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Scalar Extensions for Polar Topologies in Locally Convex Cones
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Abstract. We extend the scalar multiplications for dual pairs of cones and define the corresponding
modular neighborhoods and linear polar topologies in locally convex cones. Endowed with the polar
topology, every cone may be embedded in a larger cone carrying a linear polar topology over the extended
scalars and the embedding is an isomorphism.

1. Introduction

In duality theory of locally convex cones, the bilinear mappings of dual pairs required only to be
homogenous for positive scalars; however, the polar topologies in this theory may be considered as gen-
eralization of their notions in locally convex spaces [1, Ch II, 3]. Many results of functional analysis have
been developed for locally convex cones so far; for example, the varies topics of the duality theory can be
found in [3–10]. The extension of scalar multiplications over K = R or C have been investigated in the
general case of neighborhoods and topologies for locally convex cones in [12]. In this paper, we introduce
the notions of extended linear dual pairs and the corresponding modular neighborhoods in locally convex
cones which leads to the definition of linear polar topologies over the real or complex scalars. In particular,
we prove every polar topology may be embedded in a linear polar topology with the extended scalars such
that the embedding is an isomorphism.

A cone is a set P endowed with an addition (a, b) 7−→ a + b and scalar multiplication (α, a) 7−→ αa
for real numbers α ≥ 0. The addition is supposed to be associative and commutative, there is a neutral
element 0 ∈ P. For the scalar multiplication the usual associative and distributive properties hold, that is,
α(βa) = (αβ)a, (α+β)a = αa+βa, α(a+b) = αa+αb, 1a = a, 0a = 0 for all a, b ∈ P and α, β ≥ 0.An ordered cone
P carries a reflexive transitive relation ≤ such that a ≤ b implies a+ c ≤ b+ c and αa ≤ αb for all a, b, c ∈ P and
α ≥ 0. Equality is such an order, hence cones without an explicit order structure are also included. Note that
anti-symmetry is note required for the relation ≤ . For example, the extended scalar field R = R ∪ {+∞} of
real numbers is an ordered cone. We consider the usual order and algebraic operations in R; in particular,
α +∞ = +∞ for all α ∈ R, α · (+∞) = +∞ for all α > 0 and 0 · (+∞) = 0.

A full locally convex cone (P,V) is an ordered cone P that contains an abstract neighborhood system V,
i.e., a subset of positive elements that is directed downward, closed for addition and multiplication by
(strictly) positive scalars. The elements v of V define upper (lower) neighborhoods for the elements of P by
v(a) = {b ∈ P : b ≤ a + v} (respectively, (a)v = {b ∈ P : a ≤ b + v}), creating the upper, respectively lower
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topologies on P. Their common refinement is called the symmetric topology. We assume all elements of P to
be bounded below, i.e., for every a ∈ P and v ∈ V we have 0 ≤ a + ρv for some ρ > 0. Finally, a locally convex
cone (P,V) is a subcone of a full locally convex cone, not necessarily containing the abstract neighborhood
systemV.

For a locally convex cone (P,V) the collection of all sets ṽ ⊆ P2,where ṽ = {(a, b) : a ≤ b+v} for all v ∈ V,
defines a convex quasi-uniform structure on P. On the other hand, every convex quasi-uniform structure
leads to a full locally convex cone, including P as a subcone and induces the same convex quasi-uniform
structure. For details see [1, Ch I, 5.2]

For cones P and Q, a mapping t : P → Q is called a linear operator, if t(a + b) = t(a) + t(b) and t(αa) = αt(a)
for all a, b ∈ P and α ≥ 0. If V and W are abstract neighborhood systems on P and Q, a linear operator
t : P → Q is called uniformly continuous (u-continuous), if for every w ∈ W there is v ∈ V such that
t(a) ≤ t(b) + w whenever a ≤ b + v. Uniform continuity implies continuity with respect to the upper, lower
and symmetric topologies on P and Q. Endowed with the neighborhood system V = {ε ∈ R : ε > 0},
R is a full locally convex cone. The set of all u-continuous linear functionals µ : P → R is a cone called
the dual cone of P and denoted by P∗. In a locally convex cone (P,V) the polar v◦ of v ∈ V is defined by
v◦ = {µ ∈ P∗ : a ≤ b + v implies µ(a) ≤ µ(b) + 1}. Obviously we have P∗ = ∪v∈Vv◦.

A linear mapping Φ : P → Q is called an embedding of (P,V) into (Q,W) if it can be extended to a
mapping Φ : P ∪V → Q∪W such that Φ(V) =W and

a ≤ b + v holds if and only if Φ(a) ≤ Φ(b) + Φ(v)

for all a, b ∈ P and v ∈ V. This condition implies that Φ is u-continuous, and in case that Φ is one to one,
the inverse operator Φ−1 : Φ(P) → P is also u-continuous. Embeddings are meant to preserve not just the
topological structure, but also the particular neighborhood system of a locally convex cone. An embedding
Φ of (P,V) into (Q,W) is an isomorphism if the mapping Φ : P ∪V → Q∪W is invertible. Then Φ−1 is an
embedding of (Q,W) into (P,V) [11, Ch I, 2.2].

2. Scalar Extensions and Polar Topologies

A dual pair (P,Q) consists of two cones P and Q with a bilinear mapping (a, x) 7−→ 〈a, x〉 : P × Q −→ R,
i.e., 〈αa + βb, x〉 = α〈a, x〉 + β〈b, x〉 and 〈a, αx + βy〉 = α〈a, x〉 + β〈a, y〉 for all a, b ∈ P, x, y ∈ Q and α, β ≥ 0. For
example, if P is a cone and L(P,R) is the cone of all R-valued linear mappings on P, then with evaluation
as the bilinear mapping on P × L(P,R), (P,L(P,R)) forms a dual pair; in particular, for a locally convex
cone (P,V) the pair (P,P∗) is a dual pair, where P∗ is the dual cone of P. Suppose (P,Q) is a dual pair and
X a collection of subsets of Q such that:
(p0) inf〈A, x〉 > −∞ for all A ∈ X and x ∈ P.
(p1) λA ∈ X for all A ∈ X and λ > 0.
(p2) for all A,B ∈ X there is C ∈ X with A ∪ B ⊆ C.

If, for each A ∈ X, we define

UA = {(a, b) ∈ P × P : 〈a, x〉 ≤ 〈b, x〉 + 1 for all x ∈ A},

then the set of all UA,A ∈ X forms a convex quasi-uniform structure with property (U5) in [1, Ch I, 5.2].
For every A ∈ X, we set a ≤ b + vA for all a, b ∈ P if and only if (a, b) ∈ UA and putVX = {vA : A ∈ X}. Then,
according to [1, Ch I, 5.4], there exists a full coneP⊕VX0 with abstract neighborhood system VX = {0}⊕VX,
whose neighborhoods yield the same convex quasi-uniform structure on P. The elements vA ∈ VX for all
A ∈ X form a basis for VX in the following sense: For every A ∈ X, a ≤ b + vA for a, b ∈ P implies that
a ≤ b⊕ vA. The locally convex cone topology on P induced byVX is called the X-topology or (polar topology)
on P.

A cone P is said to be linear overKwith respect to the multiplication operation �, if � extends the scalar
multiplication operation of P overK and to the requirements for a cone satisfies α � (a + b) = α � a + α � b,
α � (β � a) = (αβ) � a for all a, b ∈ P and α, β ∈ K [12]. We say that the dual pair (P,Q) is linear overK, if the
following conditions hold:
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(K1) P and Q are linear cones overK.
(K2) 〈α � a, x〉 = 〈a, α � x〉 for all a ∈ P, x ∈ Q and α ∈ K.
(K3) for all a ∈ P and x ∈ Q,

〈α � a, x〉 =

 <(α)〈a, x〉 + =(α)〈i � a, x〉 if 〈a, x〉 < +∞, α ∈ K,

+∞ if 〈a, x〉 = +∞, 0 , α ∈ K,

where<(α),=(α) denote the real and imaginary parts of α, respectively. We note that a linear dual pair over
K carries a weakened version of bilinear mapping, i.e., the bilinear mapping is not necessarily homogeneous
for all scalars inK, nor does it have the distribution property.

Proposition 2.1. If (P,Q) is a linear dual pair overK, then

〈(α + β) � a, x〉 ≤ 〈α � a, x〉 + 〈β � a, x〉

for all α, β ∈ K, a ∈ P, x ∈ Q.

Proof. If 〈a, x〉 < +∞ then 〈(α + β) � a, x〉 = 〈α � a, x〉 + 〈β � a, x〉 by (K3). If 〈a, x〉 = +∞ then from (K3) we
have 〈α � a, x〉 = 〈β � a, x〉 = 〈(α + β) � a, x〉 = +∞. Then for α, β, if α = −β, then 0 = 〈(α + β) � a, x〉 <
〈α � a, x〉 + 〈β � a, x〉 = +∞ and if α , −β, then 〈(α + β) � a, x〉 = 〈α � a, x〉 + 〈β � a, x〉 = +∞.

Let (P,Q) be linear over K, X a collection of subsets of Q satisfying (p0), (p1), (p2) with respect to
(P,Q) and Γ = {γ ∈ K : |γ| = 1}. The K-modular collection Γ � X of X, consisting of the all K-modular sets
Γ � A = {γ � x : γ ∈ Γ, x ∈ A} for all A ∈ X, satisfies (p1), (p2) with respect to (P,Q). If Γ � X also satisfies in
(p0), then the set of all

UΓ�A = {(a, b) ∈ P × P : 〈a, γ � x〉 ≤ 〈b, γ � x〉 + 1 for all x ∈ A, γ ∈ Γ},

for all A ∈ X forms a convex quasi-uniform structure with property (U5) in [1, Ch I, 5.2]. For every A ∈ X,
we set a ≤ b + vΓ�A for all a, b ∈ P if and only if (a, b) ∈ UΓ�A and putVΓ�X = {vΓ�A : A ∈ X}. Then, according
to [1, Ch I, 5.4], there exists a full cone P ⊕ VΓ�X0 with abstract neighborhood system VΓ�X = {0} ⊕ VΓ�X,
whose neighborhoods yield the same convex quasi-uniform structure on P. The elements vΓ�A ∈ VΓ�X for
all A ∈ X form a basis for VΓ�X in the following sense: For every A ∈ X, a ≤ b + vΓ�A for a, b ∈ P implies that
a ≤ b⊕vΓ�A. In this case, we say that (P,VX) is a linear polar topology overK and call (P,VΓ�X) theK-modular
topology of (P,VX).

Lemma 2.2. If P is a cone, then
(a) P2 = P×P and P2 + i �P2 with the usual addition and scalar multiplication are cones; where P2 + i �P2 =
{a + i � b : a, b ∈ P2

},
(b) if for elements a ∈ P2, a = (a1, a2) and negative reals α < 0, we extend the scalar multiplication to R by

α � a = (−α)ǎ; where ǎ = (a2, a1) then P2 is a linear cone over R,
(c) if for all α ∈ C and a + i � b ∈ P2 + i � P2, we extend the scalar multiplication to C by

α � (a + i � b) =<(α) � a + (−1)=(α) � b + i � (<(α) � b + =(α) � a),

then P2 + i � P2 is a liner cone over C.

Proof. The proof is clear.

Lemma 2.3. If (P,Q) is a dual pair, then

(a) with the bilinear mapping (a, x) → 〈a, x〉R : P2
× Q

2
−→ R for all a ∈ P2, x ∈ Q2, a = (a1, a2), x = (x1, x2)

such that

〈a, x〉R =

 〈a1, x1〉 + 〈a2, x2〉 − 〈a1, x2〉 − 〈a2, x1〉 if 〈a2, x1〉, 〈a1, x2〉 < +∞;

+∞ otherwise;

(P2,Q2) is a linear dual pair over R,
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(b) with the bilinear mapping

(a + i � b, x + i � y) 7−→ 〈a + i � b, x + i � y〉C : (P2 + i � P2) × (Q2 + i � Q2)→ R, where

〈a + i � b, x + i � y〉C = 〈a + b, x + y〉R

(P2 + i � P2,Q2 + i � Q2) is a linear dual pair over C.

Proof. (a) It is easy to see that 〈a, x〉R = 〈ǎ, x̌〉R for all a ∈ P2, x ∈ Q2 and

〈a, x̌〉R = 〈ǎ, x〉R=

 −〈a, x〉R if 〈a, x〉R < +∞,

+∞ if 〈a, x〉R = +∞.

The condition (R1) is clear for (P2,Q2). For (R2), let α < 0. If 〈a, x〉R < +∞ then

〈α � a, x〉R = 〈(−α)ǎ, x〉R = (−α)〈ǎ, x〉R = (−α)〈a, x̌〉R = 〈a, α � x〉R,

and if 〈a, x〉R = +∞ then
〈α � a, x〉R = 〈(−α)ǎ, x〉R = (−α)〈a, x〉R = +∞,

〈a, α � x〉R = 〈a, (−α)x̌〉R = (−α)〈a, x〉R = +∞.

For (R3), if 〈a, x〉R < +∞ then

〈α � a, x〉R = 〈(−α)ǎ, x〉R = (−α)〈ǎ, x〉R = α〈a, x〉R

and if 〈a, x〉R = +∞ then 〈α� a, x〉R = 〈(−α)ǎ, x〉R = (−α)〈ǎ, x〉R = +∞. Thus (P2,Q2) is a linear dual pair over
R.

(b) The condition (C1) is clear. For (C2), if a + i � b ∈ P2 + i � P2, x + i � y ∈ Q2 + i � Q2 and α ∈ C, then

〈α � (a + i � b), (x + i � y)〉C
= 〈<(α) � a + (−1)=(α) � b + i � (<(α) � b + =(α) � a), x + iy〉C
= 〈<(α) � a + (−1)=(α) � b +<(α) � b + =(α) � a, x + y〉R
= 〈a + b,<(α) � x + (−1)=(α) � y +<(α) � y + =(α) � x〉R
= 〈a + i � b,<(α) � x + (−1)=(α) � y + i � (<(α) � y + =(α) � x)〉C
= 〈(a + i � b), α � (x + i � y)〉C

For (C3), if 〈a + i � b, x + i � y〉C < +∞, then 〈a + b, x + y〉R < +∞, so

〈α � (a + i � b), x + i � y〉C
= 〈<(α) � a + (−1)=(α) � b +<(α) � b + =(α) � a, x + y〉R
= <(α)〈a + b, x + y〉R + =(α)〈a + (−1) � b, x + y〉R
= <(α)〈a + i � b, x + i � y〉C + =(α)〈i � (a + i � b), x + i � y〉C

and if 〈a + i � b, x + i � y〉C = +∞ then, either

〈<(α) � b + =(α) � a, x + i � y〉C = 〈a + i � b,<(α) � y + =(α) � x〉C = +∞

or
〈<(α) � a + (−1)=(α) � b, x + i � y〉C = 〈a + i � b,<(α) � x + (−1)=(α) � y〉C = +∞.

So 〈α � (a + i � b), x + i � y〉C = +∞. Thus (P2 + i � P2,Q2 + i � Q2) is a linear dual pair over C.

Theorem 2.4. If (P,Q) is a dual pair and P has an X-topology with respect to (P,Q), then
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(a) X̂ and X̂ + i � X̂ satisfy (p0), (p1), (p2) with respect to the dual pairs (P2,Q2) and (P2 + i � P2,Q2 + i � Q2);
respectively, where X̂ = {Â : A ∈ X}, Â = A × {0} for all A ∈ X,

(b) (P2,VX̂) and (P2 + i � P2,VX̂+i�X̂) are linear polar topologies over R and C, respectively,
(c) (P,VX) may be embedded in both the (P2,VX̂) and (P2 + i�P2,VX̂+i�X̂) and the embeddings are isomorphism.

Proof. (a) If a ∈ P2, a = (a1, a2) and Â ∈ X̂, Â = A × {0}, then

inf〈a, Â〉R ≥ inf〈(a1, a2),Aa × {0}〉R = inf〈a1,Aa〉 − inf〈a2,Aa〉 > −∞,

where Aa = A ∩ (a−1
1 (R) ∪ a−1

2 (R)), i.e., (p0) holds for X̂. If a + i � b ∈ P2 + i � P2, a = (a1, a2), b = (b1, b2) then

inf〈a + i � b, Â + i � Â〉C = inf〈(a + i � b,A × {0} + i � (A × {0})〉C
= 2 inf〈a,A × {0}〉R + 2 inf{〈b,A × {0}〉R
> −∞,

i.e., X̂ + i � X̂ also satisfies in (p0). The properties (p1), (p2) are clear for X̂ and X̂ + i � X̂.
(b) If a ∈ P2 and Â ∈ X̂, then

inf〈a,Γ � Â〉R = inf〈a, {±1} � Â〉R
= min

{
inf〈a, (−1) � Â〉R, inf〈a, Â〉R

}
≥ min {inf〈ǎ,Aa × {0}〉, inf〈a,Aa × {0}〉} > −∞,

and if a + i � b ∈ P2 + i � P2 then

inf〈a + i � b,Γ � (Â + i � Â)〉C
= inf〈a + i � b, <(Γ) � Â + (−1)=(Γ) � Â +<(Γ)i � Â + =(Γ)i � Â〉C
= inf〈a + b, <(Γ) � Â + (−1)=(Γ) � Â +<(Γ) � Â + =(Γ) � Â〉R
= 2 inf〈a,<(Γ) � Â〉 + inf〈ǎ,=(Γ) � Â〉 + inf〈a,=(Γ) � Â〉 +

2 inf〈b,<(Γ) � Â〉 + inf〈b,=(Γ) � Â〉 + inf〈b̌,=(Γ) � Â〉

= 2 inf
(
|<(Γ)| 〈a, {±1} � Â〉

)
+ inf

(
|=(Γ)| 〈ǎ, {±1} � Â〉

)
+ inf

(
|=(Γ)| 〈a, {±1} � Â〉

)
+

2 inf
(
|<(Γ)| 〈b, {±1} � Â〉

)
+ inf

(
|<(Γ)| 〈b, (±1) � Â〉

)
+ inf

(
|(<(Γ))| 〈b̌, {±1} � Â〉

)
> −∞,

where<(Γ) = {<(γ) : γ ∈ Γ} and |<(Γ)| = {|<(γ)| : γ ∈ Γ}. That is, Γ � X̂ and Γ � (X̂ + i � X̂) satisfy in (p0).
(c) The mappings ϕR and ϕC such that

(P,VX)
ϕR
→ (P × {0},VX̂)

ϕC
→ (P2 + i � P2,VX̂+i�X̂),

p
ϕR
→ (p, 0)

ϕC
→ (p, 0) + i � (p, 0)

are linear, one-to-one and for all p, p′ ∈ P and A ∈ X, we have p ≤ p′ + vA if and only if (p, 0) ≤ (p′, 0) + vÂ if
and only if (p, 0) + i � (p, 0) ≤ (p′, 0) + i � (p′, 0) + vÂ+i�Â, that is, ϕR, ϕC and ϕC ◦ ϕR are isomorphism.

Example 2.5. The usual algebraic operations of C may be extended on C = C ∪ {∞} by α � ∞ = ∞ for all
0 , α ∈ C and 0�∞ = 0 and clearlyC is linear overK. Likewise,R is a linear cone overRwith the following
extended operation: α � (+∞) = +∞ for all 0 , α ∈ R and 0 � (+∞) = +∞. Now, if we set P = K and Q = R
then with the bilinear mapping

〈a, b〉 =

 <(ab) if a ∈ K, b ∈ R,

+∞ if a = ∞ or b = +∞,
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(P,Q) is a linear dual pair over R. The collection X = {λ1 : λ > 0} where 1 := {1} induces a polar topology
on P and we have a ≤ b +λv1 for a, b ∈ P and λ > 0 if and only if<(a) ≤ <(b) +λ or b = +∞. Evidently, (p0)
holds for the modular collection Γ � X = {λ (Γ � 1) : λ > 0}, where Γ � 1 = {±1}. For a, b ∈ P and λ > 0, the
modular neighborhoods defined by a ≤R b + λvΓ�1 if and only if

|<(a) −<(b)| ≤ λ or b = ∞.

Example 2.6. The set of all sequences in K with the usual addition and extended scalar multiplication
defined by α � (zn)n∈N = (α � zn)n∈N for all α ∈ K is a linear cone over K. For a sequence z = (zn)n∈N in K,
we define the `1-norm of z by

||z||1 =


∑
∞

n=1 |zn| if z ⊂ K,

+∞ if ∃n ∈N, zn = ∞.

Let `1 be the cone of all sequences (zn)n∈N inK such that ||(zn)n∈N||1 < ∞ and let `∞ be the cone of all (tn)n∈N

inK such that ||(zntn)n∈N||1 < ∞ for all (zn)n∈N ∈ `1; in fact, `∞ consists of all sequences t = (tn)n∈N inK such
that ||t||∞ < ∞, where ||t||∞, denotes the `∞-norm of t and defined by

||t||∞ =

 supn∈N |tn| if t ⊂ K,

+∞ if ∃n ∈N, tn = ∞.

With the bilinear mapping (z, t)→ 〈z, t〉 : `1 × `∞ → R for all z ∈ `1, t ∈ `∞, z = (zn)n∈N, t = (tn)n∈N defined by

〈z, t〉 =


∑
∞

n=1<(zntn) if z, t ⊂ K,

+∞ if ∃n ∈N, zn = ∞ or tn = ∞,

(`1, `∞) is a linear dual pair over K. If we set X = {λe : λ > 0}, where e = {(1, 1, ...)}, then X is a collection of
subsets in `∞ satisfying (p0), (p1), (p2) with respect to (`1, `∞), so (`1,VX) is a polar topology. For elements
z, z′ ∈ `1,z = (zn)n∈N, z′ = (z′n)n∈N and λ > 0 we have z ≤ z′ + λve if and only if∑

n∈N

<(zn) ≤
∑
n∈N

<(z′n) + λ or ∃n ∈N, z′n = ∞.

We note that the dual cone of `1 underVX is `∞ (cf.[2, 2.10-6]). The modular collection Γ�X = {Γ�λe : λ > 0}
satisfies in (p0), where Γ � e = {(−1,−1, ...), (1, 1, ...)} for K = R and Γ � e = {(γ, γ, ...) : γ ∈ Γ} for K = C and
the corresponding C-modular neighborhoods defined by z ≤C z′ + λ vΓ�e if and only if

|

∑
n∈N

<(zn) −
∑
n∈N

<(z′n)| ≤ λ and |

∑
n∈N

=(zn) −
∑
n∈N

=(z′n)| ≤ λ

or z′n = ∞ for some n ∈ N. Thus (`1,VX) is a linear polar topology over K with respect to the dual pair
(`1, `∞).

Proposition 2.7. If (P,Q) is a linear dual pair over K, P = Conv(P) and Q = Conv(Q) then with the bilinear
mapping (p,q)→ 〈〈p,q〉〉 : P ×Q→ R, where

〈〈p,q〉〉 =

 inf〈p,q〉 + sup〈p,q〉 if inf〈p,q〉 > −∞,

+∞ if inf〈p,q〉 = −∞,

(P,Q) is a linear dual pair overK, where 〈p,q〉 = {〈x, y〉 : x ∈ p, y ∈ q}.
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Proof. The condition (R1) is clear. For (R2), let α < 0. If inf〈α � p,q〉 = −∞ then inf〈p, α � q〉 = −∞ so
〈〈α � p,q〉〉 = 〈〈p, α � q〉〉 = +∞ and if inf〈α � p,q〉 > −∞ then

〈〈α � p,q〉〉 = inf
x∈p,y∈q

〈α � x, y〉 + sup
x∈p,y∈q

〈α � x, y〉

= inf
x∈p,y∈q

〈x, α � y〉 + sup
x∈p,y∈q

〈x, α � y〉 = 〈〈p, α � q〉〉,

since inf〈p, α � q〉 > −∞. For (R3), if 〈〈p,q〉〉 < +∞ then inf〈p,q〉 > −∞ and sup〈p,q〉 < +∞, whence

〈〈α � p,q〉〉 = inf〈α � p,q〉 + sup〈α � p,q〉 = α sup〈p,q〉 + α inf〈p,q〉 = α〈〈p,q〉〉.

If 〈〈p,q〉〉 = +∞ then inf〈αp,q〉 = α sup〈p,q〉 = −∞ or sup〈αp,q〉 = α inf〈p,q〉 = +∞, so 〈〈α � p,q〉〉 = +∞.
That is, (P,Q) is a linear dual pair over R. For (C3), let α ∈ C,<(α) < 0 and =(α) > 0. If 〈〈p,q〉〉 < +∞, then

〈〈α � p,q〉〉 = inf
x∈p,y∈q

〈α � x, y〉 + sup
x∈p,y∈q

〈α � x, y〉

= inf
x∈p,y∈q

〈<(α) � x, y〉 + inf
x∈p,y∈q

〈=(α)i � x, y〉 +

sup
x∈p,y∈q

〈<(α) � x, y〉 + sup
x∈p,y∈q

〈=(α)i � x, y〉

= <(α) sup
x∈p,y∈q

〈x, y〉 + =(α) inf
x∈p,y∈q

〈i � x, y〉 +

<(α) inf
x∈p,y∈q

〈x, y〉 + =(α) sup
x∈p,y∈q

〈i � x, y〉

= <(α)〈〈p,q〉〉 + =(α)〈〈i � p,q〉〉.

In the similar way, we can veryfy the three othere cases on<(α) and =(α). The conditions (C1) and (C2) are
clear.

Example 2.8. (i) If we set P = Conv(K) and Q = Conv(R) then X = {λA : λ > 0}, where A := {{1}} satisfies
(p0), (p1), (p2) with respect to (P,Q) and (P,VX) is a polar topology. The collection Γ�X = {λ (Γ�A) : λ > 0}
also satisfies in (p0) with respect to (P,Q); where Γ �A = {{−1}, {1}}, so (P,VX) is linear over R. For p,p′ ∈ P
and λ > 0, we have p ≤ p′ + λvA if and only if

inf
x∈p
<(x) + sup

x∈p
<(x) ≤ inf

x′∈p′
<(x′) + sup

x′∈p′
<(x′) + λ or inf

x′∈p′
<(x′) = −∞ or ∞ ∈ p′

and p ≤R p′ + λvΓ�A if and only if

| inf
x∈p
<(x) + sup

x∈p
<(x) − inf

x′∈p′
<(x′) − sup

x′∈p′
<(x′)| ≤ λ or inf

x′∈p′
<(x′) = −∞ or ∞ ∈ p′.

(ii) For P = Conv(`1) and Q = Conv(`∞), (P,Q) is a linear dual pair over K by Proposition 2.7. If we set
X = {λ e : λ > 0}, where e = {{(1, 1, ...)}}, then for p,p′ ∈ P we have p ≤ p′ + λve if and only if

inf
z∈p

∑
n∈N

<(zn) + sup
z∈p

∑
n∈N

<(zn) ≤ inf
z′∈p′

∑
n∈N

<(z′n) + sup
z′∈p′

∑
n∈N

<(z′n) + λ,

or infz′∈p′
∑

n∈N<(z′n) = −∞ or ∃z′ ∈ p′, z′ = (z′n)n∈N s.t., z′n = ∞ for some n ∈ N, and p ≤C p′ + λvΓ�e if and
only if

| inf
z∈p

∑
n∈N

<(zn) + sup
z∈p

∑
n∈N

<(zn) − inf
z′∈p′

∑
n∈N

<(z′n) − sup
z′∈p′

∑
n∈N

<(z′n)| ≤ λ,

| inf
z∈p

∑
n∈N

=(zn) + sup
z∈p

∑
n∈N

=(zn) − inf
z′∈p′

∑
n∈N

=(z′n) − sup
z′∈p′

∑
n∈N

=(z′n)| ≤ λ

or infz′∈p′
∑

n∈N<(z′n) = −∞ or ∃z′ ∈ p′, z′ = (z′n)n∈N s.t., z′n = ∞ for some n ∈N.
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