 0. Then Dg defines a totally geodesic foliation on M if and

only if

< (Vo )(Z, wW), p.(U) >n=< TzU, wpW >y
and

< (Vo )Z, W), d.(X) >N + < (VP )Z wpW), §.(CX) >ny=< TzwW, BX >m
forany Z, W € T(Dg), U € T(D,) and X € T'((ker ¢.)*).
Proof. By using (2), (3) and (13), we obtain

< VW U >y=< Vzp*W,U >y — < VzapW, U >y + < VzoW, U >y
for any Z, W € I'(Dg) and U € I'(D, ). Now, using (7) and (17) we get

< VWU >y=cos? 0 < VW, U >y — < TzawpW, U >y + < H(VzoW), U >y .
Then we have

sin? 0 < VW, U >p= — < Tz0pW, U >pm + < ¢.(VzoW), p.(U) >y .
On the other hand, by using (2), (3), (13) and (14), we have

<VzW, X >m= = < VzopW, X >y + < VzwW,BX >y + < VzoW,CX >y .
for any X € I'((ker ¢.)"). Hence, again using (7) and (17) we obtain

<VzW, X >y =cos? 0 < VW, X >y — < H(VzwpW), X >um
+ < T70W,BX >p + < W(VZO)W), CX >pm -

Taking into account the property of ¢, we obtain

sin® 0 < VZW, X >p = — < pu(VzawpW), u(X) >N + < TzwW, BX >y
+ < (P*(VZCUW)/ (z)*(CX) >N

which proves assertion. [J

5. Hemi-slant £*—Riemannian submersions from Sasakian Space Forms

A plane section in the tangent space T,M at p € M is called a ¢-section if it is spanned by a vector X
orthogonal to £ and @X. The sectional curvature of ¢-section is called ¢-sectional curvature. A Sasakian
manifold with constant p-sectional curvature c is a Sasakian space form. The Riemannian curvature tensor
of a Sasakian space form is given by

RM(X, Y, 7, W) = &3

(<Y, Z>u< X W>y—<X,Z>u< Y, W >um!

c—1
+

<Y, W>mn(X)n(2)- < X, W >um n(Y)n(2)

+ <X, Z >y n(Y)n(W)= <Y, Z >p n(X)n(W)
+ <Y, Z>u< X, W>m — <X, Z >u< Y, W >m
-2< XY >u< @Z, W >} (21)

forany X, Y, Z, W € I'(TM) [7].
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Theorem 5.1. Let ¢ : (M, p,1,&,<,>m) — (N, <,>N) be a hemi-slant &+—Riemannian submersion, where
(M, p,n, &, <, >nm) is a Sasakian manifold and (N, <, >y) is a Riemannian manifold. Then we have

ﬁ(ll,\/,VV,S):%k V,S>u< U W >y — < U S >u< V, W >} (22)
+ <TyWTuS >m — <TuW.TvS >um
and
ff(u, V)= ?k uv >§A 1+ <TvUTuV >u —<TullTvV >u (23)

forall U, V,S,W € T(D*).
Proof. For any U € I'(D, ), we have U € I'((ker ¢.)*) and n(U) = 0. Now, from (21) we obtain

RM(U,V,W,S)z¥{<V,S>M<U,W>M—<U,S>M<V,W>M} (24)

forany V, 5, W € I'(D,). Then, by using (12) we get

RV, W,S) = %k V.S su< U W sy — < U,S >u< VW >

+ <TyWTuS >m — <TuW.TvS >um
which gives (22). If we take W = V and S = U in (22), then we get (23). This completes the proof. [
From above theorem, we have the following result.

Corollary 5.2. Let ¢ be a hemi-slant &+—Riemannian submersion from a Sasakian manifold (M™, @, 1, &, <,>m)
onto Riemannian manifold (N, <, >n) with a hemi-slant angle 0 and m > 3. If D, is totally geodesic, then M is flat
if and only if c = 3.

Theorem 5.3. Let ¢ : (M, @,1n,&,<,>m) — (N,<,>n) be a hemi-slant E*+—Riemannian submersion, where
(M, p,n,&,<,>Mm) is a Sasakian manifold and (N, <,>x) is a Riemannian manifold. If D, is totally geodesic,
then

—~ ¢+3
Tr=——q(1 =29

where T, is the scaler curvature of fibres.

Proof. We know that the trace of scalar curvature is Ricci curvature. So, we have

29
S.(UV) =) R(E,UV,E)
i=1
where {E, ..., Ey;} is ortonormal basis on I'(D,) and U, V € I'(D_). Now if D, is totally geodesic, then using
(22), we obtain

29
o~ +3
SLUV) = Y (HS UE >u< B, V >3 = < B Ei >u< UV >l
i=1
From above equation, we get

c+3
4

Now, if we take U = V = Ei, k = 1, ..., 29 and taking the trace of (25), then we obtain the proof. O

S.(UV)= 1-29) <UV >y. (25)
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From the above theorem, we have the following:

Corollary 5.4. Let ¢ be a hemi-slant &+ —Riemannian submersion from a Sasakian manifold (M, ¢, n, &, <, >m) onto
Riemannian manifold (N, <, >x) with a hemi-slant angle 6. If D, is totally geodesic distribution, then D, is Einstein.

Proof. The proof follows from (25). O

Theorem 5.5. Let ¢ : (M, p,1,&,<,>m) — (N, <,>N) be a hemi-slant &+—Riemannian submersion, where
(M, p,n, &, <, >nm) is a Sasakian manifold and (N, <, >y) is a Riemannian manifold. Then we have

R(KL,P,W) = %k LPsy< KWy — <KP>y<L W >yl
c—1
+ T{< @L, P >py< oK, W >

- < gDK,P >m< (pL, W>y-2< (PK,L >m< (pP,W >M}
+ <TPTKW >pm — < TkP, TLW >M (26)

and

= +3
KK L) = CT{< LK>yu<KL>y—<KK>y<L,L >yl

- 3% < (pK,L >u+ < T K, TxL >p — < TxK, TLL >m (27)
forall K,L,P,N € I'(Dg).
Proof. For any K,L, P, W € I'(Dy), by using (21), we obtain (26) and (27) which gives the proof. [

Theorem 5.6. Let ¢ be a hemi-slant &+ Riemannian submersion from a Sasakian manifold (M, ¢, 1, &, <, >m) onto
Riemannian manifold (N, <, >n) with a hemi-slant angle 0. If Dy is totally geodesic, then we have

- (c+3)2p—1)+3(c—1)cos® O
To =p > .

Proof. By using (26), we have

c+3
4

where K, L € I'(Dp). Taking K = L = E;, k =1,2,...,2p in (28), then we obtain the proof. [

So(K,L) =

-1
@p-1)<KL>y +3CT 0520 < K,L >y (28)

Finally, from the above theorem we have the following result.

Corollary 5.7. Let ¢ : (M, @,1,&,<,>m) — (N, <,>N) be a hemi-slant &+—Riemannian submersion, where
(M, p,n,&,<,>Mm) is a Sasakian manifold and (N, <,>y) is a Riemannian manifold. If Dg is totally geodesic
distribution, then Dy is Einstein.

Proof. The proof follows from (28). O
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