

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Best Simultaneous Approximation on Metric Spaces via Monotonous Norms

Mona Khandaqji^a, Aliaa Burqan^b

^aDepartment of Mathematics, Applied Science Private University, Amman, Jordan ^bDepartment of Mathematics, Faculty of Science, Zarqa university, Zarqa, Jordan.

Abstract. For a Banach space $X, L^{\Phi}(T, X)$ denotes the metric space of all X-valued Φ -integrable functions $f: T \to X$, where the measure space (T, \sum, μ) is a complete positive σ -finite and Φ is an increasing subadditive continuous function on $[0, \infty)$ with $\Phi(0) = 0$. In this paper we discuss the proximinality problem for the monotonous norm on best simultaneous approximation from the closed subspace $Y \subseteq X$ to a finite number of elements in X.

1. Introduction

Many authors studied the problem of best simultaneous approximation for functions and operators in Banach spaces, also in metric linear spaces, e.g. [1], [2], [6]-[12].

A function $\Phi:[0,\infty)\longrightarrow[0,\infty)$ is called a modulus function if it satisfies the following conditions:

- 1. $\Phi(x) = 0$ iff x = 0;
- 2. $\Phi(x + y) \le \Phi(x) + \Phi(y)$;
- 3. Φ is continuous and increasing.

The functions $\Phi(x) = x^p$, $0 , and <math>\Phi(x) = \ln(x+1)$ are examples of modulus functions. Further the composition of two modulus functions is a modulus function.

Let (T, Σ, μ) be a complete positive σ -finite measure space, X be a Banach space and let Y be a closed subspace of X. If Φ is a modulus function, then $L^{\Phi}(T, X)$ denotes the space of all X-valued Φ -integrable functions $f: T \to X$ on the measure space (T, Σ, μ) *i.e.*

$$L^{\Phi}\left(T,X\right) = \left\{ f: T \to X : \int_{T} \Phi\left(\left\|f\left(t\right)\right\|\right) d\mu < \infty \right\}.$$

Also, the sequence space $l^{\Phi}(T, X)$ is defined by:

2010 Mathematics Subject Classification. Primary 41Axx; Secondary 41A50, 41A28

Keywords. Simultaneous; Approximation.

Received: 01 December 2019; Accepted: 30 May 2020

Communicated by Miorag Spalević

Email addresses: m.khandakji@asu.edu.jo (Mona Khandaqji), aliaaburqan@zu.edu.jo (Aliaa Burqan)

$$l^{\Phi}(T,X) = \left\{ x = (x_k)_{k=1}^{\infty} : \sum_{k=1}^{\infty} \Phi(||x_k||) < \infty, \ x_k \in X \right\}.$$

For $x = (x_k)_{k=1}^{\infty} \in l^{\Phi}(T, X)$ and $f \in L^{\Phi}(T, X)$, set

$$||x||_{\Phi} = \sum_{k=1}^{\infty} \Phi(||x_k||) \text{ and } ||f||_{\Phi} = \int_{T} \Phi(||f(t)||) d\mu.$$

The spaces $(L^{\Phi}(T,X),\|\cdot\|_{\Phi})$ and $(l^{\Phi}(T,X),\|\cdot\|_{\Phi})$ are complete metric linear spaces. It is well known that $l^{\Phi}(T,X) \subseteq l^{1}(T,X), L^{\Phi}(T,X) \supseteq l^{1}(T,X)$. For more about these spaces see [4], [5].

We start with the following definitions:

We say that a norm ρ in \mathbb{R}^n is monotonous if for every $x=(x_k)_{1\leq k\leq n}$, $y=(y_k)_{1\leq k\leq n}$ in \mathbb{R}^n such that $|x_k|\leq |y_k|$, for $k=1,\ldots,n$, we have

$$\rho\left(x\right) \leq\rho\left(y\right) .$$

Note that the usual norms in \mathbb{R}^n are monotonous.

Let $x_1, x_2, ..., x_n$ be n elements in X, we set

$$dis(x_1, x_2, ..., x_n, Y) = \inf_{y \in Y} \rho(\Phi ||x_1 - y||, \Phi ||x_2 - y||, ..., \Phi ||x_n - y||)$$

We say that Y is ρ -simultaneous proximinal in X, if for any n elements x_1, x_2, \dots, x_n in X, there exists $y_0 \in Y$ such that

$$\rho\left(\Phi \|x_1 - y_0\|, \Phi \|x_2 - y_0\|, \dots, \Phi \|x_n - y_0\|\right) = dis(x_1, x_2, \dots, x_n, Y).$$

In this case we say that y_0 is a best ρ -simultaneous approximation from Y of the elements x_1, x_2, \ldots, x_n in X.

Also, we say that $L^{\Phi}(T, Y)$ is ρ -simultaneous proximinal in $L^{\Phi}(T, X)$, if for any n elements f_1, f_2, \ldots, f_n in $L^{\Phi}(T, X)$, there exists $g_0 \in L^{\Phi}(T, Y)$ such that:

$$dis(f_{1}, f_{2}, ..., f_{n}, L^{\Phi}(T, Y)) = \inf_{g \in L^{\Phi}(T, Y)} \rho(||f_{1} - g||_{\Phi}, ||f_{2} - g||_{\Phi}, ..., ||f_{n} - g||_{\Phi})$$
$$= \rho(||f_{1} - g_{0}||_{\Phi}, ||f_{2} - g_{0}||_{\Phi}, ..., ||f_{n} - g_{0}||_{\Phi}).$$

In this case we say that g_0 is a best ρ -simultaneous approximation from $L^{\Phi}(T, Y)$ of the elements f_1, f_2, \dots, f_n in $L^{\Phi}(T, X)$.

We shall denote the set of all such best ρ -simultaneous approximation to $x_1, x_2, ..., x_n$ by $P_Y(x_1, x_2, ..., x_n)$ *i.e.*

$$P_{Y}(x_{1}, x_{2},...,x_{n}) = \left\{ \begin{array}{c} y \in Y : dist(x_{1}, x_{2},...,x_{n},Y) = \\ \rho(\Phi ||x_{1} - y||, \Phi ||x_{2} - y||,...,\Phi ||x_{n} - y||) \end{array} \right\}$$

Also

$$P_{L^{\Phi}(T,Y)}(f_1, f_2, \dots, f_n) = \left\{ \begin{array}{l} g \in L^{\Phi}(T,Y) : dis(f_1, f_2, \dots, f_n, L^{\Phi}(T,G)) \\ = \rho(\|f_1 - g\|_{\Phi}, \|f_2 - g\|_{\Phi}, \dots, \|f_n - g_0\|_{\Phi}) \end{array} \right\}.$$

It is clear that *Y* is ρ -simultaneous proximinal in *X* if and only if $P_Y(x_1, x_2, ..., x_n)$ is nonempty for every *n* elements $x_1, x_2, ..., x_n$ in *X*.

Let $x_1, x_2, ..., x_n$ be n elements in X, we say that the sequence $(y_k)_{k=1}^{\infty} \subseteq Y$ is ρ -simultaneously approximating for $x_1, x_2, ..., x_n$ in Y, if

$$\lim_{k \to \infty} \rho\left(\Phi \|x_1 - y_k\|, \Phi \|x_2 - y_k\|, \dots, \Phi \|x_n - y_k\|\right) = dis\left(x_1, x_2, \dots, x_n, Y\right).$$

The set $Y \subseteq X$ is said to be approximatively compact, if for every n elements x_1, x_2, \ldots, x_n in X, and each ρ -simultaneously approximating sequence $(y_k)_{k=1}^{\infty} \subseteq Y$, there exists a subsequence of $(y_k)_{k=1}^{\infty} \subseteq Y$ that converges to an element in Y.

2. Main results

Theorem 2.1. Y is ρ -simultaneous proximinal in X, if Y is a compact subspace of X.

Proof. For any $x_1, x_2, ..., x_n \in X$, define the function $g: Y \longrightarrow \mathbb{R}$ by

$$g(y) = \rho \left(\Phi \|x_1 - y\|, \Phi \|x_2 - y\|, \dots, \Phi \|x_n - y\|\right).$$

It is clear that the function g is continuous, since Φ , ρ , $\|\cdot\|$ are continuous functions of Y and thus, the infimum is attained. i.e., there exists $y_0 \in Y$ such that

$$g(y_0) = \inf_{y \in Y} g(y) = \inf_{y \in Y} \rho(\Phi ||x_1 - y||, \Phi ||x_2 - y||, \dots, \Phi ||x_n - y||).$$

Thus *Y* is ρ -simultaneous proximinal in *X*. \square

The following Lemma deals with the boundedness and the closeness of the set $P_Y(x_1, x_2, ..., x_n)$.

Lemma 2.2. The set $P_Y(x_1, x_2, ..., x_n)$ is bounded and closed if Y is a closed subspace.

Proof. Let $x_1, x_2, ..., x_n \in X$ and suppose that $y_1, y_2, ..., y_n \in P_Y(x_1, x_2, ..., x_n)$. Using the fact that Φ is an increasing function and $0 \in Y$, then for each i = 1, 2, ..., n, we have

$$\rho(1,1,...,1) \Phi \|y_i\| = \rho (\Phi \|y_i\|,...,\Phi \|y_i\|)$$

$$\leq \rho (\Phi \|x_1 - y_i\| + \Phi \|x_1\|,...,\Phi \|x_n - y_i\| + \Phi \|x_n\|)$$

$$\leq \rho (\Phi \|x_1 - y_i\|,...,\Phi \|x_n - y_i\|) + \rho (\Phi \|x_1\|,...,\Phi \|x_n\|)$$

$$= dis(x_1, x_2,...,x_n, Y) + \rho (\Phi \|x_1\|,...,\Phi \|x_n\|).$$

Thus, for each $i = 1, 2, \ldots, n$,

$$\rho(1,1,\ldots,1) \Phi \|y_i\| \leq dis(x_1,x_2,\ldots,x_n,Y) + \rho(\Phi \|x_1\|,\ldots,\Phi \|x_n\|).$$

Hence, $P_Y(x_1, x_2, ..., x_n)$ is bounded. Suppose Y is a closed subspace and let $(y_k)_{k=1}^{\infty}$ be a sequence in $P_Y(x_1, x_2, ..., x_n)$ such that $\lim_{k \to \infty} y_k = y_0$. Since $(y_k)_{k=1}^{\infty} \subseteq P_Y(x_1, x_2, ..., x_n)$, we have

$$\rho\left(\Phi\left\|x_{1}-y_{k}\right\|,\ldots,\Phi\left\|x_{n}-y_{k}\right\|\right)=\inf_{u\in V}\rho\left(\Phi\left\|x_{1}-y\right\|,\ldots,\Phi\left\|x_{n}-y\right\|\right),$$

for all $k \ge 1$.

Therefore,

$$\inf_{y \in Y} \rho \left(\Phi \left\| x_1 - y \right\|, \dots, \Phi \left\| x_n - y \right\| \right)$$

$$= \lim_{k \to \infty} \rho \left(\Phi \left\| x_1 - y_k \right\|, \dots, \Phi \left\| x_n - y_k \right\| \right)$$

$$= \rho \left(\Phi \left\| x_1 - \lim_{k \to \infty} y_k \right\|, \dots, \Phi \left\| x_n - \lim_{k \to \infty} y_k \right\| \right)$$

$$= \rho \left(\Phi \left\| x_1 - y_0 \right\|, \dots, \Phi \left\| x_n - y_0 \right\| \right).$$

Hence, $y_0 \in P_Y(x_1, x_2, ..., x_n)$, which gives the required result.

The following lemmas and theorems introduce some classes of ρ -simultaneous proximinal subspaces: \Box

Lemma 2.3. Let $x_1, x_2, ..., x_n$ be n elements in X and let the sequence $(y_k)_{k=1}^{\infty} \subseteq Y$ be an ρ -simultaneously approximating sequence to $x_1, x_2, ..., x_n$ in Y. If $(y_k)_{k=1}^{\infty}$ is weakly convergent to $y_0 \in Y$, then y_0 is a best ρ -simultaneous approximation from Y of the elements $x_1, x_2, ..., x_n$.

Proof. Since $\|\cdot\|$ is weakly lower semicontinuous (see [3]), then for each i = 1, 2, ..., n, we have

$$||x_i - y_0|| \le \lim_k \inf ||x_i - y_k||.$$

Since Φ is continuous and increasing function, then for each i = 1, 2, ..., n, we have

$$\Phi \|x_i - y_0\| \le \lim_k \inf \Phi \|x_i - y_k\|.$$

Using the monotonicity and the continuity of the norm ρ , we get

$$\rho\left(\Phi \| x_{1} - y_{0} \|, \dots, \Phi \| x_{n} - y_{0} \|\right)$$

$$\leq \rho(Lim_{k \to \infty} \inf \Phi \| x_{1} - y_{k} \|, \dots, Lim_{k \to \infty} \inf \Phi \| x_{n} - y_{k} \|$$

$$= Lim_{k \to \infty} \inf \rho\left(\Phi \| x_{1} - y_{k} \|, \dots, \Phi \| x_{n} - y_{k} \|\right)$$

$$= Lim_{k \to \infty} \rho\left(\Phi \| x_{1} - y_{k} \|, \dots, \Phi \| x_{n} - y_{k} \|\right)$$

$$= dis(x_{1}, x_{2}, \dots, x_{n}, Y).$$

Which means that y_0 is a best ρ -simultaneous approximation from Y of the elements x_1, x_2, \dots, x_n in X. \square

Theorem 2.4. Y is ρ -simultaneous proximinal in X, if Y is approximatively compact subspace of X.

Proof. Let $x_1, x_2, ..., x_n$ be elements in X. Then by the definition of

$$dis(x_1, x_2, ..., x_n, Y) = \inf_{y \in Y} \rho(\Phi ||x_1 - y||, ..., \Phi ||x_n - y||),$$

we can find $(y_k)_{k=1}^{\infty} \subseteq Y$ such that

$$\lim_{k\to\infty} \rho\left(\Phi\left\|x_1-y_k\right\|,\ldots,\Phi\left\|x_n-y_k\right\|\right) = dis\left(x_1,x_2,\ldots,x_n,Y\right).$$

Then $(y_k)_{k=1}^{\infty}$ is a ρ -simultaneously approximating sequence to x_1, x_2, \dots, x_n in Y. Since Y is approximately compact, then there exists a subsequence (y_{k_n}) of $(y_k)_{k=1}^{\infty}$ that converges to $y_0 \in Y\left(i.e.\underbrace{Lim}_{k_n \to \infty} y_{k_n} = y_0\right)$. Thus

$$\rho\left(\Phi \|x_{1} - y_{0}\|, \dots, \Phi \|x_{n} - y_{0}\|\right) = \rho\left(\Phi \|x_{1} - \lim_{k_{n} \to \infty} y_{k_{n}}\|, \dots, \Phi \|x_{n} - \lim_{k_{n} \to \infty} y_{k_{n}}\|\right)$$

$$= \lim_{k_{n} \to \infty} \rho\left(\Phi \|x_{1} - y_{k_{n}}\|, \dots, \Phi \|x_{n} - y_{k_{n}}\|\right)$$

$$= dis\left(x_{1}, x_{2}, \dots, x_{n}, Y\right).$$

Which gives the required result. \Box

For $x \in X$ and r > 0, let B(x,r) denotes the closed ball with center x and radius r. Recall that $Y \subseteq X$ is locally weakly compact(resp. boundedly weakly compact) if for each $y \in Y$ (resp. for each r > 0), there exists $\delta > 0$ such that $B(y, \delta) \cap Y$ (resp. $B(0, r) \cap Y$) is locally weakly compact.

Now, we introduce the following Lemma which gives the relation between locally weakly compact and boundedly weakly compact, [9].

Lemma 2.5. For a closed subspace Y of X, the following statements are equivalent:

- (i) Y is locally weakly compact.
- (ii) Y is boundedly weakly compact.
- (iii) There exists a point $y \in Y$ and $\delta > 0$ such that $B(y, \delta) \cap Y$ is locally weakly compact.

Theorem 2.6. Y is ρ -simultaneously proximinal in X if Y is a locally weakly compact closed subspace of X.

Proof. Let $x_1, x_2, ..., x_n$ be elements in X. By the definition of

$$dis(x_1, x_2, ..., x_n, Y) = \inf_{y \in Y} \rho(\Phi ||x_1 - y||, \Phi ||x_2 - y||, ..., \Phi ||x_n - y||),$$

we can find $(y_k)_{k=1}^{\infty} \subseteq Y$, such that

$$\lim_{k\to\infty} \rho\left(\Phi\left\|x_1-y_k\right\|,\ldots,\Phi\left\|x_n-y_k\right\|\right) = dis\left(x_1,x_2,\ldots,x_n,Y\right).$$

Then $(y_k)_{k=1}^{\infty}$ is a ρ -simultaneously approximating sequence to x_1, x_2, \dots, x_n in Y. Thus, there exists a positive number α , such that

$$\rho\left(\Phi\left\|x_1-y_k\right\|,\ldots,\Phi\left\|x_n-y_k\right\|\right)\leq \alpha$$

for all k. Using the fact that Φ is a modulus function and the norm ρ is monotonous, we have for each $k \geq 1$:

$$\rho(1,1,...,1) \Phi \|y_{k}\| = \rho(\Phi \|y_{k}\|,...,\Phi \|y_{k}\|)$$

$$\leq \rho(\Phi(\|x_{1}-y_{k}\|+\|x_{1}\|),...,\Phi(\|x_{n}-y_{k}\|+\|x_{n}\|))$$

$$\leq \rho(\Phi \|x_{1}-y_{k}\|+\Phi \|x_{1}\|,...,\Phi \|x_{n}-y_{k}\|+\Phi \|x_{n}\|)$$

$$\leq \rho(\Phi \|x_{1}-y_{k}\|,...,\Phi \|x_{n}-y_{k}\|) + \rho(\Phi \|x_{1}\|,...,\Phi \|x_{n}\|)$$

$$\leq \alpha + \rho(\Phi \|x_{1}\|,...,\Phi \|x_{n}\|).$$

This shows that $(y_k)_{k=1}^{\infty} \subseteq Y$ is a bounded sequence. Since Y is locally weakly compact, it follows from Lemma (2.5) that $(y_k)_{k=1}^{\infty}$ has a weakly convergent subsequence with weak limit y_0 . Since Y is a closed subspace of X, then $y_0 \in Y$, it follows from Lemma (2.3) that y_0 is a best ρ -simultaneous approximation from Y of x_1, x_2, \ldots, x_n . \square

Lemma 2.7. Let $f_1, \ldots, f_n \in L^{\Phi}(T, X)$ and define $H: T \to \mathbb{R}$ by $H(t) = dis(f_1(t), \ldots, f_n(t), Y)$. Then H is a measurable function.

Proof. Let $f_1, \ldots, f_n \in L^{\Phi}(T, X)$, then there exist sequences of simple functions (f_m^i) , $(i = 1, 2, \ldots, n)$ in $L^{\Phi}(T, X)$ which converges to f_i , $(i = 1, 2, \ldots, n)$ for almost all $t \in T$ *i.e*:

$$\lim_{m \to \infty} \|f_m^1(t) - f_i(t)\| = 0, \ i = 1, 2 \dots, n,$$

for almost all $t \in T$.

The continuity of the distance function $dis(x_1, x_2, ..., x_n, Y)$ implies that:

$$\lim_{m \to \infty} \left| dis \left(f_m^1(t), \ldots, f_m^n(t), Y \right) - dis \left(f_1(t), \ldots, f_n(t), Y \right) \right| = 0,$$

for almost all $t \in T$.

Furthermore, for each $m \in N$ the function: $t \longrightarrow dis\left(f_m^1(t), \ldots, f_m^n(t), Y\right)$ is a simple function, therefore H is a measurable function. \square

Lemma 2.8. Let $f_1, \ldots, f_n \in L^{\Phi}(T, X)$ be n elements of simple functions. Then

$$dist(f_1,\ldots,f_n,L^{\Phi}(T,Y)) \leq \int_T dist(f_1(t),\ldots,f_n(t),Y) d\mu(t).$$

Proof. Assume that $f_i = \sum_{k=1}^m x_k^i \chi_{A_k}$, (i = 1, 2, ..., n), where the A_k 's are pairwise disjoint measurable sets of T with $\bigcup_{k=1}^m A_k = T$, and the set $\left\{x_k^i\right\}_{k=1}^m \subseteq X$, (i = 1, 2, ..., n), $\mu(A_k) < \infty$ whenever $x_k^i \neq 0$ because

$$\|f_i\|_{\Phi} = \sum_{k=1}^m \Phi \|x_k^i\| \ \mu(A_k) < \infty.$$

Thus, we may assume $0 < \mu(A_k) < \infty$, for each k = 1, 2, ..., m. Since

$$dis(x_1, x_2, ..., x_n, Y) = \inf_{y \in Y} \rho(\Phi ||x_1 - y||, \Phi ||x_2 - y||, ..., \Phi ||x_n - y||)$$

then, we can select $y_k \in Y$ such that:

$$\rho\left(\Phi\left\|x_{k}^{1}-y_{k}\right\|,\ldots,\Phi\left\|x_{k}^{n}-y_{k}\right\|\right) < dis\left(x_{k}^{1},\ldots,x_{k}^{n},Y\right) + \frac{\varepsilon}{m\,\mu\left(A_{k}\right)},$$

for each k = 1, 2, ..., m.

Set
$$g_0 = \sum_{k=1}^m y_k \chi_{A_k}$$
, clearly $g_0 \in L^{\Phi}(T, Y)$. Then

$$dis (f_{1}, ..., f_{n}, L^{\Phi}(T, Y))$$

$$\leq \rho (\|f_{1} - g_{0}\|_{\Phi}, ..., \|f_{n} - g_{0}\|_{\Phi})$$

$$= \rho (\int_{T} \Phi \|f_{1}(t) - g_{0}(t)\| d\mu(t), ..., \int_{T} \Phi \|f_{n}(t) - g_{0}(t)\| d\mu(t))$$

$$= \rho (\sum_{k=1}^{m} \mu(A_{k}) \Phi \|x_{k}^{1} - y_{k}\|, ..., \sum_{k=1}^{m} \mu(A_{k}) \Phi \|x_{k}^{n} - y_{k}\|)$$

$$\leq \sum_{k=1}^{m} \mu(A_{k}) \rho (\Phi \|x_{k}^{1} - y_{k}\|, ..., \Phi \|x_{k}^{n} - y_{k}\|)$$

$$< \sum_{k=1}^{m} \mu(A_{k}) \left(dis(x_{k}^{1}, ..., x_{k}^{n}, Y) + \frac{\varepsilon}{m \mu(A_{k})} \right)$$

$$= \sum_{k=1}^{m} \mu(A_{k}) dis(x_{k}^{1}, ..., x_{k}^{n}, Y) + \varepsilon$$

$$= \int_{T} dis(f_{1}(t), ..., f_{n}(t), Y) d\mu(t) + \varepsilon.$$

Therefore,

$$dis(f_1,\ldots,f_n,L^{\Phi}(T,Y)) < \int_T dist(f_1(t),\ldots,f_n(t),Y) d\mu(t) + \varepsilon$$

Since ε is arbitrary, let $\varepsilon \to 0$, then

$$dis(f_1,\ldots,f_n,L^{\Phi}(T,Y)) \leq \int_T dist(f_1(t),\ldots,f_n(t),Y) d\mu(t).$$

Theorem 2.9. Let (T, \sum, μ) be a complete positive finite measure space and f_1, \ldots, f_n any n elements in $L^{\Phi}(T, X)$, then

$$dis(f_1,\ldots,f_n,L^{\Phi}(T,Y)) \leq \int_T dist(f_1(t),\ldots,f_n(t),Y) d\mu(t).$$

Proof. Since $\mu(T)$ is finite, let $\mu(T) = \alpha$. Using the fact that simple functions are dense in $L^{\Phi}(T, X)$, then for any $\varepsilon > 0$ there are n simple functions f_1^*, \ldots, f_n^* in $L^{\Phi}(T, X)$ such that for each $i = 1, 2, \ldots, n$, and for almost all $t \in T$, we have

$$\Phi \left\| f_i^* \left(t \right) - f_i \left(t \right) \right\| < \frac{\varepsilon}{\alpha}. \tag{1}$$

Threrefore,

$$\|f_i^* - f_i\|_{\Phi} = \int_T \Phi \|f_i^*(t) - f_i(t)\| d\mu(t)$$

$$< \int_T \frac{\varepsilon}{\alpha} d\mu(t) = \varepsilon.$$
(2)

Assume that

$$f_i^* = \sum_{k=1}^m x_k^i \chi_{A_k}, \ (i = 1, 2 \dots, n)$$

where the A_k 's are pairwise disjoint measurable sets of T with $\bigcup_{k=1}^m A_k = T$, and $\left(x_k^i\right)_{k=1}^m \subseteq X$, (i = 1, 2 ..., n). To complete the proof we need the following steps:

Step 1: We show that

$$\int_{T} dis\left(f_{1}^{*}\left(t\right), \ldots, f_{n}^{*}\left(t\right), Y\right) d\mu\left(t\right) \leq \int_{T} dis\left(f_{1}\left(t\right), \ldots, f_{n}\left(t\right), Y\right) d\mu\left(t\right).$$

To show this, let $t \in T$, then for any $y \in Y$, we have

$$dis(f_1^*(t), \dots, f_n^*(t), Y) \le \rho(\Phi||f_1^*(t) - y||, \dots, \Phi||f_n^*(t) - y||).$$

Since Φ is a modulus function, we have

$$\Phi \left\| f_i^*\left(t\right) - y \right\| \le \Phi \left\| f_i^*\left(t\right) - f_1\left(t\right) \right\| + \Phi \left\| f_i\left(t\right) - y \right\|,$$

for $t \in T$ and for each $i = 1, 2 \dots, n$.

Using the fact that the norm ρ is monotonous, we get

$$\rho\left(\Phi \| f_{1}^{*}(t) - y \|, \dots, \Phi \| f_{n}^{*}(t) - y \|\right)
\leq \rho\left(\Phi \| f_{1}^{*}(t) - f_{1}(t) \| + \Phi \| f_{1}(t) - y \|, \dots, \Phi \| f_{n}^{*}(t) - f_{n}(t) \| + \Phi \| f_{n}(t) - y \|\right)
\leq \rho\left(\Phi \| f_{1}^{*}(t) - f_{1}(t) \|, \dots, \Phi \| f_{n}^{*}(t) - f_{n}(t) \|\right)
+ \rho\left(\Phi \| f_{1}(t) - y \|, \dots, \Phi \| f_{n}(t) - y \|\right)
< \rho\left(\frac{\varepsilon}{\alpha}, \dots, \frac{\varepsilon}{\alpha}\right) + \rho\left(\Phi \| f_{1}(t) - y \|, \dots, \Phi \| f_{n}(t) - y \|\right)
< \frac{\varepsilon}{\alpha}\rho(1, 1, \dots, 1) + \rho\left(\Phi \| f_{1}(t) - y \|, \dots, \Phi \| f_{n}(t) - y \|\right), \text{ for each } t \in T.$$

Therefore,

$$dis\left(f_{1}^{*}\left(t\right),\ldots,f_{n}^{*}\left(t\right),Y\right)<\frac{\varepsilon}{\alpha}\rho\left(1,1,\ldots,1\right)+\rho\left(\Phi\left\|f_{1}\left(t\right)-y\right\|,\ldots,\Phi\left\|f_{n}\left(t\right)-y\right\|\right),\ t\in T$$

Taking the infimum over all such $y \in Y$, we have

$$dis\left(f_{1}^{*}\left(t\right),\ldots,f_{n}^{*}\left(t\right),Y\right)\leq\frac{\varepsilon}{\alpha}\rho\left(1,1,\ldots,1\right)+dis\left(f_{1}\left(t\right),\ldots,f_{2}\left(t\right),Y\right),\ t\in T$$

Using Lemma (2.8), we can take the integral

$$\begin{split} \int_{T} dis\left(f_{1}^{*}\left(t\right),\ldots,f_{n}^{*}\left(t\right),Y\right) \, d\mu\left(t\right) &\leq \int_{T} \left(\frac{\varepsilon}{\alpha}\rho\left(1,1,\ldots,1\right) + dis\left(f_{1}\left(t\right),\ldots,f_{2}\left(t\right),Y\right)\right) d\mu\left(t\right) \\ &= \varepsilon\,\rho\left(1,1,\ldots,1\right) + \int_{T} dis\left(f_{1}\left(t\right),\ldots,f_{2}\left(t\right),Y\right) \, d\mu\left(t\right). \end{split}$$

Since ε arbitrary let $\varepsilon \to 0$, then

$$\int_{T} dis\left(f_{1}^{*}\left(t\right), \dots, f_{n}^{*}\left(t\right), Y\right) d\mu\left(t\right) \leq \int_{T} dis\left(f_{1}\left(t\right), \dots, f_{2}\left(t\right), Y\right) d\mu\left(t\right). \tag{3}$$

Step 2: We show that

$$dis(f_1,\ldots,f_n,L^{\Phi}(T,Y)) \leq \int_T dis(f_1(t),\ldots,f_2(t),Y) d\mu(t).$$

Using inequality (2), we have

$$dis(f_{1},...,f_{n},L^{\Phi}(T,Y))$$

$$\leq \rho(\|f_{1}-g\|_{\Phi},...,\|f_{n}-g\|_{\Phi})$$

$$\leq \rho(\|f_{1}-f_{1}^{*}\|_{\Phi}+\|f_{1}^{*}-g\|_{\Phi},...,\|f_{n}-f_{n}^{*}\|_{\Phi}+\|f_{n}^{*}-g\|_{\Phi})$$

$$\leq \rho(\|f_{1}-f_{1}^{*}\|_{\Phi},\|f_{2}-f_{2}^{*}\|_{\Phi})+...+\rho(\|f_{n}^{*}-g\|_{\Phi},\|f_{n}^{*}-g\|_{\Phi})$$

$$\leq \rho(\varepsilon,...,\varepsilon)+\rho(\|f_{1}^{*}-g\|_{\Phi},...,\|f_{n}^{*}-g\|_{\Phi})$$

$$\leq \varepsilon \rho(1,1,...,1)+\rho(\|f_{1}^{*}-g\|_{\Phi},...,\|f_{n}^{*}-g\|_{\Phi}),$$

for any $q \in L^{\Phi}(T, Y)$. Thus

$$dis\left(f_{1},\ldots,f_{n},L^{\Phi}\left(T,Y\right)\right)\leq\varepsilon\,\rho\left(1,1,\ldots,1\right)+\rho\left(\left\|f_{1}^{*}-g\right\|_{\Phi},\ldots,\left\|f_{n}^{*}-g\right\|_{\Phi}\right).$$

Taking the infimum over all such g in $L^{\Phi}(T, Y)$, we get

$$dis\left(f_{1},\ldots,f_{n},L^{\Phi}\left(T,Y\right)\right)\leq\varepsilon\,\rho\left(1,1,\ldots,1\right)+dist\left(f_{1}^{*},\ldots,f_{n},L^{\Phi}\left(T,Y\right)\right)\tag{4}$$

Lemma (2.8) and inequality (4) imply that

$$dis\left(f_{1},\ldots,f_{n},L^{\Phi}\left(T,Y\right)\right) \leq \varepsilon \rho\left(1,1,\ldots,1\right) + dist\left(f_{1}^{*},\ldots,f_{n},L^{\Phi}\left(T,Y\right)\right)$$

$$\leq \varepsilon \rho\left(1,1,\ldots,1\right) + \int_{T} dis\left(f_{1}^{*}\left(t\right),\ldots,f_{n}^{*}\left(t\right),Y\right) d\mu\left(t\right).$$

Since ε arbitrary, let $\varepsilon \to 0$, we have

$$dis(f_1,\ldots,f_n,L^{\Phi}(T,Y)) \leq \int_T dis(f_1^*(t),\ldots,f_n^*(t),Y) d\mu(t).$$

Using inequality(3), we get

$$dis(f_1,\ldots,f_n,L^{\Phi}(T,Y)) \leq \int_T dis(f_1(t),\ldots,f_2(t),Y) d\mu(t).$$

Thus we get the result. \Box

Theorem 2.10. Let $g \in L^{\Phi}(T, Y)$ be the best ρ -simultaneous approximation from $L^{\Phi}(T, Y)$ of the elements $f_1, \ldots, f_n \in L^{\Phi}(T, X)$, then for any measurable subset A of T, and for every $h \in L^{\Phi}(T, Y)$, we have

$$\int_{A} \Phi \|f_{i}(t) - g(t)\| d\mu(t) \le \int_{A} \Phi \|f_{i}(t) - h(t)\| d\mu(t), \tag{5}$$

for some i ∈ {1, 2 . . . , n}.

Proof. Assume that $\mu(A) > 0$, for some $A \subseteq T$. Suppose that there is $h_0 \in L^{\Phi}(T, Y)$ that doesn't satisfy inequality (5), then we can define $g_0 \in L^{\Phi}(T, Y)$ such that

$$g_0(t) = \begin{cases} h_0(t), & t \in A \\ g(t), & t \in T - A \end{cases}$$

Thus, for i = 1, 2, ..., n, we have

$$\int_{T} \Phi \| f_{i}(t) - g_{0}(t) \| d\mu(t) = \int_{A} \Phi \| f_{i}(t) - h_{0}(t) \| d\mu(t) + \int_{T-A} \Phi \| f_{i}(t) - g(t) \| d\mu(t)$$

$$< \int_{T} \Phi \| f_{i}(t) - g(t) \| d\mu(t).$$

Which implies that

$$\left\|f_i-g_0\right\|_{\Phi}<\left\|f_i-g\right\|_{\Phi},$$

for i = 1, 2, ..., n. Using the fact that the norm ρ is monotonous, we have

$$\rho(\|f_1 - g_0\|_{\Phi}, \dots, \|f_n - g_0\|_{\Phi}) < \rho(\|f_n - g\|_{\Phi}, \dots, \|f_n - g\|_{\Phi}).$$

This contradicts the fact that g is the best ρ -simultaneous approximation from $L^{\Phi}(T, Y)$ of the elements $f_1, \ldots, f_n \in L^{\Phi}(T, X)$. \square

The following result concerns the ρ -simultaneous approximation of $l^{\Phi}(T, Y)$ in $l^{\Phi}(T, X)$.

Theorem 2.11. $l^{\Phi}(T, Y)$ is ρ -simultaneous proximinal in $l^{\Phi}(T, X)$ if Y is ρ -simultaneous proximinal in X.

Proof. Let $f_1, \ldots, f_n \in l^{\Phi}(T, X)$, where $f_i = (f_i(n))_{n=1}^{\infty}$. Since Y is ρ -simultaneous proximinal in X, then for each $k \in \mathbb{N}$ there exists $g(k) \in Y$ such that

$$\rho\left(\Phi \| f_1(k) - g(k) \|, \dots, \Phi \| f_n(k) - g(k) \|\right) \le \rho\left(\Phi \| f_1(k) - y \|, \dots, \Phi \| f_n(k) - y \|\right),$$

for every $y \in Y$. Since $0 \in Y$, we have

$$\rho\left(\Phi \| f_1(k) - g(k) \|, \dots, \Phi \| f_n(k) - g(k) \|\right) \le \rho\left(\Phi \| f_1(k) \|, \dots, \Phi \| f_n(k) \|\right). \tag{6}$$

Using inequality (6) and the fact that Φ is subadditive and increasing, we have

$$\rho(1,1,...,1) \Phi \|g(k)\|
= \rho(\Phi \|g(k)\|,...,\Phi \|g(k)\|)
\leq \rho(\Phi \|f_1(k) - g(k)\| + \Phi \|f_1(k)\|,...,\Phi \|f_n(k) - g(k)\| + \Phi \|f_n(k)\|)
\leq \rho(\Phi \|f_1(k) - g(k)\|,...,\Phi \|f_n(k) - g(k)\|)
+ \rho(\Phi \|f_1(k)\|,...,\Phi \|f_n(k)\|)
\leq n \rho(\Phi \|f_1(k)\|,...,\Phi \|f_n(k)\|).$$

Therefore, $g_0 = (g(k))_{k=1}^{\infty} \in l^{\Phi}(T, Y)$. To show that g_0 is the best ρ -simultaneous approximation from $l^{\Phi}(T, Y)$ of f_1, \ldots, f_n in $l^{\Phi}(T, X)$, let $h = (h(k))_{n=1}^{\infty} \in l^{\Phi}(T, Y)$. Then for each $i = 1, 2, \ldots, n$, we have

$$\left\| f_i - h \right\|_{\Phi} = \sum_{k=1}^{\infty} \Phi \left\| f_i(k) - h(k) \right\|$$

$$\geq \sum_{k=1}^{\infty} \Phi \left\| f_i(k) - g(k) \right\|$$

$$\geq \left\| f_i - g_0 \right\|_{\Phi}.$$

Using the monotonicity of the norm ρ , we have

$$\rho(\|f_1 - h\|_{\Phi}, \dots, \|f_n - h\|_{\Phi}) \ge \rho(\|f_1 - g_0\|_{\Phi}, \dots, \|f_n - g_0\|_{\Phi}).$$

Hence, we get the result. \Box

Conclusion 2.12. We have established the ρ -simultaneous proximinality of the closed subspace Y in the Banach space X and give some results in the distance formula of the space $L^{\Phi}(T, X)$. It is not hard to extend our results to the case where ρ is any monotone norm of \mathbb{R}^n with n a finite positive integer.

References

- [1] Abu-Sirhan, Best Simultaneous Approximation in function and operator space, Turk J Math 36 (2012), 101 112.
- [2] Al-Sharif, Sh., Best Simultaneous Approximation in Metric Spaces, Jordan Journal of Mathematics and Statistics(JJMS), 1(1), (2008) 69-80.
- [3] Day, M.M., Normed Linear Spaces, third ed., Springer, New York, 1973.

- [4] Deeb, W. and Khalil, R., On the Tensor Product of Non Locally Topological Vector Spaces, Illinois J. Math. Proc. 30,594-601(1986).
 [5] Deeb, W. and Younis Y., Extreme Points in a Class of Non Locally Convex Topological Vector space, Math. Reb. Toyama Univ. 6, 95-103(1983, New York (1972).
- [6] Khandaqji, M. and Al-Sharif, Sh., Best Simultaneous Approximation in Orlicz Spaces, International Journal of Mathematics and Mathematical Sciences, Article ID 68017 (2007).
- [7] Khandaqji M., Awawdeh F. Jawdat J., Simultaneous proximinality of vector valued function spaces, Turk J Math, 36,(2012) 437
- [8] Khandaqji M., Shatanawi W., Best p-Simultaneous approximation in some metric space, Turk J Math, 32,(2008) 1 9.
- [9] Luo X F, Li C, Xu H K, Yao J C., Existence of best simultaneous approximations in Lp(S;X); J. Approx. Theory, 163, 1300-1316 (2011).
- [10] Mendoza J. Proximinality in Lp(μ ;X), J. Approx. Theory, 93, 331-343 (1998).
- [11] Mendoza J. , Pakhrou T., Best simultaneous approximation in L1(μ , X), J. Approx. Theory 145 (2007) 212–220.
- [12] Saidi F B, Hussein D, Khalil R., Best Simultaneous Approximation in Lp(I;E); J.Approx. Theory, 116, 369-379 (2002).