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Abstract. In this paper, we investigate the existence of a fixed point for iterative contraction mappings
via Wardowski function in the setting of complete b-metric spaces. Our results improve and extend several
results in this direction in the literature. We consider illustrative examples to support our main results.

1. Introduction and Preliminaries

It is an indispensable fact that fixed point theory becomes the fundament of both (nonlinear) functional
analysis and topology, in this century. The first formal fixed point theorem was announced by Banach in
1922. His result has naturally researchers attention, as the mentioned theorem not only proves the existence
and uniqueness of a fixed point, but also indicates how to reach this point. More precisely, he proved that
under the contraction condition, each Picard iteration, for an arbitrary initial point, converges and this limit
is the unique fixed point of the given mapping.

The first observation concerned the fact that the contraction condition necessarily implies the continuity
of the given mapping. Naturally, researches was wondered whether such a fixed point theorem would be
proved for discontinuous mapping. One of the interesting responses to this question was given by Bryant
[18]. Roughly speaking, suppose T is discontinuous but T2 provides the contraction condition, that is, T2 is
continuous and has a unique fixed point. Bryant [18] proved that the fixed point of T2 forms a fixed point
for T, too. Later, Sehgal [37] proved that if for a given initial value x, there is a natural number n(x) such
that mapping Tn(x) forms a contraction, then it has a fixed point. This trend was followed by Guseman [22],
Matkowski [30], Iseki [23], Ray and Rhoades,[36] Jachymski [24].

In this paper, we shall follow the trend of Sehgal [37] by taking the Wardowski function into account.
For the sake of completeness, we recollect some basic results and definitions.

First we state the results of Sehgal [37].

Theorem 1.1. ([37]) Let (X, d ) be a complete metric space and T : X ↔ X a continuous mapping. If there exists a
real number k , 0 < k < 1 such that, for each v ∈ M there is a positive integer m(ς) such that, for each z ∈ X,

d (Tm(ς)ς,Tm(ς)z) ≤ k · d (ς, z) (1)

then T has a unique fixed point in X.
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Sehgal [37] was improved by Guseman [22] by excluding the continuity condition. After that, it was
generalized and extended by many authors, among them being, Iseki [23], J. Matkowski [30], Singh [38],
Ray and Rhoades [36]. On the other hand, the result of Kincses and Totik [28] is one of the most interesting
results in this direction. Therefore, we collect it here:

Theorem 1.2. ([28]) Let a metric space (X, d ) and T be a self mapping on X such that for some k ∈ [0, 1) and for all
ς, z ∈ X we can find a positive integer m(ς) such that

d (Tm(ς)ς,Tm(ς)z) ≤ k max
{
d (ς, z), d (z,Tm(ς)ς), d (ς,Tm(ς)z)

}
. (2)

Then T has a unique fixed point ς∗.

In what follows, we recall some auxiliary functions than are used in our consideration, namely the
Wardowski type function [40] and the simulation function [27]. LetF denote the set of all strictly increasing
functions F : (0,∞)→ R which satisfy the following conditions

( fa) for every sequence of positive real numbers {ηn}
∞

n=1,

lim
n→∞

ηn = 0 if and only if lim
n→∞

F(ηn) = −∞;

( fb) there exists p ∈ (0, 1) such that lim
α→0+

(αpF (t )) = 0.

Theorem 1.3. [40] A mapping T : X → X on a complete metric space (X, d ) has a unique fixed point ς∗ provided
that there exist τ > 0 and F ∈ F such that

d (Tς,Tz) > 0⇒ τ + F(d (Tς,Tz)) ≤ F(d (ς, z)), (3)

for all ς, z ∈ X. Moreover, for all ς ∈ X the sequence {Tnς} is convergent to ς ∗ .

This result has been continuously improved, either by weakening the conditions imposed on function
F, or by changing the argument or by considering more general metric spaces (we refer here to b-metric
[2, 4, 5, 10, 14–16, 21, 29, 31], etc.).

Theorem 1.4. [41] Let T : X → X be a mapping on a complete metric space (X, d ). Suppose that there exist τ > 0
and F ∈ F such that

d (Tς,Tz) > 0⇒
τ + F(d (Tς,Tz)) ≤ F(max

{
d (ς, z), d (ς,Tς), d (z,Tz), d (ς,Tz)+d (z,Tς)

2

}
,

(4)

for all ς, z ∈ X. Then, T has a unique fixed point ς∗ provided that T or F is continuous.

Inspired from the Wardowski function, we shall use the following set of auxiliary function:

G =
{
G : (0,∞)→ R | G is strictly increasing and satisfies ( fa)

}
.

Let Z be the family of all functions ζ : [0,∞) × [0,∞)→ R satisfying the following axioms:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(a, b) < b − a for all a, b > 0;

(ζ3) if {an}, {bn} are sequences in (0,∞) such that lim
n→∞

an = lim
n→∞

bn > 0, then

lim sup
n→∞

ζ(an, bn) < 0. (5)
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Such functions are called simulation functions [27]. For more on simulation function, see e.g. [7],[8], [11],
[3], [12], [9], [35], [13]. In our future study we will consider the set

S′ = {ζ : [0,∞) × [0,∞)→ R : ζ satisfies (ζ2)} .

Definition 1.5. [19] Let X be a nonempty set. A mapping b : X × X → [0,∞) is a b-metric if there exists s ≥ 1,
such that

(b1) b(ς, z) = 0 if and only if ς = z;

(b2) b(ς, z) = b(z, ς);

(b3) b(ς, z) ≤ s[b(ς, y) + b(y , z)],

for all ς, y , z ∈ X. The triplet (X, b, s) is called a b-metric space.

In what follows we look over some of the notions and results in b-metric space.

Definition 1.6. [17] Let (X, b, s) be a b-metric space. The sequence {ςn} is:

(c) convergent if and only if there exists ς ∈ X such that b(ςn, ς)→ 0 as n→∞.

(C) Cauchy if and only if b(ςn, ςp)→ 0 as p,n→∞.

(cC) The b-metric space (X, b, s) is complete provided that every Cauchy sequence from (X, b, s) is convergent. To
indicate that the considered metric space is complete we will use the notation (X∗, b, s).

Let (X, b, s) be a b-metric space and a mapping T : X → X.

1. The mapping T is continuous at a point ς ∈ X, if T(ςn)→ T(ς) for every sequence {ςn} in X such that
ςn → ς. Moreover, if T is continuous at each point ς ∈ X, then T is said to be continuous on X.

2. Let x0 ∈ X. The set O(x0) = {Tnx0 : n = 0, 1, 2, ...} is called an orbit of x0 ∈ X and denote by ρ(x0) =
sup {b(ς, z) : ς, z ∈ O(x0)} the diameter of the set O(x0).
If for some x ∈ X, every Cauchy sequence from O(x ) converges in Xwe say that the space is orbitally
complete and we will use the notation (XO

∗

, b, s) for such spaces.

2. Main results

Theorem 2.1. Let T be a self-mapping on the space (XO
∗

, b, s), a function ζ ∈ S′ and a1, a2, a3 ∈ [0, 1) such that
a1 + a2 + 2sa3 < 1

s . If for every ς ∈ X, there is a positive integer m = m(ς) such that

ζ(b(Tm(ς)ς,Tm(ς)z),L(ς, z)) ≥ 0, (6)

where

L(ς, z) = a1b(ς, z) + a2b(ς,Tm(ς)ς) + a3b(z,Tm(ς)z)

holds for every ς, z ∈ X, then T has a fixed point ς∗ ∈ X.

Proof. First of all, we remark that since ζ ∈ S′, we have

0 ≤ ζ(b(Tm(ς)ς,Tm(ς)z),L(ς, z)) < L(ς, z) − b(Tm(ς)ς,Tm(ς)z)

and the inequality (13) yields

b(Tm(ς)ς,Tm(ς)z) < L(ς, z), (7)
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for any ς, z ∈ X.
For an easier reading, we will structure the demonstration in a few steps.

Step 1. First of all, we shall show that the orbit is bounded for every ς ∈ X.
Let ς be an arbitrary point in X and r(ς) = sup

{
b(ς,Tlς) : l = 1, 2, ...,m(ς)

}
. For a positive integer m there

exists l ≥ 1 such that lm(ς) < m ≤ (l + 1)m(ς). Therefore, for 1 ≤ p ≤ m(ς) we can write m = lm(ς) + p. By (b3),
we have

b(ς,Tmς) ≤ s · [b(ς,Tm(ς)ς) + b(Tm(ς)ς,Tmς)]
= s · [b(ς,Tm(ς)ς) + s · b(Tm(ς)ς,Tm(ς)(Tm−m(ς)ς))]. (8)

Replacing z in (7) with Tm−m(ς)ς we get

b(Tm(ς)ς,Tm(ς)(Tm−m(ς)ς)) = b(Tm(ς)ς,Tm(ς)(T(l−1)m(ς)+pς) < L(ς,T(l−1)m(ς)+pς)

= a1b(ς,T(l−1)m(ς)+pς) + a2b(ς,Tm(ς)ς) + a3b(T(l−1)m(ς)+pς,Tlm(ς)+pς)

< a1b(ς,T(l−1)m(ς)+pς) + a2b(ς,Tm(ς)ς)+
+sa3

[
b(T(l−1)m(ς)+pς, ς) + b(ς,Tlm(ς)+pς)

]
= (a1 + sa3)b(ς,T(l−1)m(ς)+pς) + a2b(ς,Tm(ς)ς) + sa3b(ς,Tmς)

Returning in (8) we get,

b(ς,Tmς) = s · b(ς,Tm(ς)ς) + s(a1 + sa3)b(ς,T(l−1)m(ς)+pς) + sa2b(ς,Tm(ς)ς) + s2a3b(ς,Tmς)

and hence

b(ς,Tmς) < s(1+a2)
1−s2a3

b(ς,Tm(ς)ς) +
s(a1+sa3)
1−s2a3

b(ς,T(l−1)m(ς)+pς)

≤
s(1+a2)
1−s2a3

r(ς) +
s(a1+sa3)
1−s2a3

b(ς,T(l−1)m(ς)+pς).

Let denote by c = a1 + a2 + 2a3s and α = sc < 1 (since by hypothesis’s c < 1
s ). Thus,

s(1 + a2)
1 − s2a3

<
s + 1
1 − α

and
s(a1 + sa3)
1 − s2a3

≤ α

and

b(ς,Tmς) < s+1
1−α r(ς) + αb(ς,T(l−1)m(ς)+pς)

< s+1
1−α r(ς) + α[ s+1

1−α r(ς) + αb(ς,T(l−2)m(ς)+pς)]

= s+1
1−α r(ς) + α 2

1−α r(ς) + α2b(ς,T(l−2)m(ς)+pς)

...

≤
s+1
1−α (1 + α + α2 + ... + αl−1)r(ς) + αlb(ς,Tpς)

< s+1
(1−α)2 r(ς) + αlb(ς,Tpς),

whence, the orbit O(ς) = {Tnς : n = 0, 1, 2, ...} is a bounded subset of X.

Step 2. We claim that the sequence {ςn} is Cauchy.
Let ς0 be a fixed point in X and {ςn}n be the sequence defined as follows

ς1 = Tm0ς0, ς2 = Tm1ς1 = Tm1+m0ς0, ..., ςn = Tmn−1ςn−1 = Tmn−1+mn−2+...+m0ς0.
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where mi = m(ςi). Of course, the sequence {ςn}n ⊂ O(ς0).
Let now, ςk be a fixed term of the sequence {ςn}n. Then, there exists v = v(ς0) such that ςq = Tvςk is a
successor terms of ςk. By Step 1 and by (7) we have

b(ςk, ςq) = b(Tmk−1ςk−1,Tvςk) = b(Tmk−1ςk−1,Tmk−1 (Tv−mk−1ςk−1)) < L(ςk−1,Tv−mk−1ςk−1)

< a1 · b(ςk−1,Tv−mk−1ςk−1) + a2 · b(ςk−1,Tmk−1ςk−1) + a3 · b(Tv−mk−1ςk−1,Tvςk−1)

≤ a1 · b(ςk−1,Tv−mk−1ςk−1) + a2 · b(ςk−1,Tmk−1ςk−1)+

+a3s · [b(Tv−mk−1ςk−1, ςk−1) + b(ςk−1,Tvςk−1)].

Denoting by v0 ∈ {mk−1, v, v −mk−1} such that

b(ςk−1,Tv0ςk−1) = max
{
b(ςk−1,Tmk−1ςk−1), b(ςk−1,Tvςk−1), b(ςk−1,Tv−mk−1ςk−1)

}
,

from the above inequality we have

b(ςk, ςq) < (a1 + a2 + 2a3s) · b(ςk−1,Tv0ςk−1) = c · b(ςk−1,Tv0ςk−1). (9)

In the same way, if we consider v1 ∈ {mk−2, v0, v0 −mk−2} such that

b(ςk−2,Tv1ςk−2) = max
{
b(ςk−2,Tmk−2ςk−2), b(ςk−2,Tv

0ςk−2), b(ςk−2,Tv0−mk−2ςk−2)
}
,

we have

b(ςk−1,Tv0ςk−1) = b(Tmk−2ςk−2,Tmk−2 (Tv0−mk−2ςk−2)) < L(ςk−2,Tv0−mk−2ςk−2)
< a1 · b(ςk−2,Tv0−mk−2ςk−2) + a2 · b(ςk−2,Tmk−2ςk−2) + a3 · b(Tv0−mk−2ςk−2,Tv0ςk−2)
≤ a1 · b(ςk−2,Tv0−mk−2ςk−2) + a2 · b(ςk−2,Tmk−2ςk−2)+

+a3s · [b(Tv0−mk−2ςk−2, ςk−2) + b(ςk−2,Tv0ςk−2)]
≤ (a1 + a2 + 2a3s) · b(ςk−1,Tv1ςk−1)
= c · b(ςk−2,Tv1ςk−2).

Continuing in the same way, we can find vk+1 such that

b(ςk−1,Tv0ςk−1) < c · b(ςk−2,Tv1ςk−2) < c2
· b(ςk−3,Tv2ςk−3) < ... < ck−1

· b(ς0,Tvk−1ς0)

and replacing in (9),

b(ςk, ςq) < ck
· b(ς0,Tvk−1ς0) < ckρ(ς0).

Let now, w = w(ς0) such that ςp = Tw(ς0) is an another successor term of ςk. We have,

b(ςp, ςq) ≤ s[b(ςp, ςk) + b(ςk, ςq)] ≤ 2sckρ(ς0)→ 0 as k→∞,

so that the sequence {ςn}n ⊂ O(ς0) is Cauchy on the space (XO
∗

, b, s). Thus, there exists ς∗ ∈ X such that
lim
n→∞

ςn = ς∗.

Step 3. We now claim that ς∗ is the unique fixed point of T.
Firstly, we prove that lim

n→∞
b(Tm(ς∗)ςn, ςn) = 0.

By letting ς = Tm(ς∗)ςn and z = ςn in (7), we have

b(ςn,Tm(ς∗)ςn) = b(Tmn−1ςn−1,Tmn−1 (Tm(ς∗)−mn−1ςn−1)) < L(ςn−1,Tm(ς∗)−mn−1ςn−1)

= a1b(ςn−1,Tm(ς∗)−mn−1ςn−1) + a2b(ςn−1,Tmn−1ςn−1) + a3b(Tm(ς∗)−mn−1ςn−1,Tm(ς∗)ςn−1)

≤ a1b(ςn−1,Tm(ς∗)−mn−1ςn−1) + a2b(ςn−1,Tmn−1ςn−1)+
+a3s · [b(Tm(ς∗)−mn−1ςn−1, ςn−1) + b(ςn−1,Tm(ς∗)−mn−1ςn−1)].
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Letting s0 ∈ {m(ς∗),mn−1,m(ς∗) −mn−1} such that

b(ςn−1,Ts0ςn−1) = max
{
b(ςn−1,Tm(ς∗)−mn−1ςn−1), b(ςn−1,Tm(ς∗)ςn−1), b(ςn−1,Tmn−1ςn−1)

}
in the above inequality we have

b(ςn,Tm(ς∗)ςn) < (a1 + a2 + 2a3s)b(ςn−1,Ts0ςn−1) = cb(ςn−1,Ts0ςn−1).

Repeating this process, we find that

b(ςn,Tm(ς∗)ςn) < cb(ςn−1,Ts0ςn−1) < ... < cnb(ς0,Tsnς0) < cnρ(ς0)→ 0.

Accordingly,

lim
n∞
b(ςn,Tm(ς∗)ςn) = 0. (10)

Secondly: Tm(ς∗)ς∗ = ς∗

Supposing that Tm(ς∗)ς∗ , ς∗, by (b3) and (7) we have

0 < b(ς∗,Tm(ς∗)ς∗) ≤ sb(ς∗, ςn) + s2b(ςn,Tm(ς∗)ςn) + s2b(Tm(ς∗)ςn,Tm(ς∗)ς∗)

< sb(ς∗, ςn) + s2b(ςn,Tm(ς∗)ςn) + s2[a1b(ςn, ς∗) + a2b(ςn,Tm(ς∗)ςn) + a3b(ς∗,Tm(ς∗)ς∗)]

and letting n→∞we get

0 < b(ς∗,Tm(ς∗)ς∗ ) < sa3b(ς∗,Tm(ς∗)ς∗) < b(ς∗,Tm(ς∗)ς∗),

which is a contradiction. Therefore, Tm(ς∗)ς∗ = ς∗.
If we suppose that there exists another point z∗ in X such that Tm(ς∗)z∗ = z∗ , ς∗, then we have

0 < b(ς∗, z∗) = b(Tm(ς∗)ς∗,Tm(ς∗)z∗) < L(ς∗, z∗)
= a1b(ς∗, z∗) + a2b(ς∗,Tm(ς∗)ς∗) + a3b(z∗,Tm(ς∗)z∗) = a1b(ς∗, z∗) < b(ς∗, z∗).

This is a contradiction. Hence the fixed point of Tm(ς∗) is unique and from here we can conclude that ς∗ is a
fixed point of T.
Indeed, we have

Tς∗ = T(Tm(ς∗)ς∗) = Tm(ς∗)(Tς∗)

which shows that Tς∗ is a fixed point of Tm(ς∗). Due to uniqueness, Tς∗ = ς∗.

Example 2.2. Let the set X = [0, 2] endowed with the 2-metric b(ς, z) = |ς − z |2 . Let the mapping T : X → X be
defined as

Tς =


ς
2 , for ς ∈ [0, 1

2 ]

0, for ς ∈ ( 1
2 , 1]

1, for ς ∈ (1, 2]

For ς = 5
6 and z = 7

6 , we have

b(T
5
6
,T

7
6

) = |0 − 1|2 = 1 > k ·
4

36
, for any k ∈ [0, 1)
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and

b(T
5
6
,T

7
6

) = |0 − 1|2 = 1 > a1
4
36

+ a2
25
36

+ a3
1

36
= a1b(

5
6
,

7
6

) + a2b(
5
6
,T

5
6

) + a3b(
7
6
,T

7
6

)

for any a1, a2, a3 ∈ [0, 1) such that a1 + a2 + 2sa3 < 1
s .

On the other hand, Tn(ς) =


ς
2n , for ς ∈ [0, 1

2 ]

0, for ς ∈ ( 1
2 , 2]

and for example, taking a1 = a2 = a3 = 1
20 and m = m(ς) = 3,

we have:

1. for ς, z ∈ [0, 1
2 ],

b(Tς,Tz) = b(
ς

23 ,
z
23 ) =

|ς − z |2

64
<
|ς − z |2

20
=

1
20
b(ς, z) < L(ς, z);

2. for ς, z ∈ ( 1
2 , 2],

b(Tς,Tz) = 0 < L(ς, z);

3. for ς ∈ [0, 1
2 ] and z ∈ ( 1

2 , 2],

b(Tς,Tz) = b( ς23 , 0) = ς2

64 <
1

20

(
|ς − z |2 + 49

64ς
2 + z2

)
< 1

20

(
2b(ς, z) + b(ς, ς8 ) + b(z, 0)

)
In conclusion, for any function ζ ∈ S′ all the hypothesis of Theorem 2.1 hold, thus T has a fixed point.

Corollary 2.3. Let T be a self-mapping on the space (XO
∗

, b, s) and l1, l2, l3 ∈ [0, 1) such that l1 + l2 + 2sl3 < 1
s . If for

each ς ∈ X, there is a positive integer m = m(ς) such that

b(Tm(ς)ς,Tm(ς)z) ≤ l1b(ς, z) + l2b(ς,Tm(ς)ς) + l3b(z,Tm(ς)z) (11)

for every z ∈ X then T has a fixed point ς∗ ∈ X.

Proof. Letting ζ(a, b) = kb − a, with k ∈ (0, 1) and li = k · ai, the proof follows by Theorem 2.1.

Of course, by choosing s = 1 we have similar results in metric spaces.

Corollary 2.4. Let T be a self-mapping on an orbitally complete metric space (X, d ), a function ζ ∈ S′ and
a1, a2, a3 ∈ [0, 1) such that a1 + a2 + 2a3 < 1. If for every ς ∈ X, there is a positive integer m = m(ς) such that

ζ(d (Tm(ς)ς,Tm(ς)z),L(ς, z)) ≥ 0, (12)

where

L(ς, z) = a1d (ς, z) + a2d (ς,Tm(ς)ς) + a3d (z,Tm(ς)z)

holds for every z ∈ X, then T has a fixed point ς∗ ∈ X.

Corollary 2.5. Let (X, d ) be an orbitally complete metric space and l1, l2, l3 ∈ [0, 1) such that l1 + l2 + 2l3 < 1. If for
every ς ∈ X, there is a positive integer m = m(ς) such that

d (Tm(ς)ς,Tm(ς)z) ≤ l1d (ς, z) + l2d (ς,Tm(ς)ς) + l3d (z,Tm(ς)z) (13)

then T has a fixed point ς∗ ∈ X.
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In the next Theorem, we investigate the existence and the uniqueness of a fixed point for iterative
contraction mappings via Wardowski function.

Theorem 2.6. Let T be a self-mapping on the space (XO
∗

, b, s) and assume that there exists ς0 ∈ X such that the orbit
O(ς0) = {Tnς0 : n = 0, 1, 2, ...} is a bounded subset of X. Let the functions ζ ∈ S′, G ∈ G and suppose that for every
ς ∈ X, there is a positive integer m = m(ς) such that

b(Tm(ς)ς,Tm(ς)z) > 0⇒ ζ(τ + G(b(Tm(ς)ς,Tm(ς)z)),G(R(ς, z))) ≥ 0, (14)

where

R(ς, z) = max
{
b(ς, z), b(ς,Tm(ς)ς), b(ς,Tm(ς)z)

}
holds for every z ∈ X. Then there exists ς∗ ∈ X such that limn→∞ Tnς0 = ς∗.
If ONE of the following holds

(A) T is continuous,

(B) the orbit O(ς∗) is bounded,

(C) G and b are continuous

then ς∗ ∈ X is the unique fixed point of T.

Proof. As in a previous demonstration, since ζ ∈ S′, we have

b(Tm(ς)ς,Tm(ς)z) > 0⇒ ζ(τ + G(b(Tm(ς)ς,Tm(ς)z)),G(R(ς, z))) < G(R(ς, z)) − [τ + G(b(Tm(ς)ς,Tm(ς)z))]

and the inequality (14) yields

b(Tm(ς)ς,Tm(ς)z) > 0⇒ τ + G(b(Tm(ς)ς,Tm(ς)z)) < G(R(ς, z)), (15)

for any ς, z ∈ X.

Let σ ∈ X. We prove that if there is β(σ) such that Tα(σ)+β(σ)σ = Tα(σ)σ for every α(σ) then Tβ(σ) is a fixed
point of Tα(σ).
Indeed, because

Tα(σ)(Tβ(σ)σ) = Tα(σ)+β(σ)σ = Tβ(σ)σ,

we get that σ∗ = Tβ(σ) is a fixed point of Tα(σ). If there is another point, σ′ ∈ X, such that Tα(σ)σ∗ = σ∗ , σ′ =
Tα(σ)σ′, because b(Tα(σ)σ∗,Tα(σ)σ′) > 0 we have from (7)

G(b(σ∗, σ′)) = G(b(Tα(σ)σ∗,Tα(σ)σ′)) < G(R(σ∗, σ′) − τ
= G(max

{
b(σ∗, σ′), b(σ∗,Tα(σ)σ∗), b(σ∗,Tα(σ)σ′))

}
− τ

= G(b(σ∗, σ′), b(σ, σ), b(σ∗, σ′))) − τ
= G(b(σ∗, σ′)) − τ < G(b(σ∗, σ′)),

which is a contradiction. Thus, σ∗ is the unique fixed point of Tα(σ). On the other hand, we have

Tσ∗ = T(Tα(σ)σ∗) = Tα(σ)(Tσ∗)

which shows that Tσ∗ is also a fixed point of Tα(σ). Therefore, taking into account the uniqueness of the
fixed point, we have Tσ∗ = σ∗.
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Let ς0 be a point in X such that the orbit O(ς0) = {Tnς0 : n = 0, 1, 2, ...} is a bounded subset of X; we have
that ρ(ς0) < ∞. On the other hand, from the above considerations, we have that b(Tqς0,Tpς0) > 0 for every
p, q ∈N ∪ {0} or, equivalent ρ(ς0) > 0.
We build the sequence {ςn}n defined as follows

ς1 = Tm0ς0, ς2 = Tm1ς1 = Tm1+m0ς0, ..., ςn = Tmn−1ςn−1 = Tmn−1+mn−2+...+m0ς0.

where mi = m(ςi). Of course, it is easy to see that the sequence {ςn}n ⊂ O(ς0).
We claim that the sequence {ςn} is Cauchy.
Let ςk a fixed term of the sequence {ςn}n. Then, there exists v = v(ς0) such that ςq = Tvςk is a successor terms
of ςk. Again, as proved above, b(Tmk−1ςk−1,Tmk−1 (Tv−mk−1ςk−1)) > 0 and by (15) we have

G(b(ςk, ςq) = G(b(Tmk−1ςk−1,Tuςk) = G(b(Tmk−1ςk−1,Tmk−1 (Tv−mk−1ςk−1)))
< G(R(ςk−1,Tv−mk−1ςk−1)) − τ
< G(max {b(ςk−1,Tv−mk−1ςk−1), b(ςk−1,Tmk−1ςk−1), b(ςk−1,Tvςk−1)}) − τ.

Denoting by v0 ∈ {mk−1, v, v −mk−1} such that

b(ςk−1,Tv0ςk−1) = max
{
b(ςk−1,Tmk−1ςk−1), b(ςk−1,Tvςk−1), b(ςk−1,Tv−mk−1ςk−1)

}
,

from the above inequality we have

G(b(ςk, ςq)) < G(b(ςk−1,Tv0ςk−1)) − τ. (16)

In the same way, if we consider v1 ∈ {mk−2, v0, v0 −mk−2} such that

b(ςk−2,Tv1ςk−2) = max
{
b(ςk−2,Tmk−2ςk−2), b(ςk−2,Tv

0ςk−2), b(ςk−2,Tv0−mk−2ςk−2)
}
,

we have

G(b(ςk−1,Tv1ςk−1)) = G(b(Tmk−2ςk−2,Tmk−2 (Tv0−mk−2ςk−2)))
< G(L(ςk−2,Tv0−mk−2ςk−2)) − τ
< G(max {b(ςk−2,Tv0−mk−2ςk−2), b(ςk−2,Tmk−2ςk−2), b(ςk−2,Tv0ςk−2)})
≤ G(b(ςk−2,Tv1ςk−2)) − τ

Continuing, we can find vk−1 such that

G(b(ςk−1,Tv0ςk−1)) < G(b(ςk−2,Tv1ςk−2)) − τ < ... < G(b(ς0,Tvk−1ς0)) − (k − 1)τ < G(ρ(ς0)) − (k − 1)τ

and replacing in (16),

G(b(ςk, ςq)) < G(b(ςk−1,Tv0ςk−1)) − τ
< G(ρ(ς0)) − kτ.

Taking in the inequality above k→∞we get lim
n→∞

G(b(ςk, ςq)) = −∞ and then from ( fa), we have

lim
n→∞
b(ςk, ςq) = 0. (17)

Let now, w = w(ς0) such that xp = Tw(ς0)ς0 is another successor term of ςk. We have,

b(ςp, ςq) ≤ s[b(ςp, ςk) + b(ςk, ςq)]→ 0 as k→∞,

so that the sequence {ςn}n ⊂ O(ς0) is Cauchy on the space (XO
∗

, b, s). Thus, there exists ς∗ ∈ X such that

lim
n→∞

ςn = ς∗. (18)

We shall show that Tm(ς∗)ς∗ = ς∗, under the assumptions (A) or (B) or (C).
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(A) If T is continuous, then Tm(ς∗) is continuous and

Tm(ς∗)ς∗ = Tm(ς∗)( lim
n→∞

Tqς0) = lim
n→∞

Tm(ς∗)+qς0 = ς∗.

Hence, ς∗ is a fixed point of Tm(ς∗).

(B) By (b3), we have

b(ς∗,Tm(ς∗)ς∗) ≤ s
[
b(ς∗, ςk) + b(ςk,Tm(ς∗)ς∗)

]
(19)

Supposing that b(ς∗,Tm(ς∗)ς∗) > 0, we have

b(ςk,Tm(ς∗)ς∗) = b(Tmk−1ςk−1,Tmk−1 (Tm(ς∗)−mk−1ς∗)) > 0,

and by (15),

G(b(ςk,Tm(ς∗)ς∗)) = G(b(Tmk−1ςk−1,Tmk−1 (Tm(ς∗)−mk−1ς∗)) < G(R(ςk−1,Tm(ς∗)−mk−1ς∗)) − τ
= G(max

{
b(ςk−1,Tm(ς∗)−mk−1ς∗), b(ςk−1,Tmk−1ςk−1), b(ςk−1,Tm(ς∗)ς∗)

}
) − τ

≤ G(b(ςk−1,Tν0ς∗)) − τ,

where ν0 ∈ {m(ς∗) −mk−1,m(ς∗),mk−1} is choosing such that

b(ςk−1,Tν0ς∗) = max
{
b(ςk−1,Tm(ς∗)−mk−1ς∗), b(ςk−1,Tmk−1ςk−1), b(ςk−1,Tm(ς∗)ς∗)

}
).

Thus, continuing in this way, we have

G(b(ςk,Tm(ς∗)ς∗)) = G(b(ςk−1,Tν0ς∗)) − τ < ... < G(b(ς0,Tνk−1ς∗)) − kτ,

for all k ∈N.
On the other hand, we remark that, under the assumption (B), there is a constant k > 0 such that
b(ς∗,Tnk−1ς∗) < k

2s and b(ς0, ς∗) <
k
2s . Thus,

b(ς0,Tνk−1ς∗) ≤ s[b(ς0, ς
∗) + b(ς∗,Tnk−1ς∗)] < k . (20)

Taking the limit as k→∞ and keeping in mind (20), we get lim
n→∞

G(b(ςk,Tm(ς∗)ς∗)) = −∞, which together

with ( fa), gives

lim
n→∞
b(ςk,Tm(ς∗)ς∗) = 0. (21)

b(ς∗,Tm(ς∗)ς∗) ≤ s[b(ς∗, ςk) + b(ςk,Tm(ς∗)ς∗)]

and taking into account (18) and (21 ) we have b(ς∗,Tm(ς∗)ς∗) = 0.

(C) If G and b are continuous, we have

G(b(Tm(ς∗)ς∗,Tm(ς∗)(Tnς0))) < G
(
max

{
b(ς∗,Tnς0), b(ς∗,Tm(ς∗)ς∗), b(ς∗,Tm(ς∗)(Tnς0))

})
− τ.

Letting n→∞ and taking into account (18)

G(b(Tm(ς∗)ς∗, ς∗)) < G(b(Tm(ς∗)ς∗, ς∗)) − τ < G(b(Tm(ς∗)ς∗, ς∗)),
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which is a contradiction. Therefore, G(b(Tm(ς∗)ς∗, ς∗)) = 0, that is Tm(ς∗)ς∗ = ς∗.
Let ς∗, z∗ be two distinct fixed points of Tm(ς∗). Then, b(Tm(ς∗)ς∗,Tm(ς∗)z∗) = b(ς∗, z∗) > 0 implies that

G(b(Tm(ς∗)ς∗,Tm(ς∗)z∗)) < G
(
max

{
b(ς∗, z∗), b(ς∗,Tm(ς∗)ς∗), b(ς∗,Tm(ς∗)z∗)

})
− τ

< G (max {b(ς∗, z∗), b(ς∗, ς∗), b(ς∗, z∗)}) − τ
< G(b(ς∗, z∗)) − τ
< G(b(ς∗, z∗)).

This is a contradiction.

Hence, Tm(ς∗) has a unique fixed point, and follow the lines from Theorem 2.1 we conclude that Tς∗ = ς∗.

Example 2.7. Let the set X = [0,∞) endowed with the b-metric b = |ς − z |2, for every ς, z ∈ X. Let the map

T : X → X be given by Tς =


ς
3 , for ς ∈ [0, 1

2 ) ∪ ( 1
2 , 1]

1, for ς = 1
2

.

Since

b(T0,T 1
2 ) = b(0, 1) = 1, b(0, 1

2 ) = 1
4 ,

b(0,T0) = 0, b( 1
2 ,T

1
2 ) = b( 1

2 , 1) = 1
4 ,

b(0,T 1
2 ) = b(0, 1) = 1, b( 1

2 ,T0) = 1
4

we get that T satisfies neither the assumption of Theorem 1.3, nor that of Theorem 1.4.

On the other hand, since T2ς =


ς
9 , for ς ∈ [0, 1

2 ) ∪ ( 1
2 , 1]

1
3 , for ς = 1

2

we have

b(T2ς,T2 1
2 ) = b( ς9 ,

1
3 ) =

∣∣∣ ς−3
9

∣∣∣2 , b(ς, 1
2 ) =

∣∣∣ς − 1
2

∣∣∣2 ,
b(ς,T2ς) = ( 8ς

9 )2, b(ς,T2 1
2 ) = b(ς, 1

3 ) =
∣∣∣ς − 1

3

∣∣∣2 .
and choosing G(t) = lnt, τ = 2ln 21

20 the inequality (15) becomes(21
20

)2

b(T2ς,T2 1
2

) < R(ς,
1
2

),

where

R(ς, 1
2 ) = max

{
b(ς, 1

2 ), b(ς,T2ς), b(ς,T2 1
2 )
}

= max
{∣∣∣ς − 1

2

∣∣∣2 , ( 8ς
9 )2,

∣∣∣ς − 1
3

∣∣∣2} .
If ς > 1

3 , we have(21
20
·

3 − ς
9

)2

<
(8ς

9

)2

≤ R(ς,
1
2

)

and if ς ≤ 1
3 we get(21

20
·

3 − ς
9

)2

<
(
ς −

1
2

)2

≤ R(ς,
1
2

).

Therefore, because G and b are continuous, by Theorem 2.6, it follows that T has a fixed point.
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Corollary 2.8. Let T be a self-mapping on the complete orbitally metric space (XO
∗

, d ) and assume that there exists
ς0 ∈ X such that the orbit O(ς0) = {Tnς0 : n = 0, 1, 2, ...} is a bounded subset of X. Let the functions ζ ∈ S′, G ∈ G
and suppose that for every ς ∈ X, there is a positive integer m = m(ς) such that

d (Tm(ς)ς,Tm(ς)z) > 0⇒ ζ(τ + G(d (Tm(ς)ς,Tm(ς)z)),G(R(ς, z))) ≥ 0, (22)

where

R(ς, z) = max
{
d (ς, z), d (ς,Tm(ς)ς), d (ς,Tm(ς)z)

}
holds for every z ∈ X. If either T or G is continuous, then T has a unique fixed point of ς∗ ∈ X. Moreover,
limn→∞ Tnς0 = ς∗.
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