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Abstract. By means of the Bai-Ge’s fixed point theorem, this paper shows the existence of positive solutions
for nonlinear fractional p-Laplacian differential equations. Here, the fractional derivative is the standard
Riemann-Liouville one. Finally, an example is given to illustrate the importance of results obtained

1. Introduction

We are concerned with the multiple positive solutions of the following fractional differential equation
with integral boundary conditions:

D3 (¢p(Dy:u(b)) = f(t, u(t), Dyu(b)),

te(0,1),
Dyiu(0) =0, Dy (@p(Dy:u(0) = Dy ™ (p(Dyiu(1))) = f 9(5)p(Dy:u(s))ds, )
1
u(0)=0, D3 *u(0) =Dy 'u(1) = f h(s)u(s)ds,
0

where 2 < 91,9, < 3,5 < 9 + 9, < 6, DY denotes the Riemann-Liouville fractional derivative of or-
der (), f € C([0,1] X [0,00) X (=00, +00),[0,0)) and g,/ € C([0,1], [0, )) with [
J Gy s)ds < 1, ¢y (s) is the p-Laplacian operator, ie., ¢,(s) = 5P, p > 1,(,) " = ¢y, 1+ 1 =1.
In recent years, the subject of fractional calculus and fractional differential equations has obtained a
considerable popularity and importance, mostly by virtue of their demonstrated applications in widespread
fields of science and engineering. For the related applications and details about fractional calculus and
fractional differential equation, see [1, 2, 4-16] and the references therein. In [7], the authors studied the
following fractional boundary value problem

1 o911 46%1-2(9; -

en) 1)g(s)ds <1,
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Dm@aﬁmmnﬂmwv%gm»te@m
CDIS,,M(O) =u'(0)=0, u(0)= f go(s)u(s)ds
0

DE (D (1)) = fgwww u(s))ds

where a, 8 € (1,2], Dg. is the Riemann Liouville fractional derivative operator, CDg+ is the Caputo fractional
derivative operator, ¢, is the p-Laplacian operator, f € C([0, 1] X [0, +00) X [0, +00), [0, +09)), g0, 1 € C([0, 1] X
[0, +00)). They obtained the existence of at least three positive solutions by using the generalization of the
Leggett-Williams fixed point theorem.

In[1], Ahmad, Ntouyas and Alsaedi considered the following nonlinear fractional differential equations
of order g € (1, 2] with three-point integral boundary condition given by

‘Dix(t) = f(t,x(t)), 0<t<1l, 1<g<2,
1

x(0)=0, x(1)= af x(s)ds, 0<n<l,
0
where D7 denotes the Caputo fractional derivative of order g, f : [0,1] X X — X is continuous, and 4 € R
is such that a # 2/n?. Some new existence and uniqueness results are obtained by using the standard fixed
point theorems and Leray-Schauder degree theory.

Inspired by the works mentioned above, we establish the multiplicity results of positive solutions for
the boundary value problem (1). Here, our nonlinear function f is independent of fractional derivative of
unknown function u(t). This makes the problem more difficult and complicated. Only a few papers cover
fractional differential equations with fractional orders 2 < 91,9, < 3. Also, due to the singularity of the
Riemann-Liouville fractional derivative, it is very difficult to determine the initial value.

2. Preliminaries
We first wish to collect the background knowledge of fractional calculus (see [5, 10]).

Definition 2.1. The Riemann Liouville fractional integral of order 9 € R* of a function g : (0,0) — R is
defined by

t
ﬁmﬂ=§§lkhﬂ*v®&

whenever the right-hand side is defined. Similarly, with 9 > 0 and § € R, we define the Riemann-Liouville
fractional derivative to be

Dl 00 = () 15700 = o5 (5 [ 0o

where n is the smallest integer greater than or equal to 9, whenever the right-hand side is defined. In
particular, for 8 = n, D, g(t) = ().

Lemma 2.2. The general solution to Djj.g = 0 is the function g(t) = c1t>™' + cot>2 + - -+ + c,t°™", ¢; € R, where
n-1<9<nand9>0,i=1,...,n

It is easy to see that the boundary value problem (1) can be decomposed into the following coupled
boundary value problems:
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Dito(t) = f(t,u(t), Dy2u(t)), te(0,1),
v(0) =0,

1
Dy 0(0) = DJ 'o(1) = f g(s)v(s)ds
0
and

Doiu(t) = dy(v(h), e (0,1),
u(0) =0,

1
Dg§_2u(0) = Dgf_lu(l) = f h(s)u(s)ds.
0

Lemma 2.3. Ifk € C([0, 1]), then

Dilo(t) =k(t), te€(0,1),
v(0) =0,

1
Dy 0(0) = DJ (1) = f g(s)v(s)ds
0

has a unique solution v and v can be expressed in the form

1
o(t) = — j(; Hi(t, s)k(s)ds,

where

_ £l 2 (9 - 1) [T
Hi(t9) = Gitt) + 3 15— [ Gt sgtont, ®)

1 |5t 0<t<s<l,
Gl(trs) = { °

[(®) |1 —(t-s)""1, 0<s<t<],

1 .81 4 -2
s+ g4 (9 = 1)
and Ay =1 - s)ds.
' L I(®) 96)

Proof. Let v verify (4). Then the general solution of (4) is given by

1 t 9-1 9-1 9,2 9,-3
- _ 1 1 173 7
o(t) ) j; (t —s)"' " k(s)ds + cit + ot + c3t (7)

1
The boundary condition v(0) = 0 implies that ¢ = 0. By the boundary conditions Dgi_zv(O) = f g(s)u(s)ds
0

1
and D! 'o(1) = f g(s)v(s)ds, we have
0

1 1
= m fo g(s)v(s)ds
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and

1 1
= —mfo‘ k(s)ds + mﬁ g(s)o(s)ds.

Substituting ¢; and c; into (7), we obtain

v(t)—r(sl)f(;(t S)*1 7 k(s)ds ) ﬁk(s)ds f(;g(s)v(s)ds +F(81—1)j; g(s)u(s)ds

(8)
[ Pl 29, - 1) (!
= fo G (t, s)k(s)ds + o) fo g(s)v(s)ds
where
1 1 1 91-1 4 ¢91-2 _ 1
fo g(s)0(s)ds = fo g6)| - fo Gi(s, Dk(t)dt + +Sr( 81)(‘91 b fo g(xyo(a)dzds.
So,
1 1 1 1
fo g(s)u(s)ds = 1_f1 T2 (9 D) o fo g(s)[— L G1(S,T)k(T)dT]dS. ©)
0 ey Y
Putting (9) into (8), we have
1 9-1 912 _ 1 1
o(t) = — fo Ga (£, 5)k(s)ds + - +At11"(\95‘)91 b fo [ - fo Gi(t, 5)g(B)dt|k(s)ds
1
:—f Hi(t, s)k(s)ds.
0
|
Lemma 2.4. Let v € C([0,1]), then
Doiu(t) = dy(e(), e (0,1),
u(0) =0, (10)

1
DY *u(0) = Dy 'u(l) = f h(s)u(s)ds
0

has a unique solution u and u can be expressed in the form

1
u(t) = - fo Ha(t,5)6by (0())dS,

where

£l 4 19272(9, - 1)

Hz(t, S) = Gz(l’, S) + AzF(Sz)

1
f Go(t, s)h(b)dt, (11)
0
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(12)

Galt, ) = thl—(t—s)™7l, 0<s<t<]1,

1 [#%2, 0<t<s<l1,
I'(92)

and Ay =1 — j: s f(zs;(sz — 1)h(s)ds.
Lemma 2.5. Assume 1 € (0, 1), then the functions G,(t,s), (i=1,2) given by (6) and (12) satisfy
(i) Gi(t, s) are continuous functions and Gi(t,s) > 0 forany t,s € [0,1],i =1, 2.
(ii)Gi(t, s) < Gi(1,s) forany t,s € [0,1],i = 1,2.
(ii)G1(t, 8) > t971Gy(t, 8) and Ga(t,s) > t9271Ga(t, s) for any t,s € [0, 1].
(i0)Gi(t, s) = n° 7 1Gy(t, s) and Ga(t,s) = n%271Ga(t, s) for any t € [n,1] and s € [0, 1].

Proof. We can easily see that (i) and (iii)-(iv) hold. Next, we show that (if) holds. If f > s, then

G1 =D 2= (S =t -9)"7?

Glf(tl S) =

(1)
(&1 = 1) [ = 9721 - 3)"72)]
) T(®)
(31— D2 [1= (1 -5)"7)]
>
) T(®)
> 0.

Since Gy(t, s) = 0, Gi(t, s) is increasing on [s, 1] with respect to t. Hence, we have G;(f,s) < Gi(1,s).

Now, we will show that, Gi(t,s) < Gi(1,s) when s > t. Let f(s) = 1 —s%7! — (1 —s)>~L. Then f”(s) =
—(91 =181 —2)s%173 = (81 = 1)(81 — 2)(1 — 5)*173 < 0. From the fact that f”’(s) < 0, the graph of f is concave
down on [0, 1]. Using f(1) = f(0) = 0, we get f(s) > 0. Thus,

tSl—l 5\91—1 1 _ (1 _ S)Sl_l
< <

T(81) ~ I(81) ['($1)

Thus, Gi(t,s) < Gi(1,s) for any ¢, s € [0, 1]. Similar to the proof of G1(t,s) < Gi(1,s) for any ¢,s € [0, 1], we

obtain G;(t,s) < Ga(1,s).
The proof is completed. O

Gi(t,s) =

=Gi(1,s)

Lemma 2.6. The functions H;(t,s), (i=1,2) given by (5) and (11) verify
(i) Hy(t,5) < ©1(s) and Hy(t,s) < Oy(s) forany t,s € [0, 1].
(ii)H1(t,8) > 1217101 (s) and Ha(t,s) = 1°271Oy(s) for any t € [n,1] and s € [0,1],

where

H
AI'(31) Jo

1
©1(s) = Gi(1,3) + Gi(t,s)g(b)dt, (13)
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)
AVINCY)

1
Oy(s) = Go(1,5) + f Ga(t, s)h(t)dt. (14)
0

Proof. It follows from Lemma 2.5 and the definition of Gi(t,s) and G;(t, s) that (i) holds. At the moment, we
prove that (ii) also holds. For any t € [, 1] and s € [0, 1],

Pl 29 - 1) fl
Hi(t,s) = Gy(t,s) + G1(t, s)g(t)dt
1(65) = Gi(t,9) ATe) ), G99
M2 (9 - 1)

1
> ,791—1 Gi(1,s) + AT j{; Gi(t,s)g(t)dt

911 91 9, -1 1
> 151Gy (1, 5) + +A?F(81()1 ) fo Gu(t, s)g(t)dt (15)
81 Na! !
=1 [G1(1,5)+ AT fo G1(t,s)g(t)dt]
=710 (s).

Similarly, we can prove that Hy(t,s) > 17‘92‘1@2(5) forany t € [n,1] and s € [0, 1].
The proof is completed. [

Let E = C*»[0,1] := {u :u € Clo, 1],D§Eu € CJo, 1]} be a Banach space with the norm

lells, = max{l[ulleo, D21},
where |[|u]lc = max;eqo 17 [1(t)], ||D§fu||oo = MaXe[o,1] IDgEu(t)l. Define the cone P C E by
P= {u €E:u(t) >0, n[urll] u(t) > n* max u(t)}.
teln,

te[0,1]

LetA:P — E, by

1 1
Au(t) = f Hy(t, 5)cby f Hi (s, 7)f(z, u(t), Dy2u(t))d ds. (16)
0 0
Then, the fixed point of the operator A is the solution of the problem (1).

Lemma 2.7. A : P — P is a completely continuous operator.

Proof. We first show that A : P — P is well defined. Let u € P. Considering the definition of A, one gets
Au(t) = 0 for t € [0, 1]. Moreover, by Lemma 2.5 and Lemma 2.6, we have,

max Au(t)
te[0,1]

1 1
f Hy(t, 5)g( f Hy (s, 7) f(t, u(t), Dy?u(t))d7 ds
0 0

A

1 1
< f()@z(s)qbq(‘f0 H1(s,T)f(T,u(T),Dgfu(T))dT)ds.
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And next,
1 1
min Au(t) = sz(t,s)(j)q(f Hl(s,T)f(T,u(T),Dgfu(T))dT)ds
tE[r],l] 0 0
1 1
= j; "1 @2(5)( fo Hi (s, 7)f(7, u(t), Dyu(t))d )ds
> pl frErEgﬁAu(t).

So, Au € P and then A(P) c P. Also, in view of the Arzela Ascoli theorem and the standard arguments,
one can see easily that A : P — P is completely continuous.
1

We are now ready to apply the fixed point theorem due to Bai and Ge to the operator A in order to get
sufficient conditions for the existence of multiple positive solutions to the BVP (1).

Letr >a >0, L > 0 be given constants and C be a nonnegative continuous concave functional and «, 8
be a nonnegative continuous convex functional on the cone P. Define bounded convex sets by

P(oz’,‘BL) ={ueP: au) <r, f(u) <L},
P,y ={ueP: au)<r, p(u) <L},
P, Bh ) ={ueP: a(u) <r, p(u) <L, L(u)>a},

P(a’, " C) = {ueP: a(u) <r, fu) < L, C(u) > a).
The nonnegative continuous convex functionals a, § on cone P satisfy
(E1):There exists M > 0 such that [u]| < Mmax{a(u), f(u)} forall u € P;
(E2): Q={ueP:a()<r Bu)<L}#0, foranyr >0, L>0.
The following fixed point theorem is fundamental and important for the proof of our main result.
Theorem 2.8. [3] Let B be a Banach space, P C Bbea coneandr, >d > b >ry >0, Ly > Ly > 0 be given. Assume
that a, B are nonnegative continuous convex functionals on P, such that (E1) and (E;) are satisfied, C is a nonnegative

continuous concave functional on P, such that C(u) < a(u) forall u € P(a™, BL2) and let A P(a”, pl2) — P(a™, i)
be a completely continuous operator.

(B1) {u € P(a%,B",Cp) : C(u) > b} # 0, and {(Au) > b for u € P(a?, B2, (),
(B2) a(Au) <11, B(Au) < Ly, for all u € P(a’t, B1),

(B3) C(Au) > b, for all u € P(a’, B, () with a(Au) > d.

Then A has at least three fixed points uy, up, uz in 1_3(0/2, ﬁLZ) with

uy € P, B"), uy € {P(a, B2,Cy) = C(u) > b,

us € Pla™,B2) \ (P(a’2, B2, ) UP(a™, B)).
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For the readers convenience, let us denote

1 1
c=n"" f Os(s)pg (0™ f ©1()dt)ds
n

n

1 1
L= fo CHON| fo ©1(v)d )ds,
1
B = ¢, fo ©1(s)ds).

3. Existence theorem

Theorem 3.1. Assume that there exist constants n°1*%2"2ry > b > r; > 0, Ly > Ly > 0 such that

b T L
- <
c rmn{ T } Assume

a) f(t,u,v) < min {qi)p(%),qi)p(%)}for te[0,1], u € [0,7;], v € [-Ly,0].
) ft,u,v) > ql)p(lc—’)for ten 1l uelb, W%], v € [—-L,,0].

(C) f(t/ u, U) < min {(PP(%)/ (PP(%)}for te [O/ 1]/ ue [0/ 7”1]/ v e [_Llrol'
Then the problem (1) has at least three positive solutions u; (i = 1,2,3) with

0 < maxuy(t) <1y, max IDszul(t)l <Ly
te[0,1]

b< rr[urlll us(t) < IIE(&)IX us(t) <y, max |D 2ur(H)| < Lop;
€ln

rr[11r11] us(t) <b, r1 < rr[10a{<] us(t) <y, max |D 2us(t)| < Lo.
t

Proof. Let P and A be defined as above. Define a, f and C by

a(u) = rgggdbt(ﬂ ﬁ(u)=mgg<]

S
O+

Cu) = mm |M(t)|

3796

for u € P. Obviously, a, B : P — [0, +0) are nonnegative continuous convex functionals, C is nonnegative
continuous concave functional with {(u) < a(u) for all u € B. For any r > 0 and L > 0, let uy(t) = at%!
where 0 < a < r. Then u;(t) = at®~! € P(a, %) # 0. Thus, (E;), (Ez) are satisfied. Then a(u), f(u), C(u)
satisfy the conditions in Theorem 2.8. Now, we set out to verify that the operator A satisfies all conditions
in Theorem 2.8 which will prove the existence of three fixed points of A. It follows from Lemma 2.7 that

A is completely continuous. First of all, we show that A : P(a2, B2) — P(a’2, B2). Let u € P(a’?, f2). Then

a(u) < rp, B(u) < Ly. By condition (), we can get

1 1
alAu) = trér;gﬁ |Au(t)| = trér;&{(} 'jo‘ Hz(t,s)q)q(j; Hi(s, 7) f(T, u(7), Dgfu(’[))d’[)ds|

1 1
< f ©2(5)¢4 f ©1(1)f(t, u(x), Du(x))dx )ds

< f ©1(5) P, f ©1(1)dt)ds =1,

(17)
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and

B(Au) = max Dy ID3:u(t)| = max - ¢y f Hi(t,s)f(s, u(s), Dgfu(s))ds)’
5%(]() @1(S)f(5,M(S),Dgfu(s))ds) (18)

1
<2 fo ©1(3)ds) = L,

So, we have A : 1_3(a’2,‘8L2) - ﬁ(a’%ﬁ“). With assumption (c) by the similar argument, we can get that
A: P(a,pt) — P(a™, Bl1). Hence, condltlon (B2) in Theorem 2.8 is satisfied. Next, to check the condition
(B1) of Theorem 2.8, we choose u(t) = T 1+92 —L— %71 for any t € [0, 1]. We can easily get

b
9—-1 <
CV(M) g(?l |r,\91+82—2 | - T]\91+Sz—2’
u) = max |D3? 15‘92_1 =0,
ﬁ( ) tE[Ol]l 0 T}‘91+‘92 |
and
b
92—1 _
C(u) tE[r] 1] T]\91+\92 2 | - n\91—1 >b.

Then u(t) = 91”2 L t%1 ¢ P(an o ,B2,Cp) and C(u) > b. So {u € P(oz'ls“q2 ,BE2, Cp) : C(u) > b} # 0. If we

choose u € P(a” o , B2, Cy), then u(t) € [b, =51 for any t € [n, 1]. Thus, from assumption (b) we get

1”2

C(Au) = min [Au(t)| > f *2710,() f 17104 (1) (1, u(t), DYu(v))dr )ds
n

1
b (! 1
> 2 f 7" @a ()b f "1y (1)dr )ds
n n
=b.
So, we obtain that ((Au) > b. Thus the condition (B1) of Theorem 2.8 is verified. Finally, we show that the

last condition of Theorem 2.8 is satisfied. Assume that u € P(a, B2, Cy) with a(Au) > P Then, in
1 -
view of the definition of C and Au € P, we obtain that

min Au(t) > n*! max |Au(t)|
te[n,1]

Hence, ((Au) > b, forall u € 1_3(0/2, ﬁLZ, Cp)- That is condition (B3) of Theorem 2.8 hold.
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Consequently, Theorem 2.8 yields that the operator A has at least three positive solutions u;, (i = 1,2, 3)
with

up € P, B4, uy € {P(a?, B2, Cp) = C(u) > b},

us € P, )\ (P(a, B2, ) U B(a”, B1))..
The proof is completed. [

Example 3.2. We consider the following boundary value problem

Dy 92Dy u(®) = f(t,u(t), Dy *u(t)),  t€ (0,1),
1

D) =0, DY g2(DY u(@)) = DD u(V) = 3 f oDy u(s))ds, 19)
0

1
u(0) =0, DJ*u(0) = DJ[*u(1) = % f u(s)ds,
0

where 91 =9, = L and 5 < 91 + 9, <6,p=2,9(s) = h(s) = 3,

1\t 4u |9
(110) R Tl § ue[0,15],
[y
f(t,u,0) = (11—0) +156u20 2320+ 7 |’ u € [15,20],
u_
(E) t— 800+1—05, u € [20, o).

By easy calculation, we obtain Ay = A, = 0.576078, L =~ 0.626309, B ~ 0.791397. Let n = %, then ¢ ~ 0.025431.

Choosing r1 =15,b =20, 1, =520, L1 =50, L, =700 and d = W =160 V2, one gets

f(t,u,0) < min {@,(%), ¢,(%)} ~ 830.261, for t € [0,1], u € [0,520], v € [-700,0],

f(t,u,0) > cpp(é) ~ 786.42, for t € [L,1], u € [20,160 V2], v € [700, 0],
ft,u,0) < min{¢,(3), bp(5)} ~ 23.95 for t € [0,1], u € [0,15], v € [-50,0],

i.e., f holds the conditions of Theorem 3.1. Therefore, Theorem 3.1 implies that the problem (19) has at least three
positive solutions u; for i € {1,2,3} with

0 < maxuq(t) <15, max |D 2uq(t)| < 50;
te[0,1]

20 < min uy(#) < max uy(t) < 520, max ID 2uy(H)| < 700;
te[n,1] te[0,1]

tl’[Il‘l/l? us(t) <20, 15 < n}ax us(t) < 520, max ID 2us(t)| < 700.
€
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