

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Note on the Potential Function of an Arbitrary Graph H

Jianhua Yin, Guangming Li

School of Science, Hainan University, Haikou 570228, P.R. China

Abstract. Given a graph H, a graphic sequence π is *potentially H-graphic* if there is a realization of π containing H as a subgraph. In 1991, Erdős et al. introduced the following problem: determine the minimum even integer $\sigma(H,n)$ such that each n-term graphic sequence with sum at least $\sigma(H,n)$ is potentially H-graphic. This problem can be viewed as a "potential" degree sequence relaxation of the Turán problems. Let H be an arbitrary graph of order k. Ferrara et al. [Combinatorica, 36(2016)687–702] established an upper bound on $\sigma(H,n)$: if $\omega=\omega(n)$ is an increasing function that tends to infinity with n, then there exists an $N=N(\omega,H)$ such that $\sigma(H,n)\leq \widetilde{\sigma}(H)$ for any $n\geq N$, where $\widetilde{\sigma}(H)$ is a parameter only depending on the graph H. Recently, Yin [European J. Combin., 85(2020)103061] obtained a new upper bound on $\sigma(H,n)$: there exists an $M=M(k,\alpha(H))$ such that $\sigma(H,n)\leq \widetilde{\sigma}(H)$ $n+k^2-3k+4$ for any $n\geq M$. In this paper, we investigate the precise behavior of $\sigma(H,n)$ for arbitrary $n+k^2-3k+4$ for any or $\nabla_{\alpha(H)+1}(H)\geq 2$, where $\nabla_{\alpha(H)+1}(H)=\min\{\Delta(F)|F$ is an induced subgraph of H and $|V(F)|=\alpha(H)+1\}$ and $\widehat{\sigma}_{\alpha(H)+1}(H)=2(k-\alpha(H)-1)+\nabla_{\alpha(H)+1}(H)-1$. Moreover, we also show that $\sigma(H,n)=(k-\alpha(H)-1)(2n-k+\alpha(H))+2$ for those H so that $\nabla_{\alpha(H)+1}(H)=1$, $\widehat{\sigma}_{\alpha(H)+1}(H)=\widehat{\sigma}(H)$, $\widehat{\sigma}_{p}(H)<\widehat{\sigma}(H)$ for $\alpha(H)+2\leq p\leq k$ and there is an F< H with $|V(F)|=\alpha(H)+1$ and $\pi(F)=(1^2,0^{\alpha(H)-1})$.

1. Introduction

A sequence $\pi = (d_1, \ldots, d_n)$ of non-negative integers is said to be a *graphic sequence* if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a *realization* of π . The set of all sequences $\pi = (d_1, \ldots, d_n)$ of non-negative, non-increasing integers with $d_1 \le n - 1$ is denoted by NS_n . The set of all graphic sequences in NS_n is denoted by GS_n . For a sequence $\pi = (d_1, \ldots, d_n)$, we denote $\sigma(\pi) = d_1 + \cdots + d_n$ and $\sigma(\pi) = \max\{i | d_i \ge 1\}$. Given a (simple) graph G, a graphic sequence G is said to be *potentially* (respectively, *forcibly*) G if there exists a realization of G containing G as a subgraph (respectively, each realization of G contains G as a subgraph).

One of the classical extremal problems is to determine the minimum integer m such that every graph G on n vertices with edge number $e(G) \ge m$ contains H as a subgraph. This m is denoted by ex(H, n), and is called the $Tur\'an\ number\ of\ H$. In terms of graphic sequences, the number 2ex(H, n) is the minimum even

2010 Mathematics Subject Classification. Primary 05C35; Secondary 05C07

Keywords. Graphic sequence; Potentially H-graphic sequence; Potential function

Received: 30 November 2019; Accepted: 15 June 2020

Communicated by Paola Bonacini

Research supported by High-level Talent Project of Hainan Provincial Natural Science Foundation of China (No. 2019RC085) and Natural Science Foundation of China (No. 11961019).

Corresponding author: Jianhua Yin

Email address: yinjh@hainanu.edu.cn (Jianhua Yin)

integer such that each sequence $\pi \in GS_n$ with $\sigma(\pi) \ge 2ex(H, n)$ is forcibly H-graphic. In 1991, Erdős et al. [2] introduced the following problem: determine the minimum even integer $\sigma(H, n)$ such that each sequence $\pi \in GS_n$ with $\sigma(\pi) \ge \sigma(H, n)$ is potentially H-graphic. We will refer to $\sigma(H, n)$ as the *potential number* or *potential function* of H. As $\sigma(\pi)$ is twice the number of edges in any realization of π , this problem can be viewed as a potential degree sequence relaxation of the Turán problems.

In [2], Erdős et al. conjectured that $\sigma(K_r, n) = (r-2)(2n-r+1) + 2$, where K_r is the complete graph on r vertices. The cases r = 3, 4 and 5 were proved separately (see respectively [2], and [7,11], and [12]), and Li et al. [13] proved the conjecture true for $r \ge 6$ and $n \ge {r-1 \choose 2} + 3$. In addition to these results for complete graphs, the value of $\sigma(H, n)$ has been determined exactly for a number of specific graph classes (c.f. [3,4,6,7,10,15,16]). For an arbitrarily chosen H, Ferrara and Schmitt [6] gave a construction that yields the best known lower bound on $\sigma(H, n)$.

We assume that H is an arbitrary graph of order k and $\alpha(H)$ is the independent number of H. We let $\Delta(F)$ denote the maximum degree of a graph F, and let F < H denote that F is an induced subgraph of H. For each $p \in \{\alpha(H) + 1, ..., k\}$, let

$$\nabla_{p}(H) = \min\{\Delta(F)|F < H \text{ and } |V(F)| = p\}.$$

Clearly, $1 \le \nabla_{\alpha(H)+1}(H) \le \cdots \le \nabla_k(H) \le k-1$. Let

$$\widetilde{\pi}_{n}(H, n) = ((n-1)^{k-p}, (k-p+\nabla_{n}(H)-1)^{n-k+p})$$

if $(n - k + p)(\nabla_v(H) - 1)$ is even, and

$$\widetilde{\pi}_{\nu}(H,n) = ((n-1)^{k-p}, (k-p+\nabla_{n}(H)-1)^{n-k+p-1}, k-p+\nabla_{n}(H)-2)$$

if $(n - k + p)(\nabla_p(H) - 1)$ is odd, where the symbol x^y in a sequence stands for y consecutive terms, each equal to x. Then,

$$\sigma(\widetilde{\pi}_p(H,n)) = (2(k-p) + \nabla_p(H) - 1)n - (k-p)(k-p + \nabla_p(H))$$

if $(n - k + p)(\nabla_p(H) - 1)$ is even, and

$$\sigma(\widetilde{\pi}_{v}(H, n)) = (2(k - p) + \nabla_{v}(H) - 1)n - (k - p)(k - p + \nabla_{v}(H)) - 1$$

if $(n - k + p)(\nabla_p(H) - 1)$ is odd. Ferrara et al. [5] showed that $\widetilde{\pi}_p(H, n)$ is graphic and is not potentially H-graphic for all $p \in \{\alpha(H) + 1, \dots, k\}$, thus establishing a lower bound on $\sigma(H, n)$.

Proposition 1.1 $\sigma(H, n) \ge \sigma(\widetilde{\pi}_p(H, n)) + 2$ for $p \in \{\alpha(H) + 1, \dots, k\}$.

Let

$$\widetilde{\sigma}_p(H) = 2(k-p) + \nabla_p(H) - 1,$$

and let

$$\widetilde{\sigma}(H) = \max{\{\widetilde{\sigma}_p(H)|p = \alpha(H) + 1, \dots, k\}}.$$

Ferrara et al. [5] established an upper bound on $\sigma(H, n)$ and determined $\sigma(H, n)$ asymptotically.

Theorem 1.1 [5] Let H be a graph, and let $\omega = \omega(n)$ be an increasing function that tends to infinity with n. There exists an $N = N(\omega, H)$ such that for any $n \ge N$,

$$\sigma(H, n) \leq \widetilde{\sigma}(H)n + \omega(n).$$

Theorem 1.2 [5] Let H be a graph of order k and let n be a positive integer. Then

$$\sigma(H, n) = \widetilde{\sigma}(H)n + o(n).$$

Recently, Yin [14] established a new upper bound on $\sigma(H, n)$ as follows.

Theorem 1.3 [14] Let H be a graph of order k. There exists an $M = M(k, \alpha(H))$ such that for any $n \ge M$,

$$\sigma(H,n) < \widetilde{\sigma}(H)n + k^2 - 3k + 4$$
.

The focus of this paper is the precise behavior of the potential number for arbitrary H. As such, for $p \in \{\alpha(H) + 1, \ldots, k\}$ and a graph F with |V(F)| = p, we denote $\pi(F) = (d_1, \ldots, d_p)$ to be the degree sequence of F with $d_1 \ge \cdots \ge d_p$. We say that $(d_1, \ldots, d_p) \ge (d'_1, \ldots, d'_p)$ if $d_i \ge d'_i$ for $1 \le i \le p$. We now choose $\rho_p(H) = (d_1, \ldots, d_p) \in NS_p$ with $d_1 \le p - 2$ and $d_p \ge \nabla_p(H) - 1$ so that $\rho_p(H) \not \ge \pi(F)$ for each F < H with |V(F)| = p and $\sigma(\rho_p(H))$ is maximal, and let

$$\pi_{\nu}^{*}(H,n) = ((n-1)^{k-p}, k-p+d_{1}, \dots, k-p+d_{\nu}, (k-p+\nabla_{\nu}(H)-1)^{n-k})$$
(1)

if $\sum_{i=1}^{p} d_i + (\nabla_p(H) - 1)(n-k)$ is even, and

$$\pi_{\nu}^{*}(H,n) = ((n-1)^{k-p}, k-p+d_{1}, \dots, k-p+d_{\nu}, (k-p+\nabla_{\nu}(H)-1)^{n-k-1}, k-p+\nabla_{\nu}(H)-2)$$
 (2)

if
$$\sum_{i=1}^{p} d_i + (\nabla_p(H) - 1)(n-k)$$
 is odd.

Clearly, $\widetilde{\sigma}_p(H)$ is also the leading coefficient of $\sigma(\pi_p^*(H,n))$, and $\nabla_p(H) - 1 \le p - 2$ and $((\nabla_p(H) - 1)^p) \not\ge \pi(F)$ for each F < H with |V(F)| = p. Thus $\sigma(\pi_p^*(H,n)) + 2 \ge \sigma(\widetilde{\pi}_p(H,n)) + 2$ for all $p \in \{\alpha(H) + 1, \dots, k\}$.

For $\nabla_p(H) \geq 2$, applying Erdős-Gallai characterization, we can see that $\pi_p^*(H,n)$ is graphic for n sufficiently large. Every realization G of $\pi_p^*(H,n)$ is a complete graph on k-p vertices joined to an (n-k+p)-vertex graph G_p with degree sequence $(d_1,\ldots,d_p,(\nabla_p(H)-1)^{n-k})$ or $(d_1,\ldots,d_p,(\nabla_p(H)-1)^{n-k-1},\nabla_p(H)-2)$. Any k-vertex subgraph of G contains at least p vertices in G_p . If G contains H as a subgraph, then G_p contains an F < H with |V(F)| = p as a subgraph. This implies $\rho_p(H) \geq \pi(F)$, a contradiction. Thus H is not a subgraph of G. In other words, $\pi_p^*(H,n)$ is not potentially H-graphic. This also establishes a lower bound on $\sigma(H,n)$ as follows.

Proposition 1.2 $\sigma(H, n) \ge \sigma(\pi_p^*(H, n)) + 2$ for $\alpha(H) + 1 \le p \le k$ and $\nabla_p(H) \ge 2$.

For $\alpha(H) + 1 \le i \le k$, we can see that $\nabla_i(H) = 1$ implies $\nabla_{\alpha(H)+1}(H) = 1$ and $\widetilde{\sigma}_i(H) \le \widetilde{\sigma}_{\alpha(H)+1}(H)$. Therefore, if $\widetilde{\sigma}_{\alpha(H)+1}(H) < \widetilde{\sigma}(H)$ or $\nabla_{\alpha(H)+1}(H) \ge 2$, then

$$\max\{\sigma(\pi_v^*(H, n)) + 2 | \alpha(H) + 1 \le p \le k \text{ and } \nabla_p(H) \ge 2\} \ge \sigma(\pi_i^*(H, n)) + 2$$

for $\alpha(H) + 1 \le i \le k$ and n sufficiently large. In this paper, we determine the precise value of $\sigma(H, n)$ if $\widetilde{\sigma}_{\alpha(H)+1}(H) < \widetilde{\sigma}(H)$ or $\nabla_{\alpha(H)+1}(H) \ge 2$.

Theorem 1.4 Let H be a graph of order k, with $\pi_p^*(H, n)$ as given in (1) or (2) for each $p \in \{\alpha(H) + 1, ..., k\}$, and let n be a sufficiently large integer. If $\widetilde{\sigma}_{\alpha(H)+1}(H) < \widetilde{\sigma}(H)$ or $\nabla_{\alpha(H)+1}(H) \ge 2$, then

$$\sigma(H, n) = \max\{\sigma(\pi_n^*(H, n)) + 2|\alpha(H) + 1 \le p \le k \text{ and } \nabla_p(H) \ge 2\}.$$

Moreover, we also prove the following Theorem 1.5.

Theorem 1.5 Let H be a graph of order k with $\nabla_{\alpha(H)+1}(H) = 1$, $\widetilde{\sigma}_{\alpha(H)+1}(H) = \widetilde{\sigma}(H)$ and $\widetilde{\sigma}_p(H) < \widetilde{\sigma}(H)$ for $\alpha(H) + 2 \le p \le k$, and let n be a sufficiently large integer. If there is an F < H with $|V(F)| = \alpha(H) + 1$ so that $\pi(F) = (1^2, 0^{\alpha(H)-1})$, then

$$\sigma(H, n) = (k - \alpha(H) - 1)(2n - k + \alpha(H)) + 2.$$

We can see that Theorem 1.5 covers a number of specific graph families, including complete graphs, disjoint unions of cliques, matchings, odd cycles, (generalized) friendship graphs, intersecting cliques, etc. We will adopt the method of the reference [14] to prove Theorem 1.4–1.5.

2. Proof of Theorem 1.4

The following known results will be useful. For $\pi = (d_1, \ldots, d_n) \in NS_n$, let $d_1' \geq \cdots \geq d_{n-1}'$ be the rearrangement in non-increasing order of $d_2 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n$. We say that $\pi' = (d_1', \ldots, d_{n-1}')$ is the *residual sequence* of π .

Theorem 2.1 [8,9] Let $\pi = (d_1, \ldots, d_n) \in NS_n$. Then π is graphic if and only if π' is graphic.

Theorem 2.2 [1] Let $\pi = (d_1, \ldots, d_n) \in NS_n$ with even $\sigma(\pi)$. Then π is graphic if and only if $\sum_{i=1}^h d_i \le h(h-1) + \sum_{i=h+1}^n \min\{h, d_i\}$ for each h with $1 \le h \le n-1$.

Theorem 2.3 [16] Let $\pi = (d_1, \ldots, d_n) \in NS_n$, $x = d_1$ and $\sigma(\pi)$ be even. If there is an integer n_1 with $1 \le n_1 \le n$ such that $d_{n_1} \ge y \ge 1$ and $n_1 \ge \frac{1}{y} \left\lfloor \frac{(x+y+1)^2}{4} \right\rfloor$, then π is graphic.

Theorem 2.4 [17] Let $n \ge r$ and $\pi = (d_1, \ldots, d_n) \in GS_n$ with $d_r \ge r - 1$. If $d_i \ge 2r - 2 - i$ for $i = 1, \ldots, r - 2$, then π is potentially K_r -graphic.

In this section, we always assume that H is a graph of order k with $\widetilde{\sigma}_{\alpha+1}(H) < \widetilde{\sigma}(H)$ or $\nabla_{\alpha+1}(H) \ge 2$, and n is a sufficiently large integer relative to k and $\alpha(H)$. We need some lemmas. For convenience, we denote $\Sigma = \max\{\sigma(\pi_p^*(H,n)) + 2 | \alpha(H) + 1 \le p \le k \text{ and } \nabla_p(H) \ge 2\}$ and $\alpha = \alpha(H)$.

Lemma 2.1 Let $\pi = (d_1, \ldots, d_n) \in GS_n$ with $\sigma(\pi) \geq \Sigma$. Then

- (a) $d_k \ge k \alpha$;
- (b) If there is an h with $0 \le h \le k \alpha 1$ so that $d_h \ge k 1$ and $d_{h+1} \le k 2$, then there is an F < H with |V(F)| = k h so that $(d_{h+1} h, \ldots, d_k h) \ge \pi(F)$.

Proof. (a) If $d_k \le k - \alpha - 1$, by Theorem 2.2, then

$$\sigma(\pi) = \sum_{i=1}^{k-1} d_i + \sum_{i=k}^{n} d_i$$

$$\leq (k-1)(k-2) + \sum_{i=k}^{n} \min\{k-1, d_i\} + \sum_{i=k}^{n} d_i$$

$$= (k-1)(k-2) + 2\sum_{i=k}^{n} d_i$$

$$\leq (k-1)(k-2) + 2(n-k+1)(k-\alpha-1)$$

$$= 2(k-\alpha-1)n + (k-1)(2\alpha-k).$$

However, if $\widetilde{\sigma}_{\alpha+1}(H) < \widetilde{\sigma}(H)$ or $\nabla_{\alpha+1}(H) \ge 2$, then $\widetilde{\sigma}(H) > 2(k-\alpha-1)$. This implies that $\sigma(\pi) \ge \Sigma > 2(k-\alpha-1)n + (k-1)(2\alpha-k)$, a contradiction.

(b) If $d_k \le h + \nabla_{k-h}(H) - 2$, then

$$\begin{array}{ll} \sigma(\pi) & \leq & (n-1)h + (k-2)(k-h-1) + (h+\nabla_{k-h}(H)-2)(n-k+1) \\ & = & (2h+\nabla_{k-h}(H)-2)n - h + (k-2)(k-h-1) - (h+\nabla_{k-h}(H)-2)(k-1) \\ & < & \sigma(\widetilde{\pi}_{k-h}(H,n)) + 2 \\ & \leq & \sigma(\pi_{k-h}^*(H,n)) + 2, \end{array}$$

a contradiction. Hence $d_k \ge h + \nabla_{k-h}(H) - 1$. If $d_k \ge h + \nabla_{k-h}(H)$, then there is an F < H with |V(F)| = k - h and $\Delta(F) = \nabla_{k-h}(H)$ so that $(d_{h+1} - h, \dots, d_k - h) \ge \pi(F)$. Assume $d_k = h + \nabla_{k-h}(H) - 1$. By $\sigma(\pi) \ge \sigma(\pi_{k-h}^*(H, n)) + 2$, we have

$$\begin{array}{lcl} \sum\limits_{i=1}^{k-h} (d_{h+i}-h) & = & \sigma(\pi) - \sum\limits_{i=1}^{h} d_i - h(k-h) - \sum\limits_{i=k+1}^{n} d_i \\ & \geq & \sigma(\pi_{k-h}^*(H,n)) + 2 - (n-1)h - h(k-h) - (h + \nabla_{k-h}(H) - 1)(n-k) \\ & \geq & \sigma(\rho_{k-h}(H)) + 1. \end{array}$$

It follows from $d_{h+1} - h \le (k-h) - 2$ and the definition of $\rho_{k-h}(H)$ that there is an F < H with |V(F)| = k - h so that $(d_{h+1} - h, \ldots, d_k - h) \ge \pi(F)$. \square

Let $\pi = (d_1, \dots, d_n) \in GS_n$ with $\sigma(\pi) \geq \Sigma$. By Lemma 2.1(a), $d_k \geq k - \alpha$. Denote $\pi_0 = (d_1^{(0)}, \dots, d_n^{(0)})$, where $d_i^{(0)} = d_i$ for $1 \le i \le n$. We construct π_1, \dots, π_k depending on two cases.

Case 1. $d_{k-\alpha} \ge k - 1$.

For $i=1,\ldots,k$ in turn, we construct $\pi_i=(d_{i+1}^{(i)},\ldots,d_k^{(i)},d_{k+1}^{(i)},\ldots,d_n^{(i)})$, by deleting $d_i^{(i-1)}$ from $\pi_{i-1}=(d_i^{(i-1)},\ldots,d_k^{(i-1)},d_{k+1}^{(i-1)},\ldots,d_n^{(i-1)})$, reducing the first $d_i^{(i-1)}$ nonzero remaining terms of π_{i-1} by one, and then reordering the last n-k terms to be non-increasing.

Case 2. There is an h with $0 \le h \le k - \alpha - 1$ so that $d_h \ge k - 1$ and $d_{h+1} \le k - 2$.

By Lemma 2.1(b), there is an F < H with |V(F)| = k - h so that $(d_{h+1} - h, ..., d_k - h) \ge \pi(F) = (d_1, ..., d_p)$. Let $d_{h+j} - h = f_j + d_j$ for j = 1, ..., k - h. In this case, we first construct π_i , $1 \le i \le h$ as above, and then we construct π_i , $h + 1 \le i \le k$ from π_{i-1} by deleting $d_i^{(i-1)}$, reducing the first f_{i-h} nonzero terms, starting with $d_{k+1}^{(i-1)}$ by one, and then reordering the last n-k terms to be non-increasing.

Thus by Lemmas 2.2 and 2.3 of [14], the following Lemmas 2.2 and 2.3 are obvious and immediately.

Lemma 2.2 [14] Let $\pi = (d_1, ..., d_n) \in GS_n$ with $\sigma(\pi) \geq \Sigma$, and let $d_{k-\alpha} \geq k-1$. Then

(i) If $\pi_{k-\alpha-1} = (d_{k-\alpha}^{(k-\alpha-1)}, ..., d_k^{(k-\alpha-1)}, ..., d_n^{(k-\alpha-1)})$ satisfies $d_k^{(k-\alpha-1)} \geq d_{k+1}^{(k-\alpha-1)}$, then π is potentially

(ii) If $d_k^{(k-\alpha-1)} < d_{k+1}^{(k-\alpha-1)}$ and π_k is graphic, then π is potentially H-graphic.

Lemma 2.3 [14] Let $\pi = (d_1, \ldots, d_n) \in GS_n$ with $\sigma(\pi) \geq \Sigma$. Assume that there is an h with $0 \leq h \leq k - \alpha - 1$ so that $d_h \ge k-1$ and $d_{h+1} \le k-2$. If π_k is graphic, then π is potentially H-graphic.

Lemma 2.4 Let $\pi = (d_1, \dots, d_n) \in GS_n$ with $\sigma(\pi) \geq \Sigma$. If $d_{k-\alpha} \geq k-1$, then π is potentially H-graphic.

Proof. By Theorem 2.4, we may assume $d_k \le 2k-4$. By Lemma 2.2, we further assume $d_k^{(k-\alpha-1)} < d_{k+1}^{(k-\alpha-1)}$, and only need to check that π_k is graphic. Let $d_k^{(\ell)} < d_{k+1}^{(\ell)}$ so that ℓ is minimal. Then $1 \le \ell \le k - \alpha - 1$ and $d_k^{(\ell-1)} \geq d_{k+1}^{(\ell-1)}$. Moreover, $d_k^{(j)} \geq d_{k+1}^{(j)}$ for $1 \leq j \leq \ell-1$. This implies that π_{j+1} is the residual sequence of π_j for $0 \leq j \leq \ell-2$, where $\pi_0 = \pi$. By Theorem 2.1, π_j is graphic for $1 \leq j \leq \ell-1$. Moreover, by $\widetilde{\sigma}_{\alpha+1}(H) < \widetilde{\sigma}(H)$ or $\nabla_{\alpha+1}(H) \geq 2$, $\pi_{\ell-1} = (d_\ell^{(\ell-1)}, \dots, d_n^{(\ell-1)})$ satisfies that $d_\ell^{(\ell-1)} \geq \dots \geq d_n^{(\ell-1)}$, $d_j^{(\ell-1)} = d_j - (\ell-1)$ for $j = \ell, \dots, k$,

$$\sigma(\pi_{\ell-1}) = \sigma(\pi) - 2d_1 - 2(d_2 - 1) - \dots - 2(d_{\ell-1} - \ell + 2)
\geq \sigma(\pi) - 2(n - 1) - 2(n - 2) - \dots - 2(n - \ell + 1)
= \sigma(\pi) - 2(\ell - 1)n + \ell(\ell - 1)
> 2(k - \alpha - 1)n - 2(\ell - 1)n
= 2(k - \ell - \alpha)n
\geq 2n,$$

and

$$n-\ell-1 \ge d_{\ell}^{(\ell-1)} \ge \cdots \ge d_{k}^{(\ell-1)} = \cdots = d_{(\ell-1)+d_{\ell}^{(\ell-1)}+2}^{(\ell-1)} \ge d_{(\ell-1)+d_{\ell}^{(\ell-1)}+3}^{(\ell-1)} \ge \cdots \ge d_{n}^{(\ell-1)}.$$

The rest proof is the same as the proof of Lemma 2.4 of [14], we omit it here. \Box

Lemma 2.5 Let $\pi = (d_1, \dots, d_n) \in GS_n$ with $\sigma(\pi) \geq \Sigma$. If there is an h with $0 \leq h \leq k - \alpha - 1$ so that $d_h \geq k - 1$ and $d_{h+1} \le k-2$, then π is potentially H-graphic.

Proof. By Lemma 2.3, it is enough to check that π_k is graphic. If $\nabla_{\alpha+1}(H) \geq 2$, then $\nabla_{k-h}(H) \geq 2$, and hence

$$\begin{array}{rcl} \sigma(\pi_h) & = & \sigma(\pi) - 2d_1 - 2(d_2 - 1) - \dots - 2(d_h - h + 1) \\ & \geq & \sigma(\pi) - 2(n - 1) - 2(n - 2) - \dots - 2(n - h) \\ & = & \sigma(\pi) - 2hn + h(h + 1) \\ & > & \widetilde{\sigma}(H)n - 2hn - \frac{n}{2} \\ & \geq & \widetilde{\sigma}_{k-h}(H)n - 2hn - \frac{n}{2} \\ & = & (\nabla_{k-h}(H) - 1)n - \frac{n}{2} \\ & \geq & \frac{n}{2}. \end{array}$$

If $\widetilde{\sigma}_{\alpha+1}(H) < \widetilde{\sigma}(H)$, then similarly

$$\begin{array}{lll} \sigma(\pi_h) & \geq & \sigma(\pi) - 2(n-1) - 2(n-2) - \dots - 2(n-h) \\ & = & \sigma(\pi) - 2hn + h(h+1) \\ & > & \widetilde{\sigma}(H)n - 2hn - \frac{n}{2} \\ & \geq & \widetilde{\sigma}_{\alpha+1}(H)n - 2hn + \frac{n}{2} \\ & \geq & 2(k-\alpha-1-h)n + \frac{n}{2} \\ & \geq & \frac{n}{2}. \end{array}$$

Thus by $(p(\pi_h) - h)(k-2) \ge \sigma(\pi_h)$, we can see that $p(\pi_h) - h$ is sufficiently large. This implies that $p(\pi_k) - k$ is also sufficiently large as $f_j \le k-2$ for $1 \le j \le k-h$. Therefore, π_k is graphic by $d_{k+1}^{(k)} \le k-2$ and Theorem 2.3. \square

Proof of Theorem 1.4. Let $\pi = (d_1, \ldots, d_n) \in GS_n$ with $\sigma(\pi) \geq \Sigma$. It is enough to show that π is potentially H-graphic. It is trivial for k = 1, 2. If $\alpha = k$, then $H = \overline{K_k}$, and so π is clearly potentially H-graphic. Assume $k \geq 3$ and $\alpha \leq k - 1$. If $d_{k-\alpha} \geq k - 1$, by Lemma 2.4, then π is potentially H-graphic. If there is an n with $0 \leq h \leq k - \alpha - 1$ so that $d_n \geq k - 1$ and $d_{n+1} \leq k - 2$, by Lemma 2.5, then π is potentially H-graphic. \square

3. Proof of Theorem 1.5

In this section, we always assume that H is a graph of order k with $\nabla_{\alpha(H)+1}(H)=1$, $\widetilde{\sigma}_{\alpha(H)+1}(H)=\widetilde{\sigma}(H)$ and $\widetilde{\sigma}_p(H)<\widetilde{\sigma}(H)$ for $\alpha(H)+2\leq p\leq k$, n is a sufficiently large integer relative to k and $\alpha(H)$ and there is an F<H with $|V(F)|=\alpha(H)+1$ so that $\pi(F)=(1^2,0^{\alpha(H)-1})$. Clearly, $\widetilde{\sigma}_{\alpha(H)+1}(H)=2(k-\alpha-1)$. We also need some lemmas. For convenience, we denote $\alpha=\alpha(H)$.

Lemma 3.1 Let $\pi = (d_1, ..., d_n) \in GS_n$ with $\sigma(\pi) \ge (k - \alpha - 1)(2n - k + \alpha) + 2$. Then

- (*a*) $d_k \ge k \alpha 1$;
- (b) $d_{k-\alpha+1} \ge k \alpha$;
- (c) If there is an h with $0 \le h \le k \alpha 2$ so that $d_h \ge k 1$ and $d_{h+1} \le k 2$, then there is an F < H with |V(F)| = k h and $\Delta(F) = \nabla_{k-h}(H)$ so that $(d_{h+1} h, \ldots, d_k h) \ge \pi(F)$.

Proof. (a) If $d_k \le k - \alpha - 2$, by Theorem 2.2, then

$$\sigma(\pi) = \sum_{i=1}^{k-1} d_i + \sum_{i=k}^{n} d_i$$

$$\leq (k-1)(k-2) + \sum_{i=k}^{n} \min\{k-1, d_i\} + \sum_{i=k}^{n} d_i$$

$$= (k-1)(k-2) + 2\sum_{i=k}^{n} d_i$$

$$\leq (k-1)(k-2) + 2(n-k+1)(k-\alpha-2)$$

$$= 2(k-\alpha-2)n + (k-1)(2\alpha-k+2)$$

$$< \sigma(\pi),$$

a contradiction.

(b) If $d_{k-\alpha+1} \le k - \alpha - 1$, by Theorem 2.2, then

$$\sigma(\pi) = \sum_{i=1}^{k-\alpha} d_i + \sum_{i=k-\alpha+1}^{n} d_i
\leq (k-\alpha)(k-\alpha-1) + \sum_{i=k-\alpha+1}^{n} \min\{k-\alpha,d_i\} + \sum_{i=k-\alpha+1}^{n} d_i
= (k-\alpha)(k-\alpha-1) + 2\sum_{i=k-\alpha+1}^{n} d_i
\leq (k-\alpha)(k-\alpha-1) + 2(n-k+\alpha)(k-\alpha-1)
= (k-\alpha-1)(2n-k+\alpha)
< \sigma(\pi),$$

a contradiction.

(c) If $d_k \le h + \nabla_{k-h}(H) - 1$, by $\widetilde{\sigma}_{\alpha+1}(H) = \widetilde{\sigma}(H) > \widetilde{\sigma}_{k-h}(H)$, then

$$\begin{array}{ll} \sigma(\pi) & \leq & (n-1)h + (k-2)(k-h-1) + (h+\nabla_{k-h}(H)-1)(n-k+1) \\ & = & (2h+\nabla_{k-h}(H)-1)n - h + (k-2)(k-h-1) - (h+\nabla_{k-h}(H)-1)(k-1) \\ & = & \widetilde{\sigma}_{k-h}(H)n - h + (k-2)(k-h-1) - (h+\nabla_{k-h}(H)-1)(k-1) \\ & < & \sigma(\overline{\pi}_{\alpha+1}(H,n)) \\ & = & (k-\alpha-1)(2n-k+\alpha), \end{array}$$

a contradiction. Hence $d_k \ge h + \nabla_{k-h}(H)$. This implies that there is an F < H with |V(F)| = k - h and $\Delta(F) = \nabla_{k-h}(H)$ so that $(d_{h+1} - h, \dots, d_k - h) \ge \pi(F)$. \square

Let $\pi = (d_1, \dots, d_n) \in GS_n$ with $\sigma(\pi) \ge (k - \alpha - 1)(2n - k + \alpha) + 2$. By Lemma 3.1(a), $d_k \ge k - \alpha - 1$. Denote $\pi_0 = (d_1^{(0)}, \dots, d_n^{(0)})$, where $d_i^{(0)} = d_i$ for $1 \le i \le n$. We construct π_1, \dots, π_k depending on two cases.

Case 1. $d_{k-\alpha-1} \ge k-1$.

For $i=1,\ldots,k$ in turn, we construct $\pi_i=(d_{i+1}^{(i)},\ldots,d_k^{(i)},d_{k+1}^{(i)},\ldots,d_n^{(i)})$, by deleting $d_i^{(i-1)}$ from $\pi_{i-1}=(d_i^{(i-1)},\ldots,d_k^{(i-1)},d_{k+1}^{(i-1)},\ldots,d_k^{(i-1)})$, reducing the first $d_i^{(i-1)}$ nonzero remaining terms of π_{i-1} by one, and then reordering the last n-k terms to be non-increasing.

Case 2. There is an h with $0 \le h \le k - \alpha - 2$ so that $d_h \ge k - 1$ and $d_{h+1} \le k - 2$.

By Lemma 3.1(c), there is an F < H with |V(F)| = k - h and $\Delta(F) = \nabla_{k-h}(H)$ so that $(d_{h+1} - h, \dots, d_k - h) \ge 1$ $\pi(F) = (d_1, \dots, d_p)$. Let $d_{h+j} - h = f_j + d_j$ for $j = 1, \dots, k - h$. In this case, we first construct π_i , $1 \le i \le h$ as above, and then we construct π_i , $h+1 \le i \le k$ from π_{i-1} by deleting $d_i^{(i-1)}$, reducing the first f_{i-h} nonzero terms, starting with $d_{k+1}^{(i-1)}$ by one, and then reordering the last n-k terms to be non-increasing.

Thus by Lemmas 2.2 and 2.3 of [14], and Lemma 3.1(b), the following Lemmas 3.2 and 3.3 are also obvious and immediately.

Lemma 3.2 [14] Let $\pi = (d_1, ..., d_n) \in GS_n$ with $\sigma(\pi) \ge (k - \alpha - 1)(2n - k + \alpha) + 2$, and let $d_{k-\alpha-1} \ge k - 1$.

- (i) If $\pi_{k-\alpha-1} = (d_{k-\alpha}^{(k-\alpha-1)}, \dots, d_k^{(k-\alpha-1)}, d_{k+1}^{(k-\alpha-1)}, \dots, d_n^{(k-\alpha-1)})$ satisfies $d_k^{(k-\alpha-1)} \ge d_{k+1}^{(k-\alpha-1)}$, then π is potentially H-graphic;

(ii) If $d_k^{(k-\alpha-1)} < d_{k+1}^{(k-\alpha-1)}$ and π_k is graphic, then π is potentially H-graphic. **Lemma 3.3** [14] Let $\pi = (d_1, \ldots, d_n) \in GS_n$ with $\sigma(\pi) \ge (k-\alpha-1)(2n-k+\alpha) + 2$. Assume that there is an h with $0 \le h \le k - \alpha - 2$ so that $d_h \ge k - 1$ and $d_{h+1} \le k - 2$. If π_k is graphic, then π is potentially H-graphic.

Lemma 3.4 Let $\pi = (d_1, ..., d_n) \in GS_n$ with $\sigma(\pi) \ge (k - \alpha - 1)(2n - k + \alpha) + 2$. If $d_{k-\alpha-1} \ge k - 1$, then π is potentially H-graphic.

Proof. By Theorem 2.4, we may assume $d_k \le 2k-4$. By Lemma 3.2, we further assume $d_k^{(k-\alpha-1)} < d_{k+1}^{(k-\alpha-1)}$, and only need to check that π_k is graphic. Let $d_k^{(\ell)} < d_{k+1}^{(\ell)}$ so that ℓ is minimal. Then $1 \le \ell \le k - \alpha - 1$ and $d_k^{(\ell-1)} \ge d_{k+1}^{(\ell-1)}$. Moreover, $d_k^{(j)} \ge d_{k+1}^{(j)}$ for $1 \le j \le \ell-1$. This implies that π_{j+1} is the residual sequence of π_j for $0 \le j \le \ell-2$, where $\pi_0 = \pi$. By Theorem 2.1, π_j is graphic for $1 \le j \le \ell-1$. Moreover, $\pi_{\ell-1} = (d_\ell^{(\ell-1)}, \ldots, d_n^{(\ell-1)})$ satisfies that $d_\ell^{(\ell-1)} \ge \cdots \ge d_n^{(\ell-1)}, d_j^{(\ell-1)} = d_j - (\ell-1)$ for $j = \ell, \ldots, k$,

$$\begin{array}{rcl}
\sigma(\pi_{\ell-1}) & \geq & \sigma(\pi) - 2(n-1) - 2(n-2) - \dots - 2(n-\ell+1) \\
& = & \sigma(\pi) - 2(\ell-1)n + \ell(\ell-1) \\
& \geq & (k-\alpha-1)(2n-k+\alpha) + 2 - 2(\ell-1)n + \ell(\ell-1) \\
& > & n,
\end{array}$$

and

$$n-\ell-1 \ge d_{\ell}^{(\ell-1)} \ge \cdots \ge d_{k}^{(\ell-1)} = \cdots = d_{(\ell-1)+d_{\ell}^{(\ell-1)}+2}^{(\ell-1)} \ge d_{(\ell-1)+d_{\ell}^{(\ell-1)}+3}^{(\ell-1)} \ge \cdots \ge d_{n}^{(\ell-1)}.$$

The rest proof is the same as the proof of Lemma 2.4 of [14], we omit it here. \Box

Lemma 3.5 Let $\pi = (d_1, \ldots, d_n) \in GS_n$ with $\sigma(\pi) \geq (k - \alpha - 1)(2n - k + \alpha) + 2$. If there is an h with $0 \le h \le k - \alpha - 2$ so that $d_h \ge k - 1$ and $d_{h+1} \le k - 2$, then π is potentially H-graphic.

Proof. By Lemma 3.3, it is enough to check that π_k is graphic. Clearly,

$$\begin{array}{rcl}
\sigma(\pi_h) & \geq & \sigma(\pi) - 2(n-1) - 2(n-2) - \dots - 2(n-h) \\
& = & \sigma(\pi) - 2hn + h(h+1) \\
& \geq & (k-\alpha-1)(2n-k+\alpha) + 2 - 2hn + h(h+1) \\
& \geq & n.
\end{array}$$

Thus by $(p(\pi_h) - h)(k - 2) \ge \sigma(\pi_h)$, we can see that $p(\pi_h) - h$ is sufficiently large. This implies that $p(\pi_k) - k$ is also sufficiently large as $f_j \le k - 2$ for $1 \le j \le k - h$. Therefore, π_k is graphic by $d_{k+1}^{(k)} \le k - 2$ and Theorem 2.3. \square

Proof of Theorem 1.5. Let $\pi = (d_1, \dots, d_n) \in GS_n$ with $\sigma(\pi) \geq (k - \alpha - 1)(2n - k + \alpha) + 2$. It is enough to show that π is potentially H-graphic. It is trivial for k = 1, 2. If $\alpha = k$, then $H = \overline{K_k}$, and so π is clearly potentially H-graphic. Assume $k \geq 3$ and $\alpha \leq k - 1$. If $d_{k-\alpha-1} \geq k - 1$, by Lemma 3.4, then π is potentially H-graphic. If there is an h with $0 \leq h \leq k - \alpha - 2$ so that $d_h \geq k - 1$ and $d_{h+1} \leq k - 2$, by Lemma 3.5, then π is potentially H-graphic. \square

Acknowledgement The authors would like to thank the referee for his/her helpful suggestions and comments.

References

- [1] P. Erdős, T. Gallai, Graphs with prescibed degrees of vertices (Hungarian), Mat. Lapok 11 (1960) 264-274.
- [2] P. Erdős, M. Jacobson, J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), Graph Theory, Combinatorics and Applications, Vol.1, John Wiley & Sons, New York, 1991, 439–449.
- [3] M. Ferrara, Graphic sequences with a realization containing a union of cliques, Graphs Combin. 23 (2007) 263-269.
- [4] M. Ferrara, R. Gould, J. Schmitt, Graphic sequences with a realization containing a friendship graph, Ars Combin. 85 (2007) 161–171.
- [5] M. Ferrara, T. LeSaulnier, C. Moffatt, P. Wenger, On the sum necessary to ensure a degree sequence is potentially *H*-graphic, Combinatorica 36 (2016) 687–702.
- [6] M. Ferrara, J. Schmitt, A general lower bound for potentially H-graphic sequences, SIAM J. Discrete Math. 23 (2009) 517–526.
- [7] R. Gould, M. Jacobson, J. Lehel, Potentially *G*-graphical degree sequences, in: Y. Alavi et al. (Ed.), Combinatorics, Graph Theory and Algorithms, Vol. I, New Issues Press, Kalamazoo Michigan, 1999, 451–460.
- [8] S. Hakimi, On the realizability of a set of integers as degrees of vertices of a graph, J. SIAM Appl. Math. 10 (1962) 496-506.
- [9] V. Havel, A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955) 477-480.
- [10] C.H. Lai, The smallest degree sum that yields potentially C_k -graphical sequences, J. Combin. Math. Combin. Comput. 49 (2004) 57–64.
- [11] J.S. Li, Z.X. Song, An extremal problem on the potentially P_k -graphic sequence, Discrete Math. 212 (2000) 223–231.
- [12] J.S. Li, Z.X. Song, The smallest degree sum that yields potentially P_k -graphic sequences, J. Graph Theory 29 (1998) 63–72.
- [13] J.S. Li, Z.X. Song, R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, Science in China, Ser.A 41 (1998) 510–520.
- [14] J.H. Yin, On the potential function of an arbitrary graph H, European J. Combin. 85 (2020) 103061.
- [15] J.H. Yin, G. Chen, J.R. Schmitt, Graphic sequences with a realization containing a generalized friendship graph, Discrete Math. 308 (2008) 6226–6232.
- [16] J.H. Yin, J.S. Li, The smallest degree sum that yields potentially $K_{r,r}$ -graphic sequences, Science in China, Ser.A 45 (2002) 694–705.
- [17] J.H. Yin, J.S. Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, Discrete Math. 301 (2005) 218–227.