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Abstract. For a Banach space X, L®(T,X) denotes the metric space of all X-valued ®-integrable functions
f T — X, where the measure space (T,}, u) is a complete positive o-finite and @ is an increasing
subadditive continuous function on [0, c0) with ®(0) = 0. In this paper we discuss the proximinality

problem for the monotonous norm on best simultaneous approximation from the closed subspace Y € X
to a finite number of elements in X.

1. Introduction

Many authors studied the problem of best simultaneous approximation for functions and operators
in Banach spaces, also in metric linear spaces, e.g. [1], [2], [6]-[12] .
A function @ : [0, 00) — [0, 00) is called a modulus function if it satisfies the following conditions:
1. ®(x) =0iffx =0;
2.D9(x+y) <P +D(y);
3. @ is continuous and increasing.

The functions ® (x) = x”, 0 < p < 1, and ® (x) = In(x + 1) are examples of modulus functions. Further
the composition of two modulus functions is a modulus function.

Let (T, Y, 1) be a complete positive o-finite measure space, X be a Banach space and letY be a closed

subspace of X. If ® is a modulus function, then L® (T, X) denotes the space of all X—valued ®-integrable
functions f : T — X on the measure space (T, }_, 1) i.e.

L®(T,X) ={f:T—X :f®<||f(t)”)dp<oo

T

Also, the sequence space [® (T, X) is defined by:
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I°(T,X) = {x = (X)pey - ZCD(kaH) <00, x € X}.

k=1
For x = (xx)peq € I® (T, X) and f € L® (T, X), set
um¢=2ﬁwmmmeN®=f5wam@-
k=1 2

The spaces (L® (T, X), |llp) and (lq’ (T, X),”'I|q>) are complete metric linear spaces. It is well known that
I1°(T, X) € I' (T, X), L* (T, X) 2 L' (T, X). For more about these spaces see [4], [5].

We start with the following definitions:

We say that a norm p in R" is monotonous if for every x = (X)1<k<ns ¥ = (Vk)1<k<, in R such that
el < |y

,fork=1,...,n,wehave

p)<p(y).

Note that the usual norms in R” are monotonous.
Let x1,x7,...,x, be n elements in X, we set

dis (x1,x2,...,%,,Y) = iyrgp(q)nxl -y ,(D”xz -y ,...,<I)||xn —y”)

We say that Y is p-simultaneous proximinal in X, if for any # elements x1, x», ..., x, in X, there exists yp € Y

such that

p(@”?ﬁ — Yo ,(D”XZ — Yo ,...,<D”x,, —]/0“) = diS(X1,X2,...,Xn,Y).

In this case we say that yy is a best p-simultaneous approximation from Y of the elements x1, xy, ..., x, in X.

Also, we say that L®(T,Y)is p-simultaneous proximinal in L® (T, X), if for any n elements fi, fo,..., fy in
L? (T, X), there exists g € L® (T, Y) such that:

dis (fl,fz,...,fn,L(D (T, Y)) = geLi‘II’};Y)p(”'fl - g| D’ f2 _g| [ A f” _g”@)
= p (I = gollo M = gl 1 = 0ll,)-

In this case we say that g is a best p-simultaneous approximation from L®(T,Y) of the elements f1, fa, ..., fu
in L® (T, X).

We shall denote the set of all such best p-simultaneous approximation to x1, X, ..., X, by Py (x1, %2, ..., X4)
ie.
yeY dist(x1,x2,...,%,,Y) = }

Py(xl,X2,...,Xn)={ P( ,---,CD”xn—]/”)

@”xl -y ,CD”xz—y

Also

L(D T,Y d ,f, ., n’L(D T,G
Prory) (f1,f2,...,fn)={ gL (TY) ls(fl f2 fu L2 )) }
o’

=p(|A-dlly 1 -dlly. - lfi - 20ll,)
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It is clear that Y is p-simultaneous proximinal in X if and only if Py (x1, xy, ..., x,;) is nonempty for every n
elements x1,x5,...,x, in X.

Let x1,%2,...,%, be n elements in X, we say that the sequence (yi),.; C Y is p-simultaneously approxi-
mating for x1,xy,...,%, in Y, if

kL_i)ngop((D”xl — Yk ,@sz — Uk ,...,q)Hx,, —ka) =dis(x1,%0, ..., %, Y).

The set Y C X is said to be approximatively compact, if for every n elements x;,x,,...,x, in X, and
each p-simultaneously approximating sequence (yi),.; C Y, there exists a subsequence of (y),-; € Y that
converges to an elementin Y.

2. Main results
Theorem 2.1. Y is p-simultaneous proximinal in X, if Y is a compact subspace of X.

Proof. For any x1,x2,...,x, € X, define the function g: Y — R by

,...,qD“xn—y“).

Itis clear that the function g is continuous, since @, p, |||| are continuous functions of Y and thus, the infimum
is attained. i.e., there exists iy € Y such that

g(y)=p(®||x1—y @2 -y

9 () = infg () = infp (@ 1 — o], @z =], @[} = ).

Thus Y is p-simultaneous proximinal in X. [J

The following Lemma deals with the boundedness and the closeness of the set Py (x1,x2,..., %) .

Lemma 2.2. The set Py (x1,X2,...,X,) is bounded and closed if Y is a closed subspace.

Proof. Let x1,x2,...,%, € X and suppose that y1,2,..., ¥, € Py (x1,x2,...,%,). Using the fact that ® is an
increasing function and 0 € Y, then for eachi=1,2,...,1n, we have

pL 1) @i = p (@] @y
< p (@1 - il + @Il ., @ | = wil| + @ ]
<p (@] = yill, - @ v = i) + p@1lxall, .., @ lxal)
= dis (x1,%2,, %0, Y) + p @1l .., Pl -

Thus, foreachi=1,2,...,n,
p(L,1,...,1) @yil| < dis(xr, 22, ..., %0, V) + p (@ lall, ..., D lxall).

Hence, Py (x1,%2,...,%,) is bounded. Suppose Y is a closed subspace and let (yk);il be a sequence in
Py (x1,x2,...,x,) such that kLim Yk = Yo. Since (Vi)peq € Py (x1,%2, ..., x,), we have

)

p(CD”xl—yk ,...,CD“xn—yk”):;Iellf/p(CD“Jq—]/ ,,...,CDHxn—y

forall k > 1.
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Therefore,

inf p (01 -y

o o)

e = )

- pinp (@l -

= p(CI) xl—kLimyk ,o..,® xn—kLimyk)
=p(CD||x1—yo ,...,(D”xn—yo”).

Hence, yo € Py (x1,x2, . ..,x,), which gives the required result.

The following lemmas and theorems introduce some classes of p-simultaneous proximinal subspaces: []

Lemma 2.3. Let x1,X,, ..., X, be n elements in X and let the sequence (yi)e., C Y be an p-simultaneously approx-
imating sequence to x1,%z, ..., X, in Y. If (Y)e,is weakly convergent to yo € Y, then yo is a best p-simultaneous
approximation from Y of the elements x1,x,.. ., Xy.

Proof. Since ||| is weakly lower semicontinuous (see [3]), then for eachi =1,2,...,n, we have
||xl- — yo” < %im inf”xi - yk” .

Since @ is continuous and increasing function, then for eachi =1,2,...,n, we have
) ||xi - ]/0” < %im inf ® ||xi - yk” .

Using the monotonicity and the continuity of the norm p, we get

p(fD||x1 - Yo ,...,<D“xn - yo||)

< p(Lim__ inf® |x1 — Yk ', ...,Lim___inf® ||xn - yk”
=Lim,__infp (CD ”x1 -y, D ”xn - ]/k”)

= Lim,__p (@ |x1 = yel|, -, @ [Jxa - )

=dis(x1,%X2,...,%,,Y).
Which means that yy is a best p-simultaneous approximation from Y of the elements x1,x3,...,x, in X. O
Theorem 2.4. Y is p-simultaneous proximinal in X, if Y is approximatively compact subspace of X.

Proof. Let x1,x,,...,x, be elements in X. Then by the definition of

)

dis (x1,Xx2,...,%,,Y) = ;2£P(®)'x1 -y ,...,q)“xn —y}

we can find (yx),., C Y such that

kLinZop ((D ||x1 - yk( ,o..,@ ||xn - yk”) =dis(x1,%2,...,%,,Y).
Then (yk),.,is a p-simultaneously approximating sequence to x1, Xy, ..., %, in Y. Since Y is approximately

compact, then there exists a subsequence (v, ) of (y),-,that converges to yo € Y (z’.e kLim Yk, = yo). Thus

|

yo, @

p(@”xl - yol|,- ..,q)“x,, - 3/0”) = p(CD x| — kLﬂimyk” X, — kLinooyk”

= Limp (CD ||x1 - Yk,

ky—00

,...,(IJ”xn—ykn”)
=dis(x1,%2,..., %, Y).

Which gives the required result. [
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For x € X and r > 0, let B (x,r) denotes the closed ball with center x and radius r. Recall that Y C X
is locally weakly compact(resp. boundedly weakly compact) if for each y € Y (resp. for each r > 0), there
exists 6 > 0 such that B(y,0) NY (resp.B(0,r) N Y) is locally weakly compact.

Now, we introduce the following Lemma which gives the relation between locally weakly compact and
boundedly weakly compact, [9].

Lemma 2.5. For a closed subspace Y of X, the following statements are equivalent:
(i) Y is locally weakly compact.
(i1) Y is boundedly weakly compact.
(i) There exists a point y € Y and & > 0 such that B(y,6) N'Y is locally weakly compact.

Theorem 2.6. Y is p-simultaneously proximinal in X if Y is a locally weakly compact closed subspace of X.

Proof. Let x1,x,,...,x, be elements in X. By the definition of

,...,(I)”xn—y

dis(xl,xz,...,xn,Y)=iyre1§p(q)Hx1—y ,(I>||x2—y ),

we can find (y);-; C Y, such that

Limp(@”xl — Yk ,...,CD”xn —yk”) =dis(x1,%2,...,%,,Y).

k— 00

Then (y),-, is a p-simultaneously approximating sequence to x1, Xy, . . ., X, in Y. Thus, there exists a positive
number «, such that

pl@ =l @ = ) <

for all k. Using the fact that @ is a modulus function and the norm p is monotonous, we have for each k > 1:

P 1 1) @yl = p(@lyell. - @ [l
< p (@ (Jlxr = vl + tleall) -, @ ([ = wi| + llxall))
< p(@]x1 =yl + @lxall, .., © | — yil| + DIl

<p (@)1= yiell, - @ = wil]) + p @Il -, DIl
<a+p@lll,..., Pl

This shows that (y4);.; C Y is a bounded sequence. Since Y is locally weakly compact, it follows from
Lemma (2.5) that (yx),., has a weakly convergent subsequence with weak limit yo. Since Y is a closed
subspace of X, then yy € Y, it follows from Lemma (2.3) that y is a best p-simultaneous approximation
from Y of x1,x0,...,x,. O

Lemma 2.7. Let fi,..., fy € L (T, X) and define H: T — Rby H(t) = dis(fi(t),..., fu (t),Y). Then H is a
measurable function.

Proof. Let fi,..., fu € L® (T, X), then there exist sequences of simple functions ( f,;l), (i=12...,n)inL®(T,X)
which converges to f; (i=1,2...,n) for almostall t € T i.e:

Lim ||fu ()= fi®f=0, i=1,2...,n,
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for almostallt € T .
The continuity of the distance function dis (x1, X2, ..., x,, Y) implies that:

m@m'dis(f;(t),..., fa®),Y)=dis(A®),..., fn(t),Y)| =0,

for almostallt e T.
Furthermore, for each m € N the function:f — dis ( fr,..., fre, Y) is a simple function, therefore
H is a measurable function. [J

Lemma 2.8. Let fy, ..., fu € L (T, X) be n elements of simple functions. Then

dist(fl,...,fn,Lq’(T,Y))sdeist(fl(t),...,fn(t),Y) du (t).

m .
Proof. Assume that f; = ). x,xa,,(i=1,2...,n), where the A’s are pairwise disjoint measurable sets of T
k=1

m . .
with | JAy =T, and the set{x;( }:1_1 cX, (i=1,2...,n), u(Ax) < co whenever x, #0 because
k=1 =

”fi”@ = ZCDHX;{ ” p (Ax) < oo
k=1

Thus, we may assume 0 < u (Ax) < oo, for each k = 1,2,...,m. Since

dis(x1,x2,...,xn,Y)=iyr61£p(CDHx1— .,CI)”xn—y),
then, we can select y; € Y such that:
. . €
p(CI)”x,l( - .,(I)”xz - yk”) < dis (x,l,...,x;(,Y) + m,

foreachk=1,2,...,m
Set go = Y. Yk xa,, clearly go € L® (T, Y). Then
k=1

dis (fl, o fu L2 (T, Y))
<P fl fn_g()”q:)

( <D1|f1 6= go ()| du(t), ..., fT @||fu (B - go(t)||du(t))
o[Lewoabi-ul.... 3 uarols- il
k=1 k=1

A0 p(@ et = ill, -, @ [l = will)

IN

. e
u (Ax) (dzs (xk’ : ’xk’Y) i M)

- M 2P

t (Ax) dis (x;,...,x,’z,Y) +¢

=~
I
—_

deis(fl(t),...,fn(t),y) du () +e.
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Therefore,

dis(fl,...,fn,L‘P(T,Y))<deist(fl(t),...,fn(t),Y) du(t) + e

Since ¢ is arbitrary, let ¢ — 0, then

dis(fl,...,fn,L‘I’(T,Y))sj;dist(fl(t),...,fn(t),Y) du(t).

O

Theorem 2.9. Let (T, )., u) be a complete positive finite measure space and fi,..., f, any n elements in L% (T, X),
then

dis(ﬁ,...,fn,L‘D(T,Y))sﬁdist(fl(t),...,fn(t),Y) du(t).

Proof. Since i (T) is finite, let 4 (T) = a. Using the fact that simple functions are dense in L? (T, X), then for
any ¢ > 0 there are n simple functions fl* oo, frin L® (T, X) such that foreach i = 1,2...,n, and for almost
allt € T, we have

)

. e
fi-fif <= (1)

Threrefore,

fr=fll, = f o||f7 ()~ £ (B du (1) %)

< ﬁ%dy () =e.

Assume that

m
fi=Y % xa, (=1,2...,n)

k=1

m .
where the Ay’s are pairwise disjoint measurable sets of T with (JA; =T, and (xf< )m cX (i=12...,n).

k=1 k=1
To complete the proof we need the following steps:
Step 1: We show that

fdis(f;(t),...,f; ®),Y) du(®) < fdis(f1 1), fa (1), Y) dut).
T T
To show this, lett € T, then for any y € Y, we have

dis(f; (t),..., f(1),Y) < p(@

yoee, D

fi)-y fi)-v)-

Since @ is a modulus function, we have

-yl <ol o-A0|+e|fith-y

fort € Tand foreachi=1,2...,n.

)

7
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Using the fact that the norm p is monotonous, we get

p(@lli O=l..... ol -v])
<p(@|lf - AW+l -yl|,....2fi ) - f O + @ ) - ¥])
<p(@|io-A0l. .. o|Hi06-£0])
tp(@[li =yl [lfa )~ o]
<p(SeS)rp(@li®=vl . lf@ - o)
< 2p(1,1,...,1)+p(q)||f1 O =yl ®||f () - y])), foreach t € T.
Therefore,
dis(f; (0),.... f; (B),Y) < 2p(1,1,...,1)+p((1)”f1 O-yl,... o -y|), teT
Taking the infimum over all such y € Y, we have
dis(f; (0),.... fi (B),Y) < 2;;(1,1 ..... D+dis(A®),...,(t),Y), teT
Using Lemma (2.8), we can take the integral
deis (@, fi®),Y) du) < L(zp(l,l ..... D+dis(A®),..., f (t),Y))dy ()

=ep(1,1,...,1)+f;dis(fl(t),...,fz(t),Y) du (t).

Since ¢ arbitrary let ¢ — 0, then

Using inequality (2), we have

dis(fi, ..., fu L®(T,Y))
<p(If=dlly. - If - allo)
<p(Ifi = £llo + 15 = allg -

o= fillo + 15 = llo)

<o (1= filly 12 = llo) + -+ o (1 = allo M1 = 91l,)
<pe,....)+p(lfi -ally - Ifi = 9llo)
<ep(,1,..., 1)+p<||ff—g”q} ..... ”f;_g”q)’

for any g € L® (T, Y).Thus

dis(fi,..., f L*@V) < e p L1, D+ p (I = allyr- 1~ 9lly)-

3784
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Taking the infimum over all such g in L (T, Y), we get

dis(fi,..., fu L*(T,V)) <€ p(1,1,..., 1) +dist (f;, ..., £, L*(T,Y)) (4)

Lemma (2.8) and inequality (4) imply that
dis(fi,.., fu L®(T,Y)) < e p(1,1,..., 1) +dist (f;,..., fu, L*(T,Y))
ssp(1,1,...,1)+deis(f;(t),...,f;(t),y) du(t).

Since ¢ arbitrary, let ¢ — 0, we have

dis(fl,...,fn,L‘D(T,Y))sj;dis(ff(t),...,f,;‘(t),Y) du (t).

Using inequality(3), we get

dis(fl,...,fn,L‘I’(T,Y))sj;dis(fl(t),...,fz(t),Y) du(t).

Thus we get the result. [

Theorem 2.10. Let g € L® (T, Y) be the best p-simultaneous approximation from L® (T, Y) of the elements fi, ..., f, €
L® (T, X), then for any measurable subset A of T , and for every h € L® (T, Y), we have

hf¢”ﬁw—gﬁmmﬂﬂsb{®ﬂﬂw—hﬁmduw, (5)
A A

forsomeie{1,2...,n}.

Proof. Assume that i (A) > 0, for some A C T. Suppose that there is hy € L® (T, Y) that doesn’t satisfy
inequality (5), then we can define g € L®(T,Y) such that

[ho(t), teA
gO(t)_{g(t), teT—A}

Thus, fori=1,2...,n, we have
f@M@—%meoifMM@Jm%ww+f @ (0) - g 0] dus 1)
T A T-A
<ﬁ®M@—mwwm.
Which implies that

1 = goll,, < [1fi - 9]
fori=1,2,...,n. Using the fact that the norm p is monotonous, we have
p(Ifi — a0l fu=9ollo) < p(|lfi =9l fu= )

This contradicts the fact that g is the best p-simultaneous approximation from L® (T,Y) of the elements
fi,e n €L(T,X). O

[oX4

o7 o7
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The following result concerns the p-simultaneous approximation of I (T, Y) in [® (T, X) .

Theorem 2.11. [®(T,Y) is p-simultaneous proximinal in I* (T, X) if Y is p-simultaneous proximinal in X.

Proof. Let fi,..., fu € I%(T, X) , where f; = (f;(n))..,. Since Y is p-simultaneous proximinal in X, then for
each k € N there exists g (k) € Y such that

p (@[ - g ®|,..., 2 |f 1) - g W) < p (@] K~y

for every y € Y. Since 0 € Y, we have

p(@li @ -g®],....@f 0 -g®) <p(@llfi ... @[5 ) ©)
Using inequality (6) and the fact that @ is subadditive and increasing, we have

p1,...,1) @|lg®|
=p(@fgf..... o[l w])
<p(@fi®-gw]+o]A®
<p(@|fi -9
+p(@|i®f, ... ®
<np(®||fi k)

s, @) -y

o @lf 0 = g ] + |, W)
oo @ f ) - g )

£ )

o W),

Therefore, g9 = (g (k));-, € I® (T, Y) .To show that gy is the best p-simultaneous approximation from [* (T, Y)
of fi,..., fuin I°(T, X),let h = (h (k)),~; € I°(T,Y). Then for eachi = 1,2,...,n, we have

Ifi=nll, = Y @ |lfi 0 - 0|

k=1

> Y ofik)-g®)|

k=1

i - ol

Using the monotonicity of the norm p, we have

o (1A =Ml fi = Hlly) = o (12 - 0]

Hence, we get the result. O

o7

i _90”@)‘

Conclusion 2.12. We have established the p-simultaneous proximinality of the closed subspace Y in the Banach
space X and give some results in the distance formula of the space L® (T, X). It is not hard to extend our results to the
case where p is any monotone norm of R"with n a finite positive integer.
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